GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Experimental Methods
2.2.1. Laboratory Equipment
2.2.2. Target Substances
2.2.3. Measurement Procedure
2.2.4. Geographic Information System (GIS) Analysis
3. Results and Discussion
3.1. Concentration Distribution of VOCs
3.2. Spatiotemporal Pattern of VOC Concentration Considering Environmental Variables
3.3. Spatiotemporal Pattern of VOC Concentration Considering Traffic Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Environment. National Air Pollutants Emission 2011. Available online: https://eng.me.go.kr/eng/web/index.do?menuId=464 (accessed on 3 July 2024). (In Korean)
- Scheff, P.A.; Wadden, R.A. Receptor modeling of volatile organic compounds. 1. Emission inventory and validation. Environ. Sci. Technol. 1993, 27, 617–625. [Google Scholar] [CrossRef]
- Bloemen, H.J.T.; Burn, J. Chemistry and Analysis of Volatile Organic Compounds in the Environment; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Kim, J.C. Trends and control technologies of volatile organic compound. Korean J. Atmos. Environ. 2006, 22, 743–757. [Google Scholar]
- Kim, D.G.; Song, I.S.; Woo, J.S.; Bae, Y.S.; Lee, Y.K.; Park, I.B.; Han, H.S.; Kim, Y.J.; Kim, J.S. Concentration distribution of toxic volatile organic hydrocarbons in Gyeonggi-do’s atmosphere. J. Korean Soc. Environ. Anal. 2018, 21, 11–23. (In Korean) [Google Scholar]
- Lee, D.S.; Kim, D.H.; Lee, D.H.; Song, M.Y.; Kim, J.B.; Choi, W.S.; Hong, C.S.; Kim, K.C. A study on distribution of volatile organic compounds concentration over Paju national publishing complex. J. Korean Soc. Atmos. Environ. 2022, 38, 599–609. (In Korean) [Google Scholar] [CrossRef]
- Godish, T.; Davis, W.T.; Fu, J.S. Air Quality, 5th ed.; CRC Press/Lewis Publishers: Boca Raton, FL, USA, 2017. [Google Scholar]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on human health. Air Pollut. Control 2018, 119–142. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Baek, S.O.; Seo, Y.K.; Kim, J.H. Occurrence and distributions of volatile organic compounds in the ambient air of large petro-chemical industrial complex: Focusing on Daesan area. J. Korean Soc. Atmos. Environ. 2020, 36, 32–47. (In Korean) [Google Scholar] [CrossRef]
- Song, M.Y.; Choi, W.; Chun, H.; Lee, K. Management Plan of Volatile Organic Compounds Emitted from Small-Scale Painting Facility. Seoul Institute of Technology. 2021. Available online: http://www.sit.re.kr/kr/board/result/boardView.do (accessed on 3 July 2024).
- Kim, C.H.; Kim, J.H.; Noh, S.J.; Lee, S.Y.; Yoon, S.H.; Lee, S.S.; Park, J.S.; Kim, J.B. A study on temporal–spatial characteristics of volatile organic compounds distributed near a petrochemical industrial complex using PTR-ToF-MS. J. Korean Soc. Atmos. Environ. 2021, 37, 812–828. (In Korean) [Google Scholar] [CrossRef]
- Molhave, L. Volatile organic compounds: Indoor air quality and health. IndoorAir 1991, 1, 357–376. [Google Scholar] [CrossRef]
- Son, B.; Breysse, P.; Yang, W. Volatile organic compounds concentration in residential indoor and outdoor and its personal exposure in Korea. Environ. Int. 2003, 29, 79–85. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, J.B.; Lee, G.H.; Noh, S.J.; Chae, J.S.; Kim, M.Y.; Jeon, J.M.; Lee, S.S.; Kim, J.B. Characteristics of spatial distribution VOCs around a petrochemical complex using a passive sampler. J. Korean Soc. Atmos. Environ. 2022, 38, 764–775. (In Korean) [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, J.; Wang, Y.; Zhang, D.; Teng, G.; Chien, G.C.; Huang, Q.; Zhang, Y.B.; Yan, P. Global research trends in health effects of volatile organic compounds during the last 16 years: A bibliometric analysis. Aerosol Air Qual. Res. 2019, 19, 1834–1843. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.L.; Lu, S.H.; Zeng, L.M.; Tang, D.G. Source profile of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Kim, J.B.; Kim, C.H.; Noh, S.J.; Hwang, E.Y.; Park, D.S.; Lee, J.J.; Kim, J.H. A study on spatial distribution characteristics of air pollutants in Bucheon-si using a mobile laboratory. J. Part. Aerosol Res. 2020, 17, 9–20. (In Korean) [Google Scholar]
- Kim, M.K.; Kim, D.H.; Jang, Y.L.; Lee, J.Y.; Ko, S.W.; Kim, K.H.; Park, C.S.; Park, D.S. Determination of the spatial distribution of air pollutants in Bucheon, Republic of Korea, in winter using a GIS-based mobile laboratory. Toxics 2023, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Chungcheongnam-do. Result of Atmospheric Environmental Monitoring Using Moblile Laboratory. 2019. Available online: http://www.chungnam.go.kr/cnnet/board.do?mnu_url=/cnbbs/view.do (accessed on 3 July 2024). (In Korean).
- Kim, J.B.; Park, D.; Park, S.C.; Michael, V.; Lee, Y.; Lee, S.S.; Park, J.S.; Kim, J.H. Concentration characteristics of particulate matter and volatile organic compounds in petrochemical industrial complex using real-time monitoring devices. J. Korean Soc. Atmos. Environ. 2019, 35, 683–700. (In Korean) [Google Scholar] [CrossRef]
- Hitchins, J.; Morawska, L.; Wolff, R.; Gilbert, D. Concentration of submicrometre particles from vehicle emissions near a major road. Atmos. Environ. 2000, 34, 51–59. [Google Scholar] [CrossRef]
- Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations of freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Woo, D.; Lee, S.B.; Lee, S.J.; Kim, J.Y.; Jin, H.C.; Kim, T.S.; Bae, G.N. Spatial distribution of on-road ultrafine particle number concentration on Naebu Express Way in Seoul during winter season. J. Korean Soc. Atmos. Environ. 2013, 29, 10–26. (In Korean) [Google Scholar] [CrossRef]
- Bossche, J.V.D.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; Baets, B.D. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on ana extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Kim, K.H.; Kwak, K.H.; Lee, J.Y.; Woo, S.H.; Kim, J.B.; Lee, S.B.; Ryu, S.H.; Kim, C.H.; Bae, G.N.; Oh, I.B. Spatial mapping of a highly non-uniform distribution of particle-bound PAH in a densely polluted urban area. Atmosphere 2020, 11, 496. (In Korean) [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): Medical applications, food control and environmental research. Int. J. Mass. Spectrom. 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Hansel, A.; Jordan, A.; Warneke, C.; Holzinger, R.; Lindinger, W. Improved detection limit of the proton-transfer reaction mass spectrometer: On-line monitoring of volatile organic compounds at mixing ratios of a few pptv. Rapid Commun. Mass. Spectrom. 1998, 12, 871–875. [Google Scholar] [CrossRef]
- Moser, B.; Bodrogi, F.; Eibl, G.; Lechner, M.; Rieder, J.; Lirk, P. Mass spectrometric profile of exhaled breath field study by PTR-MS. Respir. Physiol. Neurobiol. 2005, 145, 295–300. [Google Scholar] [CrossRef] [PubMed]
- De Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass. Spectrom. Rev. 2006, 26, 223–257. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Park, S.W.; Cha Yw Lee, S.I.; Yoo, E.C. The charateristics of air pollutants distribution around industrial complexes using real-time mobile atmospheric measuremnt system. J. Korean Soc. Envrion. Eng. 2021, 43, 476–489. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, J.S.; Kong, H.C. Measuremnt of VOCs inindustiral complex using real-time air quality measuremnt equipment. Korean Soc. Urban Environ. 2020, 20, 35–42. [Google Scholar] [CrossRef]
- Yu, J.G.; Ryu, S.M.; Kim, J.H.; Kim, J.H.; Park, J.M.; Gong, B.J. Charateristics of emissions for air pollutants and odorous substances in a domestic dying industrial complex by using a real-time mobile monitoring system. J. Odor Indoor Environ. 2019, 18, 362–370. [Google Scholar] [CrossRef]
- Test Report of Inlet System Installed for ML; APM Engineering Co., Ltd.: Bucheon-si, Republic of Korea, 2019.
- United State Environmental Protection Agency. Compendium Method TO17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes; U.S. EPA: Washington, DC, USA, 1997; pp. 1–49.
- Zhang, Z.; Zhang, Y.; Wang, X.; Lü, S.; Huang, Z.; Huang, X.; Yang, W.; Wang, Y.; Zhang, Q. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China’s developed coastal regions. J. Geophys. Res. Atmos. 2016, 121, 6669–6687. [Google Scholar] [CrossRef]
- National Cancer Center. Carcinogen Report (Benzene); National Cancer Center: Ilsan, Gyeonggi-do, Republic of Korea, 2022. (In Korean) [Google Scholar]
Measurement | Instrument | Unit | Interval |
---|---|---|---|
Latitude, longitude | GPS system | ° | 1 s |
Elevation | GPS system | m | |
Speed | GPS system | km/h | |
VOCs | PTR-ToF-MS (Ionicon Analytik, Innsbruck, Austria) | ppb | 6 s |
Compound | Formula | Molar Mass | Protonated Mass | Chemical Abstracts Service |
---|---|---|---|---|
Formaldehyde | CH2O | 30.026 | 31.018 | 50-00-0 |
Methanol | CH4O | 32.04 | 33.033 | 67-56-1 |
Acetonitrile | C2H3N | 41.053 | 42.034 | 75-05-8 |
Propylene | C3H6 | 42.08 | 43.054 | 115-07-1 |
Propane | C3H8 | 44.097 | 44.997 | 74-98-6 |
Acetaldehyde | C2H4O | 44.053 | 45.033 | 75-07-0 |
Acrylonitrile | C3H3N | 53.064 | 54.034 | 107-13-1 |
1,3-Butadiene | C4H6 | 54.0916 | 55.054 | 106-99-0 |
n + i-Butene | C4H10 | 58.124 | 59.086 | 106-98-9 |
Acetic acid | C2H4O2 | 60.052 | 61.028 | 64-19-7 |
i + n-Pentane | C5H12 | 72.151 | 73.065 | 109-66-0 |
Benzene | C6H6 | 78.114 | 79.054 | 71-43-2 |
Toluene | C7H8 | 92.141 | 93.07 | 108-88-3 |
Styrene | C8H8 | 104.15 | 105.07 | 100-42-5 |
Ethanol + xylene | C8H10 | 106.168 | 107.086 | 100-41-4 |
Trimethylbenzene | C9H12 | 120.195 | 121.101 | 95-63-6 |
Pollutant | Mean ± Standard Deviation (ppb) | Percentage | |
---|---|---|---|
6 December | 7 December | ||
Formaldehyde | 1.3 ± 0.2 | 1.2 ± 0.2 | 1.3% |
Methanol | 17.5 ± 4.1 | 15.1 ± 2.9 | 17.0% |
Acetonitrile | 1.4 ± 0.4 | 1.3 ± 0.2 | 1.4% |
Propylene | 4.5 ± 3.7 | 3.7 ± 0.9 | 4.3% |
Propane | 3.4 ± 0.4 | 3.1 ± 0.4 | 3.4% |
Acetaldehyde | 8.1 ± 1.7 | 7.6 ± 2.1 | 8.2% |
Acrylonitrile | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2% |
1,3-Butadiene | 2.6 ± 1.6 | 6.7 ± 10.6 | 4.8% |
n + i-Butene | 12.3 ± 6.7 | 11.3 ± 2.7 | 12.3% |
Acetic acid | 9.0 ± 6.8 | 10.1 ± 3.9 | 10.0% |
i + n-Pentane | 8.0 ± 6.3 | 10.7 ± 4.4 | 9.7% |
Benzene | 2.3 ± 0.5 | 1.8 ± 0.3 | 2.1% |
Toluene | 15.1 ± 7.4 | 16.5 ± 3.9 | 16.5% |
Styrene | 1.1 ± 0.4 | 0.7 ± 0.2 | 1.0% |
Ethanol + xylene | 7.9 ± 1.6 | 5.1 ± 1.3 | 6.8% |
Trimethylbenzene | 1.2 ± 0.3 | 0.8 ± 0.2 | 1.1% |
Pollutant | Mean ± Standard Deviation (Unit: ppb) | ||||||
---|---|---|---|---|---|---|---|
6 December | 7 December | ||||||
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | |
Formaldehyde | 1.6 ± 0.3 | 1.4 ± 0.3 | 1.2 ± 0.2 | 1.3 ± 0.2 | 1.4 ± 0.3 | 1.3 ± 0.2 | 1.3 ± 0.2 |
Methanol | 19.7 ± 7.5 | 19.2 ± 9.6 | 10.8 ± 2.2 | 12.2 ± 5.4 | 34.4 ± 102.7 | 14.7 ± 5.7 | 14.9 ± 6.3 |
Acetonitrile | 1.5 ± 0.4 | 1.3 ± 0.5 | 0.9 ± 0.2 | 1.0 ± 0.2 | 1.5 ± 0.7 | 1.3 ± 0.3 | 2.8 ± 6.0 |
Propylene | 5.0 ± 2.2 | 4.6 ± 3.0 | 2.2 ± 1.2 | 3.0 ± 2.0 | 6.1 ± 6.4 | 4.0 ± 1.6 | 16.4 ± 46.4 |
Propane | 4.1 ± 0.5 | 3.7 ± 0.5 | 3.1 ± 0.4 | 3.2 ± 0.4 | 3.7 ± 0.6 | 3.4 ± 0.5 | 3.3 ± 0.4 |
Acetaldehyde | 12.2 ± 3.44 | 11.9 ± 2.9 | 7.6 ± 1.7 | 8.1 ± 1.4 | 12.4 ± 5.5 | 8.9 ± 2.3 | 10.2 ± 1.4 |
Acrylonitrile | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
1,3-Butadiene | 3.3 ± 2.9 | 2.6 ± 1.5 | 1.4 ± 0.5 | 1.8 ± 0.8 | 2.6 ± 2.0 | 2.1 ± 0.8 | 5.1 ± 12.0 |
n + i-Butene | 18.6 ± 22.1 | 14.4 ± 8.2 | 10.9 ± 30.0 | 15.9 ± 21.8 | 32.6 ± 57.7 | 15.2 ± 9.5 | 16.5 ± 12.9 |
Acetic acid | 7.8 ± 8.1 | 12.0 ± 9.2 | 6.4 ± 3.3 | 10.2 ± 8.7 | 20.4 ± 28.0 | 9.2 ± 5.2 | 11.6 ± 8.2 |
i + n-Pentane | 11.3 ± 24.8 | 9.5 ± 8.0 | 4.5 ± 2.5 | 6.6 ± 2.6 | 11.4 ± 12.5 | 8.7 ± 4.4 | 10.8 ± 7.6 |
Benzene | 3.2 ± 2.1 | 2.7 ± 1.5 | 1.6 ± 1.1 | 2.3 ± 1.7 | 3.8 ± 3.2 | 2.1 ± 1.6 | 5.0 ± 10.3 |
Toluene | 28.0 ± 44.5 | 27.5 ± 22.1 | 13.4 ± 28.5 | 21.4 ± 21.6 | 48.3 ± 67.2 | 23.6 ± 18.3 | 45.8 ± 82.1 |
Styrene | 1.2 ± 0.7 | 1.2 ± 1.5 | 0.7 ± 0.6 | 0.9 ± 0.4 | 5.8 ± 16.9 | 0.9 ± 0.4 | 1.2 ± 1.1 |
Ethanol + xylene | 10.8 ± 8.6 | 10.1 ± 7.1 | 4.9 ± 3.9 | 8.0 ± 5.2 | 15.5 ± 16.3 | 5.6 ± 4.4 | 12.1 ± 17.8 |
Trimethylbenzene | 2.1 ± 2.7 | 1.6 ± 0.9 | 0.7 ± 0.1 | 1.4 ± 1.6 | 2.5 ± 3.2 | 1.1 ± 0.7 | 3.2 ± 6.4 |
Pollutant | Mean ± Standard Deviation (ppb) | Percentage | |
---|---|---|---|
6 December | 7 December | ||
Formaldehyde | 1.4 ± 0.3 | 1.3 ± 0.2 | 1.0% |
Methanol | 19.3 ± 25.5 | 14.8 ± 6.0 | 13.3% |
Acetonitrile | 1.2 ± 0.4 | 2.0 ± 3.1 | 1.3% |
Propylene | 4.2 ± 2.9 | 10.2 ± 24.0 | 5.6% |
Propane | 3.5 ± 0.5 | 3.3 ± 0.4 | 2.7% |
Acetaldehyde | 10.4 ± 3.0 | 9.5 ± 1.8 | 7.8% |
Acrylonitrile | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1% |
1,3-Butadiene | 2.3 ± 1.6 | 3.6 ± 6.4 | 2.3% |
n + i-Butene | 18.5 ± 28.0 | 15.8 ± 11.2 | 13.4% |
Acetic acid | 11.4 ± 11.5 | 10.4 ± 6.7 | 8.5% |
i + n-Pentane | 8.7 ± 10.1 | 9.7 ± 6.0 | 7.2% |
Benzene | 2.7 ± 1.9 | 3.6 ± 5.9 | 2.5% |
Toluene | 27.7 ± 36.8 | 34.7 ± 50.2 | 24.3% |
Styrene | 2.0 ± 4.0 | 1.1 ± 0.7 | 1.2% |
Ethanol + xylene | 9.9 ± 8.2 | 8.8 ± 11.1 | 7.3% |
Trimethylbenzene | 1.7 ± 1.9 | 2.1 ± 3.6 | 1.5% |
Number of Measurements | PM10 (µg/m3) | PM2.5 (µg/m3) | NO2 (ppm) | Toluene (ppb) | Methanol (ppb) | n + i-Butene (ppb) | Benzene (ppb) |
---|---|---|---|---|---|---|---|
1 | 79.6 ± 19.7 | 62.7 ± 13.0 | 0.08 ± 0.03 | 28.0 ± 44.5 | 19.7 ± 7.5 | 18.6 ± 22.1 | 3.2 ± 2.1 |
2 | 69.1 ± 21.6 | 52.6 ± 11.7 | 0.07 ± 0.03 | 27.5 ± 22.1 | 19.2 ± 9.6 | 14.4 ± 8.2 | 2.7 ± 1.5 |
3 | 57.1 ± 38.8 | 39.5 ± 14.2 | 0.06 ± 0.02 | 13.4 ± 28.5 | 10.8 ± 2.2 | 10.9 ± 30.0 | 1.6 ± 1.1 |
4 | 63.6 ± 34.5 | 42.9 ± 11.5 | 0.07 ± 0.05 | 21.4 ± 21.6 | 12.2 ± 5.4 | 15.9 ± 21.8 | 2.3 ± 1.7 |
5 | 91.8 ± 17.6 | 59.2 ± 8.8 | 0.08 ± 0.03 | 48.3 ± 67.2 | 34.4 ± 102.7 | 32.6 ± 57.7 | 3.8 ± 3.2 |
6 | 71.2 ± 13.8 | 59.5 ± 6.8 | 0.06 ± 0.02 | 23.6 ± 18.3 | 14.7 ± 5.7 | 15.2 ± 9.5 | 2.1 ± 1.6 |
7 | 67.4 ± 25.8 | 57.6 ± 17.4 | 0.05 ± 0.02 | 45.8 ± 82.1 | 14.9 ± 6.3 | 16.5 ± 12.9 | 5.0 ± 10.3 |
Measurements | PM10 (µg/m3) | PM2.5 (µg/m3) | NO (ppm) | NO2 (ppm) | NOx (ppm) |
---|---|---|---|---|---|
Toluene | 0.34 | 0.47 | 0.05 | 0.03 | 0.05 |
Methanol | 0.02 | −0.01 | 0.10 | 0.01 | 0.09 |
n + i Butene | 0.17 | 0.13 | 0.16 | −0.01 | 0.14 |
Benzene | 0.39 | 0.55 | 0.08 | 0.03 | 0.08 |
Measurements | Average Speed | Expected Traffic Volume |
---|---|---|
Toluene | 0.14 | −0.01 |
Methanol | 0.05 | −0.02 |
n + i Butene | 0.09 | −0.03 |
Benzene | 0.14 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, D.; Seo, J.-Y.; Park, D. GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods. Toxics 2024, 12, 511. https://doi.org/10.3390/toxics12070511
Kim M, Kim D, Seo J-Y, Park D. GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods. Toxics. 2024; 12(7):511. https://doi.org/10.3390/toxics12070511
Chicago/Turabian StyleKim, Minkyeong, Daeho Kim, Jung-Young Seo, and Duckshin Park. 2024. "GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods" Toxics 12, no. 7: 511. https://doi.org/10.3390/toxics12070511
APA StyleKim, M., Kim, D., Seo, J. -Y., & Park, D. (2024). GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods. Toxics, 12(7), 511. https://doi.org/10.3390/toxics12070511