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Abstract: Environmental chemicals, such as PFAS, exist as mixtures and are frequently encountered
at varying concentrations, which can lead to serious health effects, such as cancer. Therefore, under-
standing the dose-dependent toxicity of chemical mixtures is essential for health risk assessment.
However, comprehensive methods to assess toxicity and identify the mechanisms of these harmful
mixtures are currently absent. In this study, the dose-dependent toxicity assessments of chemical
mixtures are performed in three methodologically distinct phases. In the first phase, we evaluated
our machine-learning method (AI-HNN) and pathophysiology method (CPTM) for predicting tox-
icity. In the second phase, we integrated AI-HNN and CPTM to establish a comprehensive new
approach method (NAM) framework called AI-CPTM that is targeted at refining prediction accuracy
and providing a comprehensive understanding of toxicity mechanisms. The third phase involved
experimental validations of the AI-CPTM predictions. Initially, we developed binary, multiclass
classification, and regression models to predict binary, categorical toxicity, and toxic potencies using
nearly a thousand experimental mixtures. This empirical dataset was expanded with assumption-
based virtual mixtures, compensating for the lack of experimental data and broadening the scope
of the dataset. For comparison, we also developed machine-learning models based on RF, Bagging,
AdaBoost, SVR, GB, KR, DT, KN, and Consensus methods. The AI-HNN achieved overall accuracies
of over 80%, with the AUC exceeding 90%. In the final phase, we demonstrated the superior per-
formance and predictive capability of AI-CPTM, including for PFAS mixtures and their interaction
effects, through rigorous literature and statistical validations, along with experimental dose-response
zebrafish-embryo toxicity assays. Overall, the AI-CPTM approach significantly improves upon the
limitations of standalone AI models, showing extensive enhancements in identifying toxic chem-
icals and mixtures and their mechanisms. This study is the first to develop a hybrid NAM that
integrates AI with a pathophysiology method to comprehensively predict chemical-mixture toxicity,
carcinogenicity, and mechanisms.

Keywords: environmental chemicals toxicity; PFAS; new approach methodology; machine learning;
pathophysiology; dose-dependent toxicity; chemical-mixture interaction effect

1. Introduction

Humans are coexposed to various chemicals present in the environment. These
environmental chemicals mainly exist as mixtures of diverse individual chemicals. The
toxicity of these mixtures is significantly influenced by the concentration levels of their
individual components. While the toxicity profiles of single chemicals have been widely
studied and reported, there is a substantial gap in the comprehensive data regarding the
toxicity of chemical mixtures. This lack of experimental toxicity data on chemical mixtures
is due to several associated difficulties, including high costs, time-consuming processes, and
ethical issues related to the use of animals in toxicological testing [1]. The existence of a large
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number of potential combinations and concentration ratios of chemical constituents further
augments the practical challenges of conducting experimental evaluations on chemical
mixtures [2]. As a result, there is a pressing need for alternative methods that can predict
the toxicity of chemical mixtures without reliance on traditional experimental methods.

Computational toxicology offers a promising solution by employing mathematical
and computer-based models to predict the effects of chemical exposures. These methods
use existing data and predictive algorithms to evaluate potential health risks posed by
chemical mixtures, thus circumventing some of the traditional challenges faced in experi-
mental toxicity assessments [3]. Computational approaches are particularly valuable, as
they can handle complex mixtures at various concentration ratios, effectively increasing
the scope of toxicological assessments beyond what is feasible with in vivo and in vitro
methods alone. Thus, the development and refinement of computational models play
a key role in advancing our understanding of mixture toxicology and facilitating more
effective environmental health risk assessments. These models not only help reduce the
reliance on animal testing but also enhance the efficiency and cost-effectiveness of toxicity
assessments [4,5].

Quantitative structure–activity relationship (QSAR) methodologies are widely used
for assessing the toxicity of chemicals. These methods assess the relationship between
chemical structure and their biological activity, providing a toxicological assessment tool.
Altenburger et al. have extensively discussed the challenges and methodologies involved
in evaluating the toxicity of chemical mixtures and the importance of computational
techniques, given the limitations of traditional experimental methods [6]. Luan et al.
employed the QSAR approach to model the toxicity of binary mixtures of non-polar
narcotic chemicals. They achieved high predictive accuracy, with an R2 of 0.94 for their
multilinear regression model (MLR) and an R2 of 0.96 for the radial basis function neural
network (RBFNN) model [7]. This study showed the effectiveness of QSAR models in
predicting the toxicological interactions within binary chemical mixtures, indicating their
potential application in broader chemical assessment frameworks.

Similarly, Qin et al. developed multiple linear regression models based on different
mechanistic assumptions of 24 models using the concentration addition approach and an-
other 24 based on independent action [8]. These models were designed to assess the toxicity
of four binary combinations of chemicals across six varying concentration ratios, further
showing the applicability of QSAR methodologies in complex mixture toxicity prediction.
Toropova et al. also applied QSAR models to predict the toxicity of binary mixtures of
benzene and its derivatives, using descriptors calculated from the Simplified Molecular
Input Line Entry System (SMILES) [9]. These models tuned to specific chemical categories
and achieved high R2 values that reflect the adaptability of QSAR in handling diverse
chemical datasets and contributing to its limited applicability. However, a critical charac-
teristic of the effective application of QSAR models is defining their applicability domain
for the reliability of the predictions [3,10–12]. Additionally, the absence of toxicokinetic,
toxicodynamic, and pathophysiological mechanisms limits the utility of QSAR models.

Machine-learning (ML) models have emerged recently to predict mixture toxicity.
Duan et al., used ink-jet printing (IJP) technology and continuous photographing to gen-
erate experimental toxicity data in the form of luminescent inhibition rates (LIRs) [13].
ML-method-based regression models were developed on the ternary mixtures of four com-
pounds at various concentrations to predict the toxicity. The random forest (RF) method
gave the best predictive performance, with an average R2 of 0.96. The limitation of this
strategy was that toxicity prediction could be done only for the mixtures of the compounds
in the training set by varying their concentration. Cipullo et al. used neural network
(NN) and RF to develop regression models that predicted the toxicity of complex chemical
mixtures in two soil samples by first predicting the bioavailability concentration and using
the value as input in the toxicity prediction models [14]. This method is applicable for
predicting the toxicity for only those two soil samples at a given time t. Neither of the
models in these two studies can be used generally to predict the toxicity of a mixture of ran-
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dom chemicals. The mixtures comprise a limited number of compounds as the component
chemicals, and there is no provision to change the input features based on the descriptor of
the component chemicals. These studies apply very specific and complicated methods to
generate the toxicity data and use very limited input features to develop ML models with
limited applicability. Thus, there is a need for robust models to predict the toxicity of a
diverse set of chemical mixtures using easily obtainable descriptors as the input features
and a more interpretable form of predicted toxicity. Also, binary classification models
that predict whether the mixtures are toxic or not and multiclass classification models that
predict the degree of toxicity of the mixtures are important to identify hazardous mixtures.

Moreover, humans are exposed to thousands of potentially dangerous environmental
chemicals and mixtures. According to the WHO and the IARC, chemical exposures are
responsible for nearly 30% of human cancers. Most diseases, symptoms, or adverse effects
are due to chemical mixtures rather than a single chemical, and even less is known regard-
ing the impact of mixture exposure [7,15–40]. Notably, the question of which mixtures
contribute to the adverse effects, toxicity, or carcinogenic potential causing the initiation or
progression of cancer remains unresolved. Further, for assessing a mixture cancer risk or
toxicities, neither computational nor experimental methods currently consider the mecha-
nisms [7,15–44]. Therefore, it is important to characterize and understand the characteristic
driving markers of toxic and carcinogenic responses of chemical mixtures.

Additionally, the number of possible complex mixture combinations creates significant
difficulties for effective biological testing. Consequently, the qualitative and quantitative
data assessing the mixtures and their adverse effects are lacking, making translating the
existing data into meaningful prevention and therapeutic strategies complex [7,15–44]. We
recently described an AI–hybrid neural network (AI-HNN) machine-learning method for
predicting the binary, multiclass, and categorical carcinogenicity of chemicals and their
mixtures in a dose-dependent manner [45–48]. However, this method does not account for
post-exposure effects, such as toxicokinetic and toxicodynamic properties, among other
toxicological and pathophysiological characteristics, which limit the utility of this method.
We have previously introduced a computational pathophysiology method, termed Chemo-
Phenotypic Based Toxicity Measurement (CPTM), which incorporates these properties to
predict the toxicity, carcinogenicity, and mechanisms of chemicals and their mixtures [49].
However, the CPTM lacks the ability to consider dose-dependent effects and chemical
interactions in mixtures. Consequently, there is an urgent need for a comprehensive
alternative new approach methodology (NAM) to thoroughly assess the toxicity, cancer
risks, and mechanisms associated with chemical mixtures.

In the present study, our objective is to introduce and validate a novel, comprehensive
new approach methodology (NAM) designated as AI-CPTM. This methodology syner-
gistically integrates the Chemo-Phenotypic Based Toxicity Measurement (CPTM) and the
hybrid neural network (AI-HNN) models. The AI-CPTM predictions were validated using
various performance metrics and validated with data from the literature. Additionally,
we conducted validations of the toxicities of chemicals and their mixtures, as well as their
chemical interaction effects, using the zebrafish-embryo toxicity assay. In these validations,
our AI-HNN and AI-CPTM methodologies demonstrated robust performance in predicting
the toxicity of chemicals and their mixtures in a dose-dependent manner.

2. Materials and Methods
2.1. Collection of Experimental Chemical-Mixtures Data from the Literature

Due to the lack of available animal experimental data on chemical mixtures, we
initiated a comprehensive collection of experimental mixture data reported for diverse
species. We compiled data for 981 chemical mixtures from various scientific publications.
These data were gathered from toxicity studies across multiple species, with all reference
citations provided in Supplementary Table S1 all references. The toxicity metrics for these
981 mixtures are presented as either LD50 (median lethal dose), LC50 (median lethal
concentration), or EC50 (median effective concentration) values. The data are converted to
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EC50/LC50 if given as pEC50/pLC50 and to mg/L if given as mol/L. To convert data from
pEC50/pLC50 to EC50/LC50, we used EC50 = 10(−pEC50).

Molar mass (or molecular weight in g/mol) is used to convert EC50 mixture data from
mol/L to mg/L. For a mixture of two chemicals A and B,

EC50 g/L = EC50 mol/L (molar mass A × mole fraction A + molar mass B × mole fraction B) (1)

Whereas molar masses A and B are the molecular weights of the chemical components
A and B in the mixture, mole fractions A and B are the mole fractions of the components A
and B in the mixture. The mole fractions of the component chemicals in the mixture were
calculated from the median effective concentrations of the component chemicals when
acting alone and their corresponding toxicity ratios in the mixture. In some cases, the
fractions of the components in the mixture are provided. The detailed computation of mole
fractions is described in the regression method section.

2.2. Collection of Drug Combinations

Data on drug combinations were downloaded from the Drug Combination Database
(DCDB) [50]. Out of 1363 combinations, 942 were binary combinations. The DCC_IDs of
each component drug were mapped to DrugBank IDs. Descriptors were calculated for the
component drugs of binary combinations.

2.3. Collection of ChemIDPlus Single Chemicals

From ChemIDplus, 92,322 single chemicals with LD50 values in mg/kg were collected,
as detailed in our previous publication [45,47,48]. These chemicals are included with
PFAS. We considered rat and mouse oral route of exposure data, resulting in 22,808 single
chemicals for which descriptors were calculated.

2.4. Creation of Binary-Mixture Dataset

We developed multiple datasets to evaluate the predictive capabilities of machine-
learning models in the context of binary chemical-mixture toxicity. The creation of datasets
I to VII is guided by distinct objectives, each designed to address specific aspects of binary
chemical-mixture analysis. Dataset I establishes a foundational framework by categorizing
981 binary mixtures into toxic and non-toxic groups. Dataset II seeks to balance this initial
dataset by including non-toxic binary drug combinations to improve statistical reliability
and enhance the training of models by equalizing the distribution of classes. Dataset III
further expands the non-toxic data by incorporating additional binary drug combinations
to enrich the dataset for comprehensive toxicity characteristic studies. Dataset IV uses a
larger chemical library from ChemIDplus to generate a diverse dataset, using different
toxic/nontoxic case assumptions that allow more extensive testing of predictive models
across a wide range of chemicals. Dataset V integrates virtual mixtures to provide an
enriched chemical-mixture training set for the simulation of toxicity predictions. Dataset
VI enhances an earlier dataset by adding more mixtures from ChemIDplus, increasing data
diversity and improving the robustness of the predictive models. Dataset VII focuses on
chemical similarity, selecting compounds based on their similarity to known toxic or non-
toxic components. It explores the toxicity of various binary combinations in a large-scale
dataset designed for rigorous model testing. Overall, each dataset is designed to enhance
the accuracy and applicability of predictive toxicity assessments in chemical mixtures.

Dataset I consists of 981 binary mixtures, consisting of 564 toxic and 382 non-toxic
chemical mixtures.

For dataset II, to create a balanced dataset I, we added 200 binary drug combinations
to the non-toxic binary-mixture data of dataset I. Thus, we obtained 564 toxic and 582 non-
toxic mixtures.

For dataset III, here, all 373 binary drug combinations were added as non-toxic data to
the 981 chemical-mixture dataset I. Thus, dataset III consists of 564 toxic and 755 non-toxic
binary mixtures.
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2.5. Generating Virtual Mixtures: Assumptions and Methods

While simulating the dose-dependent toxicity of chemical mixtures, we initially ad-
dressed the lack of experimental data on mixtures, including PFAS, by creating virtual mix-
tures. These mixtures, both binary and multiple, were derived from individual chemicals.
As we previously described [45], we employed various permutations and combinations
to generate mixture combinations from individual ChemIDplus chemicals, which include
emerging PFAS chemicals. Given the impracticality of handling the millions of potential
combinations of 22,808 ChemIDplus chemicals, we adopted a representative sampling
approach to manage the dataset, as previously outlined [45,48]. This method enables us to
capture diverse combinations while effectively reducing the vast number of possibilities.
To create virtual mixtures, we employed assumption-based cases to form different combina-
tions of mixtures, as detailed in an earlier publication [45]. In this study, we report results
exclusively from Case 1, where virtual mixtures were formed by combining a single toxic
chemical with another toxicant to produce a toxic mixture, and Case 2, where mixtures
were formed by combining a nontoxic chemical with another non-toxicant to create a
nontoxic combination. In this way, we formed the following virtual mixture dataset from
the ChemIDPlus chemicals.

For dataset IV, this dataset was based on the 22,682 ChemIDplus chemicals, compris-
ing 6436 toxic and 16,246 non-toxic chemicals. Assumption-based binary mixtures were
generated by uniquely combining 6436 toxic chemicals to form 3218 toxic binary combi-
nations, and 16,246 non-toxic chemicals were similarly combined to form 8123 non-toxic
binary combinations. Consequently, a total of 11,341 unique binary chemical combinations
were created.

For dataset V, comprising 12,293 virtual binary mixtures, this dataset includes
11,341 combinations from ChemIDplus, 373 drug combinations, and 557 additional binary
mixtures. Within this set, 3592 are classified as toxic mixtures, while 8701 are considered
non-toxic mixtures.

For dataset VI, this dataset size was increased by adding randomly selected 400 toxic
and 400 non-toxic ChemIDplus binary combinations to dataset III, ending in 766 toxic and
964 non-toxic mixtures.

For dataset VII, from the pool of 22,808 chemicals in ChemIDplus, 16,320 were iden-
tified as non-toxic and 6488 as toxic. Only those chemicals with a Tanimoto similarity
>0.6 to the 236 component chemicals from the binary mixtures previously identified in
the literature were selected, resulting in 3833 non-toxic and 1659 toxic chemicals. We
hypothesized that the binary mixtures of toxic chemicals would invariably be toxic, those
comprising only non-toxic chemicals would remain non-toxic, and those combining toxic
and non-toxic chemicals would be classified as toxic. From all possible binary combina-
tions, 30,000 were randomly selected as toxic mixtures from the toxic chemical set, 60,000
as non-toxic mixtures from the non-toxic set, and 60,000 as toxic mixtures from the mixed
set. This process yielded 90,000 toxic binary mixtures and 60,000 non-toxic binary mixtures.
Additionally, 981 experimental binary-mixture data from the literature were incorporated
into the 150,000 ChemIDplus mixture dataset.

2.6. Hybrid Neural Network (HNN) Method for the Prediction of Chemical-Mixture Toxicity

We used the hybrid neural network (HNN) framework called AI-HNN, which was
developed in our previous work to predict dose-dependent single-chemical toxicity and
dose-dependent mixture carcinogenicity prediction [47,48]. HNN was developed using the
Keras API in Python. A convolutional neural network (CNN) merges with a multilayer
perceptron (MLP)-type feed-forward neural network (FFNN) to make the final toxicity
prediction of the chemicals. CNN uses a 3D array of one-hot encoded SMILES strings as
the input, while the FFNN uses molecular descriptors of the chemicals calculated using
QikProp [51] and Mordred [52] as the input. In addition to an input and an output layer,
a CNN consists of convolutional, activation, pooling, and fully connected layers. CNN
eliminates the requirement of a very high number of neurons and parameters for the input
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of large size by allowing the network to be deeper but with few parameters. It uses a pooling
layer to reduce the data size and helps control overfitting. The final classification is done
by implementing the sigmoid activation function in the case of binary classification, the
softmax activation function in the case of multiclass classification, and the linear activation
function in the case of the regression model.

2.6.1. Dose-Dependent Relationship of the Chemical Mixtures Using the HNN

Next, considerations of the dose-dependent ratio of chemical components in a mixture
were included in two steps. In the first step, we modified the concentration addition
CA model; in the second step, we used a mathematical approach. The modified CA
model involves calculating and integrating dose-dependent ratios for the different chemical
components in a mixture. For most cases, mainly for virtual mixtures, the experimental
dose-concentration data of a chemical is not available. Therefore, we developed regression
models to calculate the concentrations.

Calculation of Dose-Dependent Ratio of Chemicals in a Mixture and Computation of
Chemical Interaction Effects

Regression models are developed to calculate the predicted median effective concen-
tration (EC50) range of the component chemicals in the mixtures. Similarly, LC50, and LC50
concentrations were calculated. The regression models were derived by modifying the
concentration addition (CA) model [53] for the mixtures described below.

According to the concentration addition (CA) model [53], mixture toxicity is given by

EC50mix =
CM

CA
EC50A

+ CB
EC50B

=
CM
TU

(2)

where the EC50mix is the median effective concentration of the mixture, and CA, CB, and CM
are the concentrations of components A and B and the mixture M that was required to cause
the median effect (50% effect). EC50A, and EC50B, are the median effective concentrations of
component chemicals A and B when acting as a single compound.

The sum of toxic units (TUs) of each component gives the joint toxicity of the mixture.

TU =
CA

EC50A
+

CB
EC50B

= 1 (3)

From Equations (2) and (3),

CM = TU × EC50mix (4)

where TU ranging from 0.8 to 1.2 indicates additive effect; TU > 1.2 indicate synergistic
effect; TU ≤ 0.8 indicate antagonistic effect; and TU ≥ 0.8 indicate independent action effect.

Here, we systematically modeled the chemical interaction effects, encompassing addi-
tive, synergistic, antagonistic, and independent action effects by integrating appropriate
toxic unit (TU) ratios. This methodological framework permitted the incorporation of
varying doses of the component chemicals and their respective interaction effects, enabling
dose-dependent effects. For the scope of this study, we specifically focused and reported
results only on the additive effects of the component chemicals within the mixtures while
calculating the predicted range of concentrations for the components in the mixture at
median inhibition. Thus, when TU = 0.8 to 1.2, then, Equation (3) becomes,

CM = (0.8 × EC50mix to (1.2 × EC50mix ) (5)

Equation (2) can be rewritten as:

EC50mix =
1

pA
EC50A

+ pB
EC50B

(6)
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where pA = CA
CM

and pB = CB
CM

are the mass fractions of components A and B in the mixture
at median inhibition.

The concentration of components A and B that causes a median effect in the mixture
can be calculated in terms of mass fraction as

CA = pA × CM
CB = pB × CM

(7)

Thus, from Equations (5) and (7), we get the final Equation (8) to calculate the range
of concentration of each component chemical required to cause the median effect by the
mixture as:

CA = (pA × 0.8 × EC50mix) to (1.2 × EC50mix × pA )
CB = (pB × 0.8 × EC50mix) to (1.2 × EC50mix × pB )

(8)

2.6.2. Dose-Dependent Computations Using Mathematical Approach

The dose consideration during mixture formation uses the concentration information
of each component chemical that makes the mixture calculate the mixture descriptor. We
used the reported concentration information associated with a chemical while making
mixture combinations. In cases where concentration information was unavailable for
certain chemicals, such as some experimented chemicals and virtual mixture chemicals,
we assigned concentrations that we computed from the modified concentration addition
model, or we assigned equal concentrations. In this study, we report results for the equal
concentrations assigned for the component chemicals. We also report only the binary-
mixture data.

As described in Section 1 on data collection, although datasets I to VII are prepared by
combining data from various sources, the toxicity determination metrics and thresholds
vary across and within these datasets. The 981 experimental mixtures’ data collected from
the literature consist of LC50 and EC50 data. We used one standard cutoff of 100 mg/L for a
toxicity determination set by EPA. In the case of the LD50 data of ChemIDPlus chemicals,
we used a cutoff of 500 mg/kg for determining the toxicity. All the collected chemical
experimental data were converted to mol/L before calculating the log (1/EC50, LC50,
or ED50).

Next, we considered dose dependency by using mole fractions and molecular descrip-
tors of chemicals, which are given as input features for the HNN FFNN framework. These
features enabled us to calculate the dose-dependent factor, ‘D’. Mole fractions of the compo-
nent chemicals in a mixture were calculated from their median effective concentration when
acting alone and their corresponding toxicity ratio in the mixture. The dose-dependent
chemical-mixture descriptor ‘D’ was calculated using three different mathematical methods
formulas (sum, difference, and norm) as the basis, as described previously [45,54].

For the sum, the mixture descriptor dose-dependent factor ‘D’ is calculated as the
sum of the molecular descriptors d1, d2. . .dn of the two or more component chemicals in a
mixture weighted by their respective mole fractions x1, x2. . .xn in a mixture.

D = x1d1 + x2d2 + · · · · · · xndn (9)

In this study, we used and reported only the sum method results. The mixture
descriptor dose-dependent factor ‘D’ was calculated using the sum method. We used
653 descriptors for each component chemical, computed using the Mordred [52]. The
mixture descriptor ‘D’ was calculated as the sum of the molecular descriptors ‘d1’ and ‘d2’ of
the two-component chemicals of the mixture, each scaled by their respective concentration
fractions ‘x1’ and ‘x2’ in mg/L.

2.7. Molecular Structural Feature Descriptors Using SMILES of the Chemicals

Next, the SMILES structural representation and image bytes of the chemicals are
computed, which are used as input features for the HNN CNN model. For the SMILES, the
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mixture SMILES ‘S’ is generated by the concatenation of the two SMILES strings ‘S1’ and
‘S2’ with a period (.) as the separator.

S = S1.S2 (10)

2.8. SMILES Preprocessing

The detailed process is explained in our previous studies for single-chemical toxicity
and mixture carcinogenicity studies [45,47,48]. However, here, we used a slightly modified
process. Molecular SMILES are used for chemical nomenclature using ASCII strings to
represent the 2D structural attributes that we used here as the input for our CNN models.
Since raw texts cannot be directly used as input for the deep-learning models, we encoded
them as numbers. The entire list of SMILES strings is first represented on the tokenizer to
create a dictionary of the set of all the possible characters in the SMILES string and their
corresponding index. We assumed and created a dictionary ‘D’, where

D = {‘C’: 1, ‘=‘: 2, ‘(‘: 3, ‘)’: 4, ‘#’: 5, ‘N’: 6, . . ., ‘ ‘: M } (11)

This results in every character in the SMILES string being assigned a unique integer
value, which is the index of the character in the dictionary. The SMILES entry for every
chemical is then converted to a one-hot encoded 2D matrix. For example, an acrylonitrile-d3
chemical with SMILES string C=CC#N is one-hot encoded as:


C
C
C
N

 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

· · ·
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

...
. . .

...
0 0 0 0 0 0 · · · 0


(12)

A 3D matrix of size K × L × M is obtained eventually, where K is the number of
chemicals, L is the maximum length of the SMILES string, and M is the number of sets
of all the possible characters in the SMILES string in the K chemicals. One-hot encoding
means converting the integer value of each character in the SMILES to its equivalent binary
vector of length M.

2.9. Descriptor Calculation

We computed 653 descriptors for each component chemical using the Mordred 2022
software [52]. Additional descriptors were computed from the SMILES of the component
chemicals. The structconvert utility in Schrodinger 2023 software [51] was used to con-
vert the SMILES of the chemicals to 2D structures in .sdf format. The 2D .sdf file was
converted to 3D structures using a 3D minimization application in Schrodinger’s 2023
Canvas software. Additional descriptors based on a 3D molecular structure, such as ADME
(absorption, distribution, metabolism, and excretion) properties, such as the octanol–water
partition coefficient, MDCK cell permeability, Caco-2 cell permeability, binding to human
serum albumin, and human oral absorption, were calculated using QikProp application
in Schrodinger 2023 software [51]. In the last step, these descriptors were given as input
features for the FFNN and CNN of the HNN hybrid framework, and simulations were initi-
ated. The output of the CNN and FFNN are merged within the HNN framework [45–48] to
create mixture classification models, which are described below. Eventually, we predicted
the unknown chemical-mixture toxicity in a dose-dependent manner with the inclusion of
the chemical interaction effect.
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2.10. Binary Classification Criteria

According to the EPA’s toxicity categories, a concentration of less than 100 mg/L
is considered toxic [55]. Therefore, all chemicals with EC50/LC50 values greater than or
equal to 100 mg/L were considered non-toxic. For binary classification, out of 981 binary
mixtures, 610 were classified as toxic, while 371 were classified as non-toxic.

2.11. Multiclass Classification Criteria

Multiclass models predict the degree of toxicity of a binary mixture of chemicals by
classifying each mixture into one of the five classes. The EPA classifies pesticides into
five categories based on the degree of toxicity [55]. We applied these EPA classification
criteria to the EC50, LC50, and LD50 concentrations for various organisms. For example,
the acute toxicity classification for aquatic organisms is based on concentrations in mg/L,
categorizing compounds as:

i very highly toxic (<0.1 mg/L);
ii highly toxic (0.1–1 mg/L);
iii moderately toxic (>1–10 mg/L);
iv slightly toxic (>10–100 mg/L);
v practically nontoxic (>100 mg/L).

Using these categorization criteria from the EPA for different concentrations and
organisms, we classified 981 experimental binary mixtures accordingly, as follows: 371 are
very highly toxic (class 4), 273 are highly toxic (class 3), 153 are moderately toxic (class
2), 70 are slightly toxic (class 1), and 114 are practically non-toxic (class 0). Similarly, we
classified the mixture datasets I to VII (see Sections 4 and 5).

2.12. Developing Binary and Multiclass Classification Models Using Other
Machine-Learning Methods

To compare and evaluate the binary and multiclass predictions of our HNN method,
we developed binary and multiclass classification models using various machine-learning
techniques, including random forest (RF), bagged decision trees (also known as bootstrap
aggregating or bagging), and adaptive boosting (AdaBoost). These models were then
combined to create an ensemble model for improved predictive performance.

2.13. Developing Regression Models Using Other Machine-Learning Methods

To compare and evaluate the regression-based potency predictions of the HNN, we
developed regression models using various machine-learning methods, including random
forest (RF), support vector regressor (SVR), gradient boosting (GB), kernel ridge (KR),
decision tree with AdaBoost (DT), and KNeighbors (KN). These models were implemented
using the scikit-learn package in Python to generate the final consensus prediction of the
median effective concentration (ED50 or EC50). A consensus value is calculated based on
the average predicted values of all seven models.

2.14. Ensemble Model

The ensemble of model predictions optimizes the predictive performance of models
and was employed in the binary classification models. The ensemble prediction, as we
described previously [45,47,48], was used to calculate the final prediction based on the
prediction results from HNN, RF, bagging, and AdaBoost.

2.15. Robust Model Evaluation
Binary and Multiclass Classification Model Evaluation

The results presented here are an average of 30 iterations. Approximately 20% of
the data were randomly separated from the datasets as the test set in each iteration. We
employed a robust evaluation process to assess the performance of the mixture classification
models. Initially, about 20% of the available data were randomly allocated as the test set
for each iteration to ensure an unbiased assessment. This evaluation process was repeated
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for 30 iterations, and the average results were used to evaluate the model’s performance.
Several metrics were used to assess the classification models. Stratified 10-fold cross-
validation (CV) was performed for the classification models, and the average of 10 CV
results was calculated. Stratified cross-validation ensures that the proportion of samples for
each class is maintained while selecting the test set. The performance of each model was
evaluated based on accuracy, AUC, sensitivity, and specificity, as we previously described.
Accuracy, which measures the proportion of correctly classified instances, served as the
primary evaluation metric (Supplementary Equation (S1)). Additionally, the performance
of each model was evaluated based on the AUC. AUC provides the probability of a positive
outcome being ranked before a negative outcome and is a superior metric for assessing
binary classifiers compared to accuracy. Sensitivity, representing the true-positive rate,
and specificity, representing the true-negative rate, were also considered to assess the
model performance. These metrics offered us insights into the model’s ability to correctly
identify positive and negative outcomes within the dataset. Micro-averaging is used in
multiclass classification to calculate the average value across all classes by converting the
data into multiple binary classes and assigning equal weight to each observation. This
technique involves converting the data into binary classes and giving equal weight to
each observation, enabling a fair evaluation of the model performance across multiple
classes. By considering the average performance across all classes, we gain a comprehensive
understanding of the model’s overall classification accuracy and performance.

Regression Model Evaluation

Approximately 20% of the data were randomly separated as the test set. The calculated
performance metrics of the models were based on an average of 30 iterations. Mean square
error (MSE), mean absolute error (MAE), and coefficient of determination (R2) were the
metrics used to evaluate the performance of the models (Supplementary Equation (S2)).

Compound Out

The “compound out” (CO) method for segregating the test set has also been adopted
as a means to validate our models with increased rigor. This approach ensures that at
least one of the component chemicals within each mixture of the test set is not included
in the training set. This methodological choice enhances the robustness of our validation
process by testing the model’s predictive ability on entirely new or novel chemicals, thereby
mitigating the risk of overfitting and ensuring that the model’s predictions are generalizable
to new, unseen compounds. The inclusion of a varied set of chemical and drug mixtures
enhances the test set’s complexity and challenges the model’s ability to generalize across
a diverse chemical interaction. By evaluating the model performance on this expanded
and varied test set, we assess its robustness and accuracy in predicting the toxicity of
diverse chemical combinations under different contexts, confirming its applicability and
reliability in practical, real-life scenarios. By implementing this stringent validation tech-
nique, we demonstrate the model’s capacity to accurately predict chemical interactions and
mixture toxicities.

For COSet I, all 61 binary mixtures comprising four specific chemicals, such as sul-
famonomethoxine, sulfachloropyridazine, trimethoprim, and 2,4-dichlorophenol, were
included in the test set of dataset II. Additionally, 19 binary combinations of approved drugs
were integrated to further diversify the test set, obtaining a total of 80 distinct mixtures
designated for the test set.

For COSet II, all 60 binary mixtures, consisting of seven specific chemicals such as
Penicillin V potassium salt, benzene, gamma valerolactone, sulfapyridine, sertraline, p-
dinitrobenzene, and diazinon, were included in the dataset II test set. To enhance the
diversity and complexity of the test set, an additional 20 binary drug combinations were
incorporated, bringing the total to 80 distinct mixtures.
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2.16. Reproducibility

The rigor and reproducibility were discussed in the above sections. The model and
the outputs are reproducible with our collected data. Also, the simulations begin with a
fixed seed for reproducibility.

2.17. AI-CPTM Score Computations

The AI-CPTM score is computed as the combination of the AI-HNN and CPTM scores.
AI-CPTM score = AI-HNN score (binary class + categorical class + potency) + CPTM

Z score.
In the case of the AI-HNN score, the binary score is assigned by:
Binary score = binary value 0 or 1: score 1 if carcinogenic or toxic and score 0 if non

carcinogen or nontoxic.
The categorical scores are assigned according to the IARC classification for the range

of values <1 mg/kg to >2000 mg/kg or <1 mg/L to >500 mg/L, as below:
Categorical score = score 1 for group 1 (carcinogenic or high toxic);
score 0.75 for group 2A (probable carcinogen or toxic);
score 0.5 for group 2B (possible carcinogen or medium toxic;
score 0.25—group 3 (may be a carcinogen or low toxic);
score 0—group 4 (noncarcinogen or nontoxic).
The potency scores are assigned for the range of values <1 mg/kg to >2000 mg/kg or

<1 mg/L to >500 mg/L, as below:
Potency score = score 1 for <1 mg/kg/day to <100 mg/kg/day;
score 0.75 for >100 mg/kg/day to <250 mg/kg/day;
score 0.5 for >250 mg/kg/day to <500 mg/kg/day;
score 0.25 for >500 mg/kg/day to <1500 mg/kg/day;
score 0 for >1500 mg/kg/day.
Basically, the total AI-CPTM score cannot exceed a value of 4 because each score is

normalized to 1, with four score components in the total score, as seen in the equation
below. For example, in the case of highly toxic or carcinogenic mixtures, a typical AI-CPTM
total score is given by:

AI-CPTM score = score [(AI-HNN + CPTM)] = score [(1 + 1 + 1) + (>0.9)] = >3.9

3. Results and Discussion

The results are presented in two sections. Section I discusses the evaluation of dose-
dependent toxicity of chemical mixtures using our hybrid neural network (HNN) method,
including comparisons with other machine-learning methods. Section II describes how
the HNN is integrated with the CPTM and the integrated AI-CPTM assessment of the
dose-dependent toxicity of chemical mixtures. Section III describes the validations of the
AI-CPTM predictions.

I.1. Dose-Dependent Toxicity Assessment of Chemical Mixtures Using HNN and other
Machine-Learning Methods

Descriptor calculation for the virtual mixtures using sum, diff., and norm methods.
We evaluated the dose-dependent toxicity of chemical mixtures using a combination

of the existing experimental data, drug combinations, and virtual mixtures generated to
supplement the lack of experimental data. To predict binary and categorical toxicity, we
developed binary and multiclass classification models using data from 981 experimental
binary mixtures sourced from 60 articles (see Supplementary Material S1). Additionally,
regression models were developed by modifying the concentration addition model to
determine the toxic potency (pEC50/pLC50) of these mixtures. Of the total data, 785 data
(80%) were designated as the training set, with the remaining 196 data set aside for vali-
dation. We also explored the impact of sum, difference, and normalization methods on
toxicity evaluation, integrating both experimental and virtual data, which yielded highly
accurate results. Statistical analyses, including t-tests, revealed no significant differences in
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model performance across accuracy, sensitivity, specificity, precision, and AUC for these
methods. All the simulations were carried out over 30 iterations, with stratified 10-fold
cross-validation to ensure statistical robustness. Here, we report the results obtained from
the sum method.

I.2. Machine-Learning Model Performance using Literature-Derived Experimental Mix-
tures Data

I.2.1. Mixture Toxicity Prediction using Binary Classification
The predictive capability of the machine-learning models was evaluated using a

training set of 785 data (494 toxic and 291 non-toxic). A random selection of 157 samples
(20%) served as the test set, while the models were trained on the remaining 628 samples
during each simulation. The HNN, RF, bagging, AdaBoost, and ensemble were used. The
average accuracies achieved ranged from 90.91% to 92.48%, and the average area under the
curve (AUC) scores varied from 0.94 to 0.96 across the different models, with the ensemble
method exhibiting the highest sensitivity and specificity (Figure 1a). These models were
further validated against an external validation dataset of 196 data (116 toxic and 80 non-
toxic), where the accuracies ranged from 90.85% to 94.23%, and the AUC scores varied
between 0.972 and 0.985. The ensemble method again demonstrated superior sensitivity
and specificity, confirming its robustness (Figure 1b).
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Figure 1. (a). (A) Accuracy, (B) AUC, (C) sensitivity, and (D) specificity for the data in the training set
achieved by the binary classification models based on HNN, RF, bagging, AdaBoost, and ensemble
methods. (b). (A) Accuracy, (B) AUC, (C) sensitivity, and (D) specificity for the validation set achieved
by the binary classification models based on HNN, RF, bagging, AdaBoost, and ensemble methods.
Green symbols indicate far most outlier.

I.2.2. Mixture Toxicity Prediction using Multiclass Classification
To evaluate multiclass classification models, we randomly selected 157 samples (20%)

from a total of 785 data points (comprising 291 of class 0, 225 of class 1, 122 of class 2, 55
of class 3, and 92 of class 4) as the test set, using the remaining 628 samples as training
data. The HNN, RF, bagging, and AdaBoost demonstrated robust performance metrics,
with no method falling below significant predictive accuracy (ranging from 62% to 82%),
AUC values (86% to 97%), micro-sensitivity (62% to 82%), and micro-specificity (90%
to 95%) (Figure 2a). These models were then validated against an external dataset of
196 samples (80 class 0, 48 class 1, 31 class 2, 15 class 3, and 22 class 4) using the same total
data pool of 785. The predictive performance continued to show similar accuracy, AUC,
micro-sensitivity, and micro-specificity (Figure 2b).
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Figure 2. (a). (A) Overall accuracy, (B) micro accuracy, (C) micro AUC, (D) micro sensitivity, and
(E) micro specificity for the data in the training set achieved by the multiclass classification models
based on HNN, RF, Bagging, and AdaBoost methods. (b). (A) Overall accuracy, (B) micro accuracy,
(C) micro AUC, (D) micro sensitivity, and (E) micro specificity for the validation set achieved by
the multiclass classification models based on HNN, RF, Bagging, AdaBoost and Ensemble methods.
Green symbols indicate far most outlier.

I.2.3. Mixture Toxicity Prediction using Regression Models
The regression models were evaluated using 645 mixtures, with 129 randomly selected

as a test set and the remaining 516 data used for model development. The models were
built using HNN, RF, support vector regression (SVR), gradient boosting (GB), kernel
ridge (KR), decision tree boosting (DTBoost), and neural network (NN) to determine and
compare the toxic potencies. All methods demonstrated robust regression performance
metrics, including R2, mean squared error (MSE), and mean absolute error (MAE) values,
which are indicative of mixture toxic potency prediction accuracy (Figure 3a). Upon testing
these models against an external validation set of 160 data, consistently high R2 values and
low error rates were observed, confirming the model’s robust predictive ability (Figure 3b).
Additionally, the predicted range of the concentrations of the component chemicals required
to achieve a median effect was calculated from the toxicity values obtained by the HNN
and the consensus method (Supplementary Table S2).

I.2.4. Comparison of Mixture toxicity Prediction with the Existing Literature
Although there is a lack of directly comparable data, our models exhibit broader

applicability and enhanced predictive power relative to the existing models, such as those
developed by Duan et al. [13] and Cipullo et al. [14], which are confined to a limited number
of specific compounds and conditions. Duan et al. formulated regression models to predict
toxicity, expressed as luminescent inhibition rates (LIRs), for mixtures of four compounds,
relying solely on the concentrations of the constituent chemicals as the input features.
Cipullo et al. developed regression models for two distinct soil samples, incorporating
soil type, amendment type, chemical concentrations, and time ‘t’ as the input features. In
contrast, our approach utilizes a more extensive variety of chemical mixtures and employs
a broader set of input features, thus enhancing predictive accuracy across a diverse range
of toxicological outcomes.
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Figure 3. (a). (A) Coefficient of determination (R2), (B) mean squared error (MSE), and (C) mean
absolute error (MAE) for the data in the training set achieved by the regression models based on
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I.2.5a. Evaluation of Machine-Learning Model Performance using Data Derived from Combi-
nations of Experimental Mixtures and Drug-Combination Datasets (Datasets I—III)

In the three datasets (I, II, and III), the number of toxic chemicals remains constant, with
variations arising only from the addition of non-toxic chemicals through drug combinations
(see Materials and Methods section). For the HNN, the specificity improved from 0.91 in
dataset I to 0.93 and 0.95 in datasets II and III, respectively. Sensitivity initially decreased
from 0.92 to 0.91 and then increased to 0.94 (Figure 4a). The increase in specificity was
statistically significant, as indicated by the p-values from t-tests; however, the changes in
sensitivity were not statistically significant. For the RF model, the specificity increased
from 0.88 to 0.93 and 0.95, while sensitivity decreased from 0.95 to 0.91 and further to 0.90
(Figure 4a). The increase in specificity was highly significant for both the RF and bagging
models. For AdaBoost, the increase in specificity from dataset I to II was not statistically
significant, but it was significant between datasets II and III. The decreases in sensitivity
were significant across all models, except for HNN. The general rise in specificity across
the models can be attributed to the inclusion of additional drug data, which are negative
samples in the datasets. These data were predicted with nearly 100% accuracy, enhancing
the overall true-negative rate. Conversely, the decline in sensitivity for most models was
likely due to a decreased prediction capability for positive samples, potentially resulting
from overfitting to the training sets comprised predominantly of negative samples. The
HNN sensitivity had the most negligible impact on all the models. The HNN results
demonstrated no significant difference in sensitivity between datasets I and II or between
datasets I and III. The enhancement in HNN prediction accuracy with dataset III compared
to dataset I was statistically highly significant, attributed to an increase in specificity and a
non-significant decrease in sensitivity. There was a significant increase in the prediction
accuracy of RF. Still, the increase in prediction accuracy for bagging and AdaBoost, with
the addition of drug combination data was not statistically significant (Figure 4a).
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Figure 4. (a): Prediction accuracy, sensitivity, specificity, precision, and AUC for the mixture dataset
I (no drug combination) with 175 random mixtures in the test set, II (with 100 drug combinations)
with 200 random mixtures in the test set, and III (with all 373 drugs combinations) with 250 random
mixtures in the test set by HNN, RF, bagging, AdaBoost and the ensemble methods. (b): Statistical
summary of the results of HNN, RF, bagging, AdaBoost, and ensemble methods with prediction
accuracy, sensitivity, specificity, precision, and AUC for the mixture datasets IV, V, and VI are shown.

I.2.5b. Toxicity Prediction using Binary Classification with Virtual Mixtures and Drug-
Combination Datasets (Datasets IV to VI)

Dataset IV consists of 3226 toxic and 8137 non-toxic binary combinations derived
from the single-chemical data of ChemIDplus. Dataset V includes 3592 toxic and 9258 non-
toxic binary combinations, supplemented by 373 binary drug combinations and 557 binary
chemical mixtures. The toxicity prediction results from these two datasets were very similar,
as shown in Figure 4b. Further, to investigate whether the large number of ChemIDplus
chemical combinations influenced the results, toxicity predictions were conducted using
dataset VI, which comprises only 800 ChemIDplus chemical combinations, alongside
373 binary drug combinations and 557 binary chemical mixtures. The HNN maintained
an accuracy of 86% with both datasets IV and V. For dataset IV, the HNN demonstrated
a sensitivity of 0.71, a specificity of 0.91, a precision of 0.77, and an AUC of 0.91. The
accuracy of HNN slightly decreased to 83% for dataset VI, but the AUC remained at 0.91.
The performance of other machine-learning methods was consistent across all datasets,
though their AUCs were notably higher for dataset VI. Further, the results with dataset VI
suggest that the observed decrease in accuracy from integrating ChemIDplus combination
data to form dataset V from dataset III was not due to the large size of the ChemIDplus
data, which also yielded lower accuracy. This reduction in accuracy may be due to the
increased diversity of chemicals in the training and test sets for datasets V and VI compared
to datasets I, II, and III.

I.2.6. Compound-Out Method
The models were constructed using the COSet I and II datasets and validated with

the more stringent compound-out method. The accuracies achieved were 92.33%, 91.2%,
88.79%, 90%, and 92.04% for the HNN, RF, bagging, AdaBoost, and ensemble methods,
respectively, for COSet I and 85.92%, 81.42%, 78%, 79%, and 86%, respectively, for COSet
II (Figure 5). The sensitivity of the models approached a value very close to one across
all methods, except for the bagging method for COSet II. The average specificities were
0.81, 0.77, 0.75, 0.77, and 0.79 for COSet I and 0.72, 0.64, 0.80, 0.62, and 0.71 for COSet II,
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respectively. These results demonstrate the model’s robust predictive capabilities, even
for new chemicals. The HNN model exhibited superior accuracy, AUC, sensitivity, and
precision for both COSet I and II, whereas the bagging method performed well in predicting
specificity and precision (Figure 5).
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II. AI-CPTM: the integration of the HNN Machine-Learning Method with the CPTM
Pathophysiology Method for the Assessment of Dose-Dependent Toxicity of Chem-
ical Mixtures

We employed the HNN and CPTM, as well as the integrated AI-CPTM approach,
for toxicity predictions concerning single chemicals and mixtures. We previously intro-
duced the CPTM pathophysiology method for predicting the toxicity and carcinogenicity of
hazardous chemicals [49]. The CPTM, a proteo-chemometric pathophysiology method, pre-
dicts phenotypic responses and model interactions between chemicals (and their mixtures)
with genes and cells within physiological processes. It also identifies the chemicals that
are predicted to interact with the key cellular networks associated with toxicity or cancer,
by estimating the risks in terms of a toxic or cancer risk Z score. Additionally, our earlier
work introduced an HNN machine-learning-based framework to predict mixture toxicity
and carcinogenesis that demonstrated a higher prediction accuracy. However, we noted
a significant reduction in the predictive accuracy of our HNN approach for carcinogenic
mixtures when transitioning from a random to a distinct separation of training and test
datasets [45–48]. This decline was due to the absence of biological-specific variables such
as toxicokinetics (TK), toxicodynamics (TD), mechanisms, and the complex behavior of
chemical mixtures. Further, relying exclusively on HNN to predict specific organ toxicity or
cancer types is inadequate. We developed an integrated approach that incorporates these
factors to address these limitations, targeting toxicology and carcinogenesis endpoints.
The combined HNN and CPTM, termed the AI-CPTM method, integrates the toxicity
score from HNN with the CPTM Z score. This combination identifies potentially toxic
or carcinogenic chemicals or mixtures, elucidates potential mechanisms, and determines
specific organ toxicity or carcinogenicity. The HNN method assigns a binary toxicity status
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(zero for non-toxic, one for toxic), while the CPTM outputs a Z score, where higher scores
indicate greater toxicity. Detailed methodologies for Z score computation by CPTM and
descriptor calculation, along with toxicity and carcinogenicity predictions by HNN for
single chemicals and mixtures, have been reported in our published studies [49]. This paper
exclusively presents the outcomes of toxicity predictions made using the CPTM, HNN,
and the combined AI-CPTM methods for single chemicals and binary mixtures, which are
discussed below.

II.1. Single-chemical Toxicity—Binary Classification

We initiated our evaluation by assessing the performance of the AI-CPTM method
using 21,758 rat and mouse oral LD50 data obtained from ChemIDPlus as a training dataset.
A unique set of 1050 chemicals served as the test set, for which molecular descriptors
were calculated. The lowest effective level (LEL) of chemical dose was considered to
determine toxicity. We employed various LD50 thresholds, such as 50 mg/kg, 250 mg/kg,
500 mg/kg, 750 mg/kg, and 1500 mg/kg, as previously described [45,47,48]. Toxicity
predictions were made for the experimentally known 1050 toxic chemicals using the HNN
and CPTM methods.

II.1.1. Accuracy based on Experimental Toxicity

To determine whether combining HNN machine-learning predictions with CPTM
predictions enhances the performance of toxicity predictions, we performed an experimen-
tal comparative analysis. This analysis involved individual CPTM predictions and the
combined CPTM + HNN predictions, i.e., AI-CPTM, using the experimentally known toxic
set of 1050 chemicals. We counted the experimentally determined toxic chemicals against
the CPTM Z-score-ranked toxic chemicals, both with and without the inclusion of HNN
predictions, and calculated the percentage of correctly predicted toxic chemicals.

CPTM performance without HNN predictions added

Chemicals were sorted in descending order from higher (more toxic) to lower (less
toxic) values based on the CPTM Z score. The top-ranked 100, 200, and 300 chemicals
were marked. This implies that all top 300 chemicals are relatively toxic, with the top 1
being the most toxic. We, then, annotated the experimentally assessed toxic or non-toxic
outcomes for the top 300 chemicals (toxic = 1, non-toxic = 0). To determine the number
of correctly predicted chemicals by the CPTM in the top 100, 200, and 300, we counted
the number of ‘1’s known to be toxic from experimental studies. The results, displayed
in Figure 6a, show the percentage of experimentally determined toxic chemicals against
the CPTM’s Z-score ranking. Figure 6a demonstrates that the percentage of chemicals
correctly identified as toxic at various Z-score cutoffs (e.g., top 100, 200, 300) did not vary
significantly. The trend of correctly predicting the experimental results increased with
increasing the LD50 thresholds, with the highest prediction accuracy of 69% achieved at the
1500 mg/kg threshold. This trend suggests that the CPTM is more accurate at identifying
toxic chemicals among those with higher Z scores. On the other hand, a decreasing and
inconsistent trend across different toxicity thresholds could indicate the model’s predictive
limitations. These findings establish the baseline effectiveness of the CPTM for assessing
chemical toxicity without the enhancements from machine-learning HNN. The strategy of
ranking chemicals by their Z scores and then correlating them with experimental outcomes
offers a direct method to evaluate the model’s predictive accuracy. Using only the CPTM
Z score for this analysis provides a benchmark for comparing the performance of the
AI-enhanced CPTM, which incorporates HNN predictions, as detailed below.

CPTM performance with HNN added (AI-CPTM)

The study was expanded by integrating HNN machine-learning predictions into the
CPTM. As detailed in the AI-CPTM score computations section, the new total score was
calculated by adding a value of 1 to the CPTM Z score for chemicals predicted to be toxic by
the HNN method. The effectiveness of this AI-enhanced CPTM (AI-CPTM) was assessed by
counting the number of correctly predicted toxic chemicals among the top 100, 200, and 300
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and, then, annotating the experimentally assessed toxic or non-toxic outcomes for the top
300 chemicals, and the findings are displayed in Figure 6b. Figure 6b shows the percentage
of experimentally determined toxic chemicals, as per the AI-CPTM (CPTM+ML) Z-score
ranking. That is, the percentage of chemicals correctly identified as toxic at different Z-score
thresholds (e.g., top 100, 200, 300) after integrating HNN predictions into the CPTM. The
AI-enhanced CPTM’s performance in predicting toxic chemicals did not differ significantly
for the top 100, 200, and 300 ranked chemicals. Moreover, the accuracy of predicting
experimental results improved with higher LD50 thresholds, with the highest accuracy
reached at the 500 mg/kg threshold. For the 1500 mg/kg threshold, the AI-CPTM showed
a similar trend in prediction accuracy for its top 100, 200, and 300 ranked compounds, as
observed in the CPTM alone. An increasing overall prediction performance trend suggests
that the CPTM more accurately identifies toxic chemicals at a higher Z score.
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Figure 6. The percentage of experimentally determined toxic chemicals counted (a) against CPTM’s
Z-score ranking of chemicals, (b) counted against CPTM’s Z-score ranking obtained after adding ML
(AI-HNN) score (AI-CPTM).

Conversely, a decreasing and inconsistent trend across different toxicity thresholds
could indicate the model’s predictive limitations. The AI-CPTM minimum prediction
accuracy (Figure 6b) starts at 41% for the 50 mg/kg threshold and reaches up to 89% at
500 mg/kg, compared to 20% and 69%, respectively, for the traditional CPTM (Figure 6a).
These findings indicate that incorporating HNN predictions significantly enhances the
CPTM’s ability to predict chemical toxicity. By using machine learning, the AI-CPTM is ex-
pected to provide more precise and refined toxicity predictions, potentially revealing subtle
patterns and correlations not detectable with the conventional CPTM or standalone HNN.

II.1.2.Accuracy Based on HNN Predicted Toxicity

Next, we sought to determine whether integrating predictions from the HNN with
those from the CPTM enhances the overall accuracy of toxicity predictions. We performed
a comparative analysis of individual CPTM predictions and the combined CPTM + HNN
predictions (AI-CPTM) and evaluated the stand-alone HNN predictions for 1050 chemicals.
We calculated the percentage of toxic chemicals predicted by the HNN. We compared it
against the chemicals ranked by the CPTM Z score, both with and without including the
HNN predictions.

CPTM Performance without HNN Added

The chemicals were sorted in descending order based on the CPTM Z score. The top
300 ranked chemicals were annotated with the HNN-predicted toxic or non-toxic outcomes.
We counted the instances where chemicals predicted to be toxic by the HNN (labeled as
‘1’) were correctly identified. The results, displayed in Figure 7a, illustrate the proportion
of chemicals that the HNN correctly identified as toxic at various CPTM Z-score rankings.
The percentage of chemicals correctly identified as toxic by the HNN at different Z-score
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cutoffs (e.g., top 100, 200, 300) remained consistent across the CPTM rankings for each LD50
threshold. Furthermore, the trend of correctly predicting experimental results improved
with an increase in the LD50 threshold, with the highest accuracy of 65% being achieved at
the 1500 mg/kg threshold. An increasing trend indicates that the CPTM is more effective
at identifying toxic chemicals among those with higher Z scores. Conversely, a decreasing
or fluctuating trend across different toxicity thresholds could indicate limitations in the
model’s predictive ability. These findings again suggest that comparing the pathophysio-
logical results predicted by the CPTM with those predicted by the HNN does not effectively
demonstrate the CPTM’s efficacy in predicting chemical toxicity without integrating the
machine-learning-based HNN results or vice versa. Consequently, we decided to incorpo-
rate the HNN-predicted outcomes with those predicted by the CPTM for further analysis.
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CPTM performance with HNN added

We calculated a new Z score by adding one to the existing CPTM Z score for chemicals
predicted to be toxic (assigned a value of one) by the HNN method. The chemicals were
then re-sorted in descending order based on this new Z score, termed AI-CPTM (CPTM
enhanced by ML predictions), where a higher value indicates higher toxicity. For the
top 300 chemicals, we annotated the outcomes predicted by the HNN as either toxic or
non-toxic, assigning a one for toxic and a zero for non-toxic. To determine the number of
chemicals correctly predicted as toxic by the AI-CPTM among the top 100, 200, and 300,
we counted the number of ‘1’s as indicating predictions of toxicity by the HNN in these
subsets. The results are presented in Figure 7b. The trend of accurately predicting the HNN-
predicted results improves with increasing LD50 thresholds, reaching the highest prediction
accuracy. Interestingly, the correct prediction retrieval rate of AI-CPTM is 44% for an LD50
of 50 mg/kg, increases to 98% for 250 mg/kg, and achieves 100% for >500 mg/kg. The
performance of AI-CPTM in correctly predicting the results (i.e., identifying toxic chemicals)
varies among its top 100, 200, and 300 ranked chemicals at LD50 levels of 50 mg/kg,
250 mg/kg, 500 mg/kg, and 750 mg/kg, but not for 1500 mg/kg. This demonstrates a stark
contrast to the trend of correct predictions by the CPTM alone.

In summary, the integration of machine-learning predictions significantly increases the
number of correctly identified toxic chemicals among the top 100, 200, and 300 chemicals.
This enhancement clearly demonstrates the benefits of including and augmenting the Z
score with machine-learning insights to refine the predictive capabilities of the CPTM.
The accuracy of identifying toxic chemicals within the newly ranked list of the AI-CPTM
is superior when assessments are based on HNN predictions rather than solely on ex-
perimental outcomes. This improvement is attributed to the recalibrated Z score, by the
HNN predictions, yielding a higher prediction rate than the original CPTM calculations.
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Additionally, in scenarios where the CPTM Z score is evaluated without the inclusion of
HNN predictions, the overall trend indicates that the percentage of correctly predicted
toxic chemicals, which is based on both the HNN-predicted and experimental outcomes,
increases with an ascending LD50 (mg/kg) threshold (1500 > 750 > 500 > 250 > 50). How-
ever, with the integration of HNN predictions into the CPTM, the accuracy in predicting
toxic chemicals based on both the HNN-predicted and the experimental data shows an
increase up to the 500 mg/kg threshold and then plateaus. This plateau effect occurs
because chemicals are considered toxic if their LD50 value is less than 500 mg/kg. Overall,
AI-CPTM, which integrates the HNN with the CPTM, significantly improves the model’s
predictive accuracy.

II.2. Chemical-Mixture Toxicity—Binary Classification

In the process of applying AI-CPTM to chemical-mixture toxicity, we evaluated the
performance of the AI-CPTM, which classifies virtual mixtures as either toxic or non-toxic.
The virtual mixtures are created to compensate for the lack of data on experimental mix-
tures for the training set. These virtual mixtures were generated based on single-chemical
oral LD50 data from rat and mouse studies listed in the ChemIDplus database. The training
dataset comprised 3004 toxic and 3000 non-toxic virtual mixtures (refer to Materials and
Methods for details). Additionally, we incorporated 182 mixtures sourced from the litera-
ture and 373 non-toxic drug combinations (details provided in Materials and Methods). In
total, the training set included 3559 mixture combinations, with 3155 classified as toxic and
3404 as non-toxic. To assess toxicity, we considered the lowest effect level (LEL) chemical
dose. We employed various LD50 thresholds for our analysis, ranging from 50 mg/kg to
1500 mg/kg, as described in our previous publications [45,47,48]. Toxicity predictions for
1050 chemically known toxic substances were conducted using both the HNN and CPTM
methods. The HNN method categorizes chemicals as either toxic (assigned a value of
one) or non-toxic (assigned a value of zero), whereas the CPTM method outputs a Z score.
These combined Z scores (AI-CPTM) are then rank-ordered, with higher values indicating
greater toxicity. A more detailed explanation of the descriptor calculation and the toxicity
prediction process for mixtures using the HNN can be found in the Materials and Methods
Section, as well as in our published studies [45,47,48]. Additionally, the methodology for
calculating the CPTM Z score is thoroughly detailed in our earlier publications [49].

II.2.1. Accuracy Based on Experimental Toxicity

We conducted a comparative analysis to assess whether incorporating HNN pre-
dictions enhances the CPTM performance in predicting chemical-mixture toxicity. This
involved evaluating the performance of individual CPTM predictions and combined CPTM
+ HNN (AI-CPTM) predictions against 182 mixed chemicals already known to be toxic from
experimental studies. This targeted analysis determines the accuracy of experimentally
determined toxic chemical mixtures when ranked according to the CPTM Z score, both
with and without the inclusion of HNN predictions, as described below.

CPTM Performance without HNN Predictions

Chemical mixtures were ranked in descending order based on their CPTM Z scores.
We then annotated the experimentally assessed toxic or non-toxic outcomes for the top
300 chemical mixtures, assigning a ‘1’ for toxic and a ‘0’ for non-toxic. To evaluate the
accuracy of the CPTM predictions among the top 300 mixtures, we counted the number of
‘1’s known to be toxic from experimental studies. The results, displayed in Figure 8a, show
the percentage of experimentally determined toxic chemical mixtures ranked according to
the CPTM Z score.

CPTM Performance with HNN Added (AI-CPTM)

Next, new Z scores were generated by adding a value of one to the original CPTM
Z scores for mixtures predicted as toxic by HNN. The efficacy of the AI-CPTM was then
assessed by counting the predicted toxic mixtures among the top 100, 200, and 300. Similar
to that discussed above, we annotated the experimentally assessed outcomes for the top
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300 mixtures as toxic (‘1’) or non-toxic (‘0’), presuming that the top 300 chemicals are
relatively toxic. To determine the number of correctly predicted chemicals by the AI-CPTM
in the top 100, 200, and 300, we matched the ‘1’s known to be toxic from experimental
studies. These findings, displayed in Figure 8a, show the percentage of experimentally
determined toxic chemicals as per the AI-CPTM’s Z-score ranking. Figure 8a reveals that the
percentage of mixtures correctly identified as toxic at various Z-score cutoffs (e.g., top 100,
200, 300) improved after incorporating HNN predictions into the CPTM. Specifically, the
AI-CPTM performance in accurately predicting experimental results (i.e., toxic chemicals)
varies across the top 100, 200, and 300 ranked chemical mixtures, with the top 100 and
200 mixtures showing higher predictive performance. For the top 100 and 200, the AI-
CPTM predictive accuracy increased dramatically, from 50% to 75%, while for the top 300,
the performance reached 60%. This increasing trend suggests that the AI-CPTM is more
proficient at identifying toxic chemicals among those with higher Z scores.
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II.2.2. Accuracy Based on HNN Predicted Toxicity

Next, we carried out the analysis that involved evaluating the performance of stan-
dalone CPTM predictions against those combined with HNN predictions (AI-CPTM),
using the actual HNN-alone predictions for 3155 toxic chemical mixtures as a benchmark
described below.

CPTM Performance without HNN Predictions

To determine the number of correctly predicted chemical mixtures by the CPTM
within the top 100, 200, and 300, we counted the ‘1’s predicted to be toxic by the HNN. The
results in Figure 8b illustrate the percentage of HNN-predicted toxic chemical mixtures as
per the CPTM’s Z-score ranking. Figure 8b shows the performance of CPTM in correctly
identifying toxic chemical mixtures at various Z-score cutoffs (e.g., top 100, 200, 300).
The CPTM capability to accurately predict HNN-identified toxic outcomes (i.e., ‘1s’—
toxic chemicals) remained consistent across the top 100, 200, and 300, standing at 49%.
This medium predictive trend may indicate limitations in the model’s predictive capacity,
establishing a baseline for the effectiveness of the CPTM in predicting chemical-mixture
toxicity without machine-learning HNN enhancements.

CPTM Performance with HNN Added (AI-CPTM)

The efficacy of AI-CPTM was evaluated by counting the predicted toxic mixtures
among the top 100, 200, and 300. The same annotation process for the HNN-predicted
toxic or non-toxic outcomes was applied to the top 300 mixtures. The number of correctly
predicted chemicals by the AI-CPTM in the top 100, 200, and 300 was determined by
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matching the ‘1’s predicted to be toxic by the HNN (Figure 8b). Figure 8b reveals that after
incorporating the HNN predictions into the CPTM, the percentage of mixtures correctly
identified as toxic at various Z-score cutoffs (e.g., top 100, 200, 300) increased significantly.
The AI-CPTM performance in accurately predicting toxic mixtures varied across the top
200 and 300 ranked mixtures, with the top 100 and 200 achieving the highest predictive
performance at 99%. This marked an improvement from 49% to 99% for the top 100 and
200, and an increase to 70% for the top 300, suggesting the AI-CPTM enhanced accuracy for
identifying toxic chemicals, particularly among those with higher Z scores. The integration
of HNN predictions into the CPTM signifies an enhanced model predictive capability for
chemical-mixture toxicity.

In summary, in the context of the accuracy calculated based on experimental toxicity,
the integration of HNN with the CPTM has significantly increased the number of correctly
identified toxic mixtures within the top 100, 200, and 300 mixtures. This enhancement
emphasizes the potential of improving the CPTM model’s predictive accuracy through
machine-learning predictions. Notably, the AI-CPTM’s ability to accurately classify toxic
chemical mixtures in its newly ranked list was superior when based on HNN-predicted
outcomes compared to actual experimental outcomes. This improvement comes from the
recalibrated Z score, which is based on the HNN predictions and shows a higher prediction
rate than the CPTM alone. Similarly, in the case of accuracy calculated based on HNN-
predicted toxicity, the findings demonstrate that the incorporation of HNN predictions
into the CPTM noticeably enhances the model’s capability to predict chemical-mixture
toxicity. By integrating machine learning, the AI-CPTM delivers more refined and accurate
toxicity predictions, potentially identifying subtle patterns and correlations that are not
apparent with the HNN alone or CPTM alone. However, it is important to recognize the
complexities and potential biases inherent in machine-learning algorithms, which could
influence the interpretation and generalizability of the outcomes. This challenge is offset by
the pathophysiological insights offered by the CPTM model, emphasizing the significant
advancements in toxicity prediction achieved by integrating HNN.

II.3. Experimental Validation

In a dose-response zebrafish-embryo toxicity assay, we assessed the AI-CPTM-predicted
11 toxic chemicals, including PFAS (Table 1 and Figures 9–11). We used the zebrafish em-
bryos as a model for determining the potential hazards posed by the chemicals to humans
apart from aquatic life. Further, these zebrafish experiments were used to establish the
toxic concentrations for each chemical. Subsequently, we created 38 binary mixtures from
these 11 chemicals. In the iterative simulations, these determined concentrations were used
to calculate the dose-dependent ratios and molecular descriptors of these 11 component
chemicals within each mixture (Table 2). These descriptors were subsequently employed as
input features for the AI-CPTM. The toxicity assessments of these mixtures were computed
using AI-CPTM, and the results of these evaluations are presented in Tables 2 and 3, in-
cluding the corresponding toxicity outcomes determined from the zebrafish experiments
(Figures 10 and 11). This comprehensive experimental analysis validated the AI-CPTM’s
predictive performance for both single chemicals and their mixtures, and its ability to
understand the mixture effects of chemical combinations, including PFAS. Consequently,
it enhanced the predictive capability of the AI-CPTM for mixed toxicological evaluations.
The detailed results are discussed in the below sections.

Table 1. Eleven toxic chemicals that were used to form binary combinations. These combinations are
employed by the AI-CPTM model to predict the toxicity of chemical mixtures.

Chemicals CASRN

Pyraclostrobin 175013-18-0

Fenpropathrin 39515-41-8
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Table 1. Cont.

Chemicals CASRN

Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol 94-91-7

Paclobutrazol 76738-62-0

2,4,6-Tribromophenol 118-79-6

Pyridaben 96489-71-3

Butachlor 23184-66-9

Tetramethrin 7696-12-0

Dicyclohexyl Phthalate (DCHP) 84-61-7

Perfluorooctanoic acid (PFOA) 335-67-1

Perfluorooctane sulfonic acid (PFOS) 1763-23-1

II.3.1. Zebrafish-embryo toxicity studies of single chemicals

Dose-dependent toxicities in zebrafish embryos were assessed by the lowest dose
that caused significant developmental abnormalities 2 days post-fertilization (2 dpf) in a
dose-response live assay. The results, displayed in Figure 9, Table 3, and Supplementary
Material S2, detail the deformities observed in the embryos as indicators of chemical toxicity.
We used DMSO and fresh water as controls for comparing the effects of each chemical
and confirmed that the observed effects in the embryos were due to the chemicals tested.
Starting with Pyraclostrobin, it was identified as toxic at 30 nM. It induced developmental
delays in the embryos without visible deformities. However, increasing the concentration
to 100 nM resulted in embryo lysis, demonstrating an apparent dose-dependent toxicity.
This pattern suggests that Pyraclostrobin may interfere with essential developmental
processes at a cellular level. Fenpropathrin exhibited toxicity at 10 µM, resulting in slight
developmental delays and dorsal arching, with a twitching phenotype observed by 2 dpf
at both 10 µM and 15 µM. It appeared relatively normal at 5 µM. This twitching phenotype
indicates specific neuronal toxicity. Motor fuel oil showed toxicity at 5 µM, characterized
by a delayed onset (around 36 hpf), slight ventral curvature, and skinniness at 5 µM, but
was relatively normal at 1 µM, with 100% lethality at 10 µM. The symptoms’ delayed
onset suggests that the motor fuel oil’s toxic effects might involve pathways activated
later in the developmental process. Paclobutrazol at 50 µM also showed severe effects,
including pronounced ventral curvature and cardiac edema, indicating its potent impact
on cardiac development and overall embryonic growth. These symptoms were absent at
lower concentrations (30 µM), highlighting a dosage-sensitive relationship.

In contrast, Triasulfuron, Tepraloxydim, and Penoxsulam did not exhibit toxicity even
at high concentrations (200 µM), suggesting that their modes of action may not be active in
zebrafish embryogenesis within the tested range. 2,4,6-Tribromophenol was particularly
potent, stalling development as early as the 2-somite stage at concentrations as low as
2 µM and was lethal by 10 µM. This indicates a strong embryotoxic effect, interfering
with very early developmental stages. Pyridaben was found to be toxic at 50 nM, causing
developmental stalling at the 8-somite stage at 100 nM, affecting developmental progression
(32 hpf), and inducing morphological abnormalities in the hindbrain region. This suggests
disruptions in neural development characterized by a slightly elongated and thin hindbrain
region at 50 nM. For Baythroid, although toxic at 20 µM, variable phenotypes, with issues
such as solubility and observed precipitation, complicate the understanding of its direct
effects on embryo development. Butachlor was toxic at 200 µM, leading to significant
ventral curvature and cardiac edema, suggesting severe developmental toxicity, and was
normal at 100 µM.

Conversely, Bis-(2-Ethylhexyl) Phthalate showed no toxic effects up to 200 µM, indi-
cating a lack of detrimental interaction with the zebrafish developmental pathways at these
concentrations. Both Tetramethrin and Dicyclohexyl Phthalate showed toxicity at 5 µM and
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200 µM, respectively, with specific developmental delays and morphological abnormalities,
indicating that these chemicals could disrupt normal embryonic development even at
low concentrations. Finally, Imazamox appeared to be non-toxic up to 200 µM, possibly
due to its inability to interfere with the pathways that are essential for early development
in zebrafish.

II.3.2. Zebrafish-Embryo Toxicity of Chemical Mixtures and Chemical Interactions Analysis

II.3.2.A. Measurement of Mixture Toxicity in Zebrafish Models

Approach for Assessing Chemical Mixtures in Zebrafish

First, the toxicity of single chemicals in zebrafish embryos is determined. Using the
toxicity data of single chemicals as a baseline, we screened mixtures for altered activity and
characterized the optimal concentration ratios of components. For chemical treatments,
1000× working stocks are prepared in DMSO. Dechorionated zebrafish embryos, eight per
well, are placed in 0.5 mL of fish water (0.3 g/L sea salt) in 24-well plates. The 1000× stock
solution of chemicals is diluted to 2× in fish water with 2% DMSO added. Then, 0.5 mL
of the 2× diluted chemical solution is added to the 0.5 mL of fish water containing the
embryos to achieve a final concentration of 1× compound in 1% DMSO.
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Figure 9. Dose-dependent toxicity assessment of AI-CPTM predicted chemicals (Tables 1–4) as the
lowest dose leading to, what is defined here, as significant developmental abnormalities at 2 days
post-fertilization (2 dpf) in a dose-response zebrafish live assay.

Measurement of Developmental Toxicity

We assessed individual chemicals for developmental toxicity, indicating any disrup-
tion in embryonic development from 1 to 4 days post-fertilization (dpf). Embryos are
exposed to chemicals in their bath water from 1 dpf to 4 dpf, without changing the water
during exposure. Initially, chemicals are screened by testing them at a series of concen-
trations increasing by half-log steps. Teratogenicity is quantified based on the severity of
developmental abnormalities, as shown in Figures 9–11. Each embryo is assigned a score
reflecting the severity of observed phenotypes, with the average score representing the
group. The EC50 for developmental toxicity is defined as a score of five on this teratogenic-
ity scale (Figure 10 and Supplementary Material S2). Once the effective range is identified,
the EC50 is determined by testing a linear series of concentrations spanning from non-toxic
to toxic levels. For chemicals not toxic at 10 µM, tests are extended up to 200 µM, with
those showing no effects at this level considered non-toxic.
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A thorough evaluation is conducted on how various chemicals and their combinations
affect the development of zebrafish embryos in terms of toxicity, as shown in Figure 11.
Pyraclostrobin is examined across a range from 30 nm to 200 µm, showing minimal effects
at the lowest concentration but significant embryonic damage at 200 µm, highlighting a
clear dose-dependent increase in toxicity. The herbicides terapolyxylim and penosulam,
both administered at 200 µm, cause moderate deformities, like slight curvature of the spine,
indicating a disruption in developmental processes. Pyridaben, at a lower concentration of
50 nm, already leads to noticeable developmental delays and morphological abnormali-
ties, emphasizing the potential for significant impact even at lower doses. Baythroid and
butachlor, as well as tetramethrin and phthalate, at 200 µm, induce pronounced defor-
mities, such as severe spinal curvatures and edema, suggesting strong toxic impacts that
disrupt physiological development. The most severe effects are observed with diclobenyl
phthalate and imazamox at 200 µm, where exposure results in marked malformations and
growth retardation, highlighting their potent embryotoxic effects. Analyzing the toxicity of
chemical mixtures, which better reflects realistic environmental exposures, with non-toxic
DMSO as a control, shows embryos with normal development, compared to the observed
effects in chemical mixture treated groups. The mixture of pyraclostrobin at 30 nm with
10 µm fenpropathrin exhibits synergistic effects, leading to more severe developmental
defects than either chemical alone, suggesting amplified toxicity. Further, mixtures of
pyraclostrobin with motor oil or tertramethrin and the combination of fenpropathrin with
motor fuel oil at 10 µm and 5 µm, respectively, show extremely detrimental effects on
embryo development, with significant abnormalities, such as severe curvature and edema.
These findings indicate that certain combinations can severely disrupt embryonic devel-
opment. Moreover, the combination of pyridaben at 50 nm with trimethobenzol at 5 µm
results in a significant increase in toxicity, causing extensive developmental deformities.
This comprehensive analysis emphasizes the need for a detailed consideration of both the
individual and combined effects of chemicals in environmental and regulatory contexts.
Further, the chemical interaction analysis is discussed in detail in the section below.

III.1. Comparison of zebrafish toxicity outcomes with the results from machine-learning
models for chemical mixtures

We tested the top 300 chemical mixtures, as prioritized by AI-CPTM, which were
randomly selected and readily purchasable, on zebrafish embryos. Based on the degree
of deformity, morphological changes, and survival rate of the embryos (Figures 9–11), we



Toxics 2024, 12, 481 26 of 38

classified each binary mixture as toxic (‘1’) or non-toxic (‘0’) (Table 2). We then compared
the toxicity predictions made by the machine-learning model with the results obtained from
the zebrafish assays. Table 3 summarizes the prediction outcomes using AI-CPTM, HNN,
RF, bagging, and AdaBoost methods, alongside the zebrafish-determined toxicity, with ‘1’
indicating toxic and ‘0’ indicating non-toxic. Our AI-CPTM method achieved an accuracy
of 81% in predicting the zebrafish mixture toxicity outcomes, followed by our standalone
AI-HNN at 70.2%, random forest at 62.1%, bagging at 54%, and AdaBoost at 51.3% (Table 2).
The predictive capability of AI-CPTM for chemical-mixture toxicity is observed to be
superior to that of HNN alone and the other machine-learning methods tested. Our
standalone AI-HNN method also surpassed the other machine-learning techniques in
predictive performance (Table 2). Notably, the predictions from AI-CPTM agree with the
experimental chemical toxicity outcomes observed in zebrafish. We anticipate an improved
trend in the prediction accuracy for chemical-mixture toxicity, as we further refine and
optimize the AI-CPTM method with additional concentration and dose-response data. This
extensive validation exercise highlights each predictive approach’s relative strengths and
weaknesses in different chemical interaction scenarios.
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Figure 11. The results of zebrafish toxicity studies for panel (A) selected single chemicals and panel
(B) their mixture combinations. Panel A is the toxicity data obtained from single-chemical dose-
response studies that were used to inform the mixed chemical toxicity studies. For panel B, the
mixture toxicity were assessed based on the presence of significant developmental abnormalities in
the embryos, with DMSO and water as controls. The outcomes regarding toxicity, developmental
abnormalities, and chemical–chemical interactions are in Table 3 and Figures 9 and 10. The rationale
behind the selection of doses for mixture toxicity studies is detailed within the main text.

III 1.1. Determination of EC50 and Measurement of Mixed Chemical Interactions

The EC50, indicating the median effective concentration for developmental toxicity,
is determined using morphological criteria. Fish are identified by date and well number
(Figure 10). In each well containing five fish, the mixed compound phenotype score is
the sum of the scores for the individual fish. Two wells are treated per combination, and
the scores are averaged across these wells (Supplementary Material S2). Scoring follows
this scale: dead = 0; severely deformed = 1; deformed = 2; slightly deformed = 3; normal
phenotypes = 4. Chemical interactions in mixtures are classified as synergistic, additive, no
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interaction, inconclusive, or antagonistic based on the comparative toxicity of the mixtures
versus the individual components. For example, if compound #1 scores 17 and compound
#2 scores 15, a combined average score of 15 indicates no interaction, suggesting that
compound #1’s toxicity does not exacerbate that of compound #2 (Supplementary Material
S2). The EC50 and lowest observable effect concentration (LOEC) for binary mixtures
are determined by testing a linear concentration series of the first chemical against five
concentrations of the second chemical, including a vehicle control.

III 1.2. Comparison of Predicted vs. Experimental Mixed Chemical Interactions

Focusing on specific combinations (Table 2 and Figure 11), such as Pyraclostrobin at
0.01 µM mixed with Fenpropathrin at 5 µM, we observe that while RF, bagging, and Ad-
aBoost predicted toxicity, both AI-CPTM and HNN did not predict any harmful interaction.
The experimental results supported the predictions of AI-CPTM and HNN, showing no
interaction, thus validating these models as more accurate in this scenario. This pattern
is consistent in other mixtures involving Pyraclostrobin with different chemicals, such
as motor fuel oil, where again, AI-CPTM and HNN correctly predicted no interaction
while the other models did not. In contrast, the combination of Fenpropathrin and fuel
oil, where most models except AI-HNN anticipated an additive effect, aligns with the
experimental observations of increased toxicity. This scenario validates the predictions
of RF, bagging, and AdaBoost, emphasizing their utility in identifying potential additive
interactions. Investigating broader interactions involving chemicals such as Paclobutrazol,
2,4,6-Tribromophenol, and Pyridaben reveals a trend where AI-CPTM generally predicts
potential toxicity. The mixtures involving Butachlor, Tetramethrin, and Dicyclohexyl Phtha-
late further demonstrate the predictive power of the AI-CPTM and HNN models. Many
predictions of synergistic interactions by these models were confirmed by the experimental
results, particularly when the models were in agreement. This consistency highlights the ef-
fectiveness of AI-CPTM for scenarios expecting significant chemical interactions. A distinct
case is the mixture of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid
(PFOA), where all models predicted a synergistic interaction, which was robustly validated
by the experimental findings discussed in below sections. Taken together, the overall
analysis indicates that AI-CPTM and HNN are particularly reliable not only for predicting
chemical mixture toxicity but also for correctly predicting a mixture’s chemical interaction
effects. The RF, bagging, and AdaBoost models perform well in most cases, where chemical
interactions enhance toxicity, i.e., synergistic effects. Finally, these findings emphasize the
importance of studying chemical interactions for environmental safety assessments, as
these mixtures can lead to unexpected and often more severe biological or health impacts.

Table 2. The toxicity predictions for binary mixtures of ten chemicals, as detailed in Table 2, using
four machine-learning methods: hybrid neural network (HNN), random forest (RF), bagging, and
AdaBoost. The table also includes the concentrations of the components in each binary mixture.
The last two columns provide experimental toxicity and chemical interaction effects that support a
reference to evaluate the accuracy of the machine-learning models.

Chemical 1 Concentration
LC50 (µM) Chemical 2 Concentration

LC50 (µM)
AI-

CPTM
AI-

HNN RF Bagging Adaboost Experiment
(Zebrafish)

Mixture
Chemical

Interaction

Pyraclostrobin 0.01 Fenpropathrin 5 0 0 1 1 1 0 no
interaction

Alpha, alpha’-(1-
methylethylenediimino)di-
ortho-cresol (motor fuel oil)

2.5 0 0 1 1 1 0 no
interaction

Paclobutrazol 50 1 1 1 1 1 0 inconclusive

2,4,6-Tribromophenol 2 1 1 1 1 1 1 inconclusive

Pyridaben 0.05 0 1 1 1 1 0 inconclusive

Butachlor 100 1 1 0 0 0 1 no
interaction
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Table 2. Cont.

Chemical 1 Concentration
LC50 (µM) Chemical 2 Concentration

LC50 (µM)
AI-

CPTM
AI-

HNN RF Bagging Adaboost Experiment
(Zebrafish)

Mixture
Chemical

Interaction

Tetramethrin 5 1 0 0 1 1 1 inconclusive

Dicyclohexyl Phthalate
(DCHP) 100 1 0 1 1 0 1 inconclusive

Fenpropathrin 5
Alpha, alpha’-(1-

methylethylenediimino)di-
ortho-cresol

2.5 1 1 1 0 1 1 additive

Paclobutrazol 50 1 1 1 1 1 1 additive

2,4,6-Tribromophenol 2 1 1 1 1 1 1 additive

Pyridaben Pestanal 0.05 1 1 1 1 1 0 no
interaction

Butachlor 100 1 1 0 0 0 1 additive

Tetramethrin 5 1 1 1 1 1 1 synergistic

Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 1 0 1 synergistic

Alpha,
alpha’-(1-

methylethy
lenediimino)di-
ortho-cresol
(motor oil)

2.5 Paclobutrazol 50 1 1 1 1 1 1 additive

2,4,6-Tribromophenol 2 1 1 1 1 1 1 additive

Pyridaben Pestanal 0.05 0 0 0 1 1 0 inconclusive

Butachlor 100 0 0 1 0 0 1 additive

Tetramethrin 5 0 0 0 0 1 0 no
interaction

Dicyclohexyl Phthalate
(DCHP) 100 0 0 0 0 0 0 no

interaction

Paclobutrazol 50 2,4,6-Tribromophenol 2 0 0 1 1 1 0 no
interaction

Pyridaben 0.05 1 1 1 1 1 1 additive

Butachlor 100 1 1 1 1 1 1 synergistic

Tetramethrin 5 0 0 1 0 1 0 additive

Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 0 1 0 additive

2,4,6 -
Tribromophenol 2 Pyridaben Pestanal 0.05 1 1 1 1 1 0 no

interaction

Butachlor 100 1 1 0 0 0 1 synergistic

Tetramethrin 5 1 1 1 1 1 1 additive

Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 0 0 1 no

interaction

Pyridaben 0.05 Butachlor 100 1 1 1 1 1 1 synergistic

Tetramethrin 5 1 1 1 1 0 0 inconclusive

Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 1 0 0 inconclusive

Butachlor 100 Tetramethrin 5 1 1 1 0 1 1 synergistic

Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 1 1 1 synergistic

Tetramethrin 5 Dicyclohexyl Phthalate
(DCHP) 100 1 1 1 1 1 1 inconclusive

Perfluorooctane
sulfonic acid

(PFOS)
53 Perfluorooctanoic acid

(PFOA) 187.5 1 1 1 1 1 1 synergistic

III.2. Toxicity Studies of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic
Acid (PFOA) chemicals and their mixtures on Zebrafish Embryos

The methodology for assessing the toxicity in zebrafish is detailed in our earlier
publication [49]. The data presented in Tables 3 and 4 and Figure 12 show the acute and
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sub-lethal toxicity of PFOS and PFOA individually and in combination with zebrafish
embryos. This initial study offered a comparative insight into their toxic profiles in terms
of lethal (LD50) and effective (EC50) concentrations, which are important for measuring
their toxic effects. As indicated in Tables 3 and 4 and Figure 12, the lethal dose (LD50)
and the effective concentration (EC50) for PFOS have been determined to be 53 µM and
11 µM, respectively. This indicates a high level of acute toxicity, making PFOS notably
hazardous. For PFOA, these values are 187.5 µM for LD50 and 29.5 µM for EC50. These
concentrations reflect the exposure of zebrafish embryos to PFOS and PFOA at 2 days
post-fertilization (dpf) for one day at a temperature of 33 ◦C. Further, in the case of PFOA, at
187.5 µM, the LD50 concentration for PFOA is significantly higher than that for PFOS. This
suggests that, under similar conditions, PFOA is less lethal to zebrafish embryos, though
still toxic. The effective concentrations (EC50) of PFOS, at 11 µM, induce sub-lethal effects
in half of the zebrafish-embryo population. These effects include severe developmental
abnormalities, such as bent body axis, edema, cloudy tissue formation, and developmental
delays, signaling significant toxicity even at lower concentrations. Whereas PFOA requires
a higher concentration of 29.5 µM to achieve similar sub-lethal effects. This still presents
considerable toxicity, indicating that, while PFOA may be less acutely toxic than PFOS, it
has the ability to cause developmental disruption at higher concentrations.

Table 3. Toxicity of Perfluorooctane Sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in
zebrafish embryos. The toxicity of two chemicals, PFOS and PFOA, in zebrafish embryos and
their effects at critical early development stages. Displayed are the median lethal dose (LD50) and
the median effective concentration (EC50) for embryos exposed to these substances at 2 days post-
fertilization. This exposure occurs over a 24 h period at a controlled temperature of 33 ◦C. The LD50

represents the concentrations of PFOS or PFOA required to cause death in 50% of the zebrafish
embryos within the exposure timeframe. The EC50 measures the concentration at which 50% of
the embryos show sub-lethal but adverse effects. These effects include a range of developmental
abnormalities, such as bent body axis, which indicates spinal or skeletal malformations; edema; and
cloudy tissue, which may suggest cellular damage or necrosis and developmental delays and are
observable as slowed growth or delayed milestone achievement compared to unexposed embryos.

Compound LD50 EC50

PFOS 53 µM 11 µM

PFOA 187.5 µM 29.5 µM

Table 4. The LD50 concentrations for mixtures of PFOS and PFOA. The LD50 for PFOA, when
combined with three different concentrations of PFOS, is determined to understand how the presence
of PFOS affects the toxicity of PFOA and the chemical interaction effects under various exposure
conditions.

Concentration of PFOS Present (µM) 68 µM PFOS 38 µM PFOS 22 µM PFOS

LD50 (added PFOA concentration (µM) 16.5 µM PFOA 29 µM PFOA 29.5 µM PFOA

III. 2.1. Zebrafish Survival upon exposure to PFOA and PFOS mixtures

PFOS and PFOA Mixture Zebrafish Survival Assay

We explored further the combined effects of PFOS and PFOA, as shown in Table 4 and
Figure 12, to examine how varying concentrations of PFOS affect the LD50 of PFOA in a
mixture. The LD50 is the dose at which 50% of the embryos are dead. In comparison, the
EC50 is the dose at which 50% of the embryos exhibit any form of abnormality, including a
bent body axis, edema, cloudy tissue, and developmental delay. A five dose-response curve
for PFOA was tested against three fixed concentrations, 68 µM, 38 µM, and 22 µM of PFOS
at 2 dpf for one day at 33 ◦C. These preliminary dose curves demonstrate variability with
the zebrafish assay, as shown by the calculated LD50 value of 53 µM PFOS (Table 4) versus
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100% survival at 68 µM PFAS for the experiment presented in Figure 12. Nonetheless,
as each experiment is internally controlled, relative toxicity and mixture interactions are
accurately detected. The combination of 68 µM PFOS and 16.5 µM PFOA shows that a lower
concentration of PFOA is needed to reach LD50 when PFOS is at a higher concentration.
The combination of 38 µM PFOS and 29 µM PFOA shows an increase in the required LD50
concentration of PFOA as the PFOS level is reduced, whereas the combination of 22 µM
PFOS and 29.5 µM PFOA showed even with a further reduction in PFOS, the LD50 of PFOA
remains similar to that in the 38 µM PFOS scenario. These findings suggest that higher
PFOS concentrations significantly decrease the PFOA concentration required to lethally
affect 50% of the zebrafish embryos. This interaction pattern between PFOS and PFOA
indicates a synergistic effect, where the toxicity of one chemical is enhanced by the presence
of another (Table 2). Taken together (Tables 3 and 4 and Figure 12), these data provide
standalone and combinatory PFOS and PFOA toxicity effects.

Further, the comparison between the LD50 and EC50 values for PFOS and PFOA clearly
shows that PFOS is more toxic than PFOA to zebrafish embryos. PFOS requires a lower
concentration to be lethal and affects development at much lower concentrations compared
to PFOA. It is noted that the single-compound LD50/EC50 values are the average of three
independent experiments, while the mixture dose-response results are taken from a single
experiment. One-hundred percent survival at 68 µM versus an LD50 of 53 µM is within
the variability of these experiments and is, thus, not particularly concerning in this context.
This is unlikely to be an antagonistic effect, as 100% survival at 68 µM PFOS was seen at 0
µM PFOA. Five concentrations of PFOA were tested to generate the dose-response curves.
Furthermore, Figure 12 shows low precision curves, although the ranges and suggested
interaction between PFOA and PFOS are accurate based on these data. Overall, these
experiments support predictions of AI-CPTM toxicity and chemical interaction effects.
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Figure 12. Dose-response of zebrafish survival rates upon exposure to PFOA and PFOS mixtures
(Table 4).

4. Limitations

This study leverages a machine-learning-driven pathophysiology method to evaluate
the dose-dependent toxicity of hazardous chemical mixtures, incorporating experimental
validations using zebrafish-embryo assays. Despite achieving promising results, several
limitations and areas for future research should be addressed to enhance the model’s
applicability and reliability. First, although the data set is extensive, it relies significantly
on virtual mixtures to address the lack of empirical data. This dependency on simulated
data introduces potential biases and may limit the generalizability of the findings. While
the dataset contains 981 experimental mixtures enriched with virtual mixtures, it does not
capture the full spectrum of environmental mixtures, particularly those involving complex
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mixers of environmental compounds. This limitation adds potential biases in the AI-HNN
model, as it might not fully represent the diverse chemicals and their interactions encoun-
tered in real-world scenarios. Despite their high accuracy, machine-learning algorithms are
susceptible to several biases that can affect the reliability of toxicity predictions. One key
type is sampling bias, which occurs if the training data do not adequately represent the
diversity of real-world chemical mixtures. This can lead to models that perform well on the
training data but fail to generalize to new, hidden data. Another critical issue is label bias,
where inaccuracies or inconsistencies in the labeled data used for training can skew the
model’s learning process, leading to inaccurate predictions.

Furthermore, algorithmic bias may arise from how machine-learning algorithms
prioritize certain features or patterns over others, potentially ignoring significant but less
frequent interactions. These biases can influence the interpretation and generalizability of
the results, stressing the need for rigorous validation and refinement of the models. Further,
the CPTM pathophysiology model does not fully capture the toxicokinetics, toxicodynamics,
and exposomics of chemical mixtures.

Additionally, while zebrafish-embryo assays provide valuable insights into develop-
mental toxicity, they do not fully replicate human biological responses. This limitation
restricts the direct applicability of these findings to human health risk assessments. The
absence of human models in the validation phase further complicates this issue, as it is
important to confirm the relevance of toxicity predictions to human health. Moreover,
while the study addressed additive, synergistic, independent, and antagonistic interactions
among chemicals, it did not explore all possible interactions, particularly those involving
complex mixtures of more than two chemicals. This gap in the analysis means that the
model may not fully account for the comprehensive nature of chemical interactions in the
environment.

5. Future Studies

To address these limitations, our future research will focus on expanding the dataset
with more empirical data from diverse environmental and industrial sources, specifically
targeting emerging contaminants, such as PFAS and nanoplastics, to improve the accuracy,
robustness, and generalizability of the models for the de novo data. We will also enhance
our machine-learning algorithms that reduce biases and improve the interpretability of
toxicity predictions. This will be complemented by implementing rigorous cross-validation
techniques, including external validations with independent and de novo datasets. We are
extending the approach to study more complex mixtures involving multiple chemicals that
will provide deeper insights into their combined or cumulative effects. The pathophysiology
method is expanded by including more advanced toxicokinetics, a toxicodynamics pipeline
with exposomics, and epidemiological data.

Further improvements will include identifying potential biomarkers and predictive
indicators of chemical toxicity to aid in early detection and intervention strategies. We are
incorporating human-cell-based assays, including mechanistic studies, to understand the
biological pathways and molecular interactions underlying the observed toxic effects. This
would enhance the relevance of the findings to human health risk assessments, provid-
ing more accurate representations of human biological responses to chemical exposures.
The continued development and refinement of AI-CPTM will be essential for improving
our ability to predict the toxic and cancer risks posed by hazardous chemical mixtures,
ultimately contributing to better public health outcomes.

6. Conclusions

In this study, to predict the dose-dependent toxicity of chemicals and their mixtures,
we carried out studies in three primary phases. In the first phase, we deployed machine-
learning models for initial toxicity prediction. In the second phase, we carried out the
subsequent integration HNN method with the physiologically based method to enhance
predictive accuracy and reliability. In the final phase, we performed statistical, literature,
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and experimental validation studies. In the beginning, we developed and tested multiple
machine-learning models, including binary and multiclass classification and regression
models based on our HNN method, and several other machine-learning methods such as
RF, bagging, AdaBoost, SVR, GB, KR, DT, and KN. The dataset comprised 981 experimental
mixtures and was expanded with virtual mixtures to address the lack of empirical data. We
also employed an ensemble of these methods to arrive at consensus scores to assess their
predictive capabilities. Detailed statistical analyses were performed to validate the results
of the models and evaluate reliability and rigor through stratified 10-fold cross-validation
and multiple iterations. Performance metrics, including accuracy, sensitivity, specificity,
precision, and AUC, were analyzed. Our HNN models achieved comparatively high
accuracies, with AUC values exceeding 90%, demonstrating robust predictive capabilities.
Further, we introduced a novel methodology, AI-CPTM, which integrates an HNN with
our pathophysiology method, CPTM, for the dose-dependent assessment of hazardous
chemical mixtures. The AI-CPTM integrative approach leverages the predictive power of
machine learning together with the toxicodynamics, toxicokinetics, and pathophysiological
insights provided by CPTM.

Integrating HNN predictions with CPTM (AI-CPTM) substantially increased the num-
ber of correctly identified toxic chemical mixtures. The AI-CPTM method demonstrated
superior accuracy in predicting toxicity for the top 100, 200, and 300 ranked mixtures, with
performance improvements from 49% to 99% in some cases. This enhancement underlines
the value of combining machine-learning insights with pathophysiological data to refine
toxicity predictions. Experimental validation using zebrafish-embryo assays confirmed
the predictive capabilities of AI-CPTM. The method achieved 81% accuracy in predicting
toxicity compared to experimental outcomes, outperforming other ML techniques. The
AI-CPTM experimental validations with zebrafish-embryo toxicity assays provided a bi-
ological confirmation and highlighted its potential for identifying toxic effects at various
developmental stages, which are critical endpoints in toxicological studies. These rigor-
ous validations, including zebrafish-embryo toxicity assays and AI-CPTM, have shown
substantial improvements in identifying toxic chemical mixtures compared to traditional
methods. This validation emphasizes the practical applicability of AI-CPTM in real-world
toxicological assessments of chemicals and their mixtures. We are now expanding the
applicability of AI-CPTM to predict and validate the carcinogenicity of chemical mixtures,
such as PFAS and other co-exposed chemicals, and to elucidate their mechanisms.

The AI-CPTM approach not only improved the accuracy of toxicity predictions but
also provided deeper insights into the mechanisms underlying chemical toxicity. The
method demonstrated the ability to predict the toxic effects of complex mixtures, including
those involving PFAS, which are emerging contaminants of concern. Combining machine
learning and pathophysiological modeling allowed us to include and analyze chemical
interactions and their dose-dependent effects. This integrative approach represents a signif-
icant advancement in environmental toxicology, offering a comprehensive tool for assessing
the risks associated with chemical exposures. Our study highlighted machine-learning
models’ limitations and potential biases, emphasizing the need for ongoing refinement
and validation. While AI-CPTM showed marked improvements in predictive accuracy,
further research is necessary to ensure its generalizability across different chemical contexts.
Future studies should focus on expanding the dataset, incorporating human-cell model
validations, and exploring the effects of more complex multi-mixture scenarios. Addressing
these challenges will be our priority for broadening the applicability of AI-CPTM and
enhancing its utility in regulatory and environmental safety assessments. The continued
development and refinement of AI-CPTM is our priority to improve our ability to predict
and mitigate the risks posed by hazardous chemical mixtures, ultimately contributing to
better environmental and public health outcomes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12070481/s1, Supplementary Material S1: Supplementary Table
S1. Literature collected 981 experimental binary chemical mixtures with citations; Supplementary
Table S1 all references [38,39,56–113]. References cited for supporting the Supplementary Table S1.
Supplementary Table S2. Representative set of predicted range of concentration of the chemicals A &
B that result in the median effect caused by the mixture for the 160 binary mixtures combinations
in the validation set. The values are calculated from predicted pEC50. pA and pB: mass fraction
of chemicals A and B; Supplementary Equation (S1). Equations to calculate the evaluation metrics
for binary & multiclass classification. Supplementary Equation (S2). Equations to calculate the
evaluation metrics for regression models. Supplementary Material S2; The toxicity predictions for
binary mixtures of ten chemicals, as detailed in Table 2, using four machine-learning methods: hybrid
neural network (HNN), random forest (RF), bagging, and AdaBoost. The table also includes the
concentrations of the components in each binary mixture. The table includes the phenotype scores
of individual components chemicals in a mixture and their average phenotype score. The last two
columns provide experimental toxicity and chemical interaction effects that support a reference to
evaluate the accuracy of the machine-learning models.
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