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Abstract: Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX) is a pervasive perfluorinated
compound with scant understood toxic effects. Toxicological studies on GenX have been conducted
using animal models. To research deeper into the potential toxicity of GenX in humans and animals,
we undertook a comprehensive analysis of transcriptome datasets across different species. A rank-in
approach was utilized to merge different transcriptome datasets, and machine learning algorithms
were employed to identify key genetic mechanisms common among various species and humans. We
identified seven genes—TTR, ATP6V1B1, EPHX1, ITIH3, ATXN10, UBXN1, and HPX—as potential
variables for classification of GenX-exposed samples, and the seven genes were verified in separate
datasets of human, mouse, and rat samples. Bioinformatic analysis of the gene dataset further revealed
that mitochondrial function and metabolic processes may be modulated by GenX through these
key genes. Our findings provide insights into the underlying genetic mechanisms and toxicological
impacts of GenX exposure across different species and offer valuable references for future studies
using animal models to examine human exposure to GenX.

Keywords: HFPO-DA; GenX; bioinformatics; transcriptome analysis; machine learning

1. Introduction

Hexafluoropropylene Oxide Dimer Acid (HFPO-DA, also known as GenX) is among
the class of perfluorinated compounds that have been used as replacements for perfluo-
rooctanoic acid (PFOA) and related chemicals in industrial processes [1]. These compounds
are characterized by their strong resistance to heat, oil, and water, making them ideal for
use in various applications such as firefighting foams, surface coatings, and lubricants [2].
Concerns have arisen regarding the environmental persistence and potential toxicity of
GenX compounds, with their growing and wide usage [3]. Studies have indicated that
GenX can accumulate in the environment and in the bodies of animals and humans, leading
to health risks such as developmental effects, liver toxicity, and metabolic disorders [4–6].
Therefore, the exploration of the health risks of GenX is rapidly emerging as a hotspot in
toxicological research. However, given that GenX is a substance with low toxicity and a
widespread distribution, research on the sensitivity to toxic effects and key biomolecular
mechanisms is still restricted and remains unclear. At the same time, toxicological research
on GenX is often carried out in animal experiments, but there is still a gap between the
findings in animal experiments and their extrapolation to human organisms. Therefore,
there is an urgent need to develop rapid and efficient methods to study the toxic effects
and sensitive endpoints of GenX toxicity and to extrapolate from animals to humans.

Toxics 2024, 12, 516. https://doi.org/10.3390/toxics12070516 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics12070516
https://doi.org/10.3390/toxics12070516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-2632-6733
https://orcid.org/0000-0001-5048-0688
https://doi.org/10.3390/toxics12070516
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics12070516?type=check_update&version=1


Toxics 2024, 12, 516 2 of 15

In the field of toxicological research, bioinformatics and toxicogenomics have emerged
as crucial research tools for investigating the effects of low-dose exposure to harmful sub-
stances [7]. These approaches play a significant role in identifying sensitive endpoints of
toxic effects and analyzing the mechanisms of toxicity [8]. Bioinformatic analysis involves
computational methods for examining complex genetic profiles, which are particularly
suitable for understanding cellular development, pre-clinical changes, and other biological
and trivial toxicological changes [9]. Therefore, it is particularly suitable for investigating
low-toxicity substances like GenX. In fact, as a novel and advantageous approach in biomed-
ical research, an increasing number of toxicological studies are employing bioinformatic
analysis to explore toxicology, particularly in terms of the toxicological mechanisms and
sensitive toxicological endpoints. The authors’ previous study has identified the key genes
for heterocyclic amine exposure by using multiple bioinformatic methods [10]. Previous
studies on PFASs (per- and polyfluoroalkyl substances) and GenX have also employed
bioinformatic tools [11,12]. These results indicate that bioinformatic analysis has become an
important tool in the study of toxicity for PFASs, including GenX. However, these studies
are mostly focused on a specific animal model or human cell samples, and the results may
be limited to that species or batch of experiments, with limited extrapolation. There is still
a need for new methods to integrate experimental genomic results across different species,
thereby extrapolating to humans.

Transcriptome data analysis is a crucial step in understanding the genetic basis of
various biological processes. When dealing with the batch effects, several algorithms have
been developed such as the SVA (Surrogate Variable Analysis) algorithm and rank-in
algorithm [13]. Rank-in has gained popularity in recent years because it is particularly
useful for cross-platform comparisons of transcriptome data, as it ranks genes based on
their expression levels across different platforms and then identifies common patterns
of gene expression [14]. Here, we hypothesize that the rank-in algorithm may help in
exploring the transcriptional profiles of different species exposed to GenX, as this will
enable researchers to identify conserved genetic mechanisms and understand how these
mechanisms contribute to species-specific traits [15].

In this study, we endeavored to investigate the transcriptional responses of biological
samples from different species exposed to GenX, aiming to uncover key genes that are
conserved across species. By collecting publicly available transcriptome data and em-
ploying the rank-in algorithm to integrate these datasets, we utilized machine learning
approaches to identify seven pivotal genes that were subsequently validated across various
species. Then, we applied the weighted gene co-expression network analysis (WGCNA)
algorithm to explore the functional roles of these key genes and the toxicological effects of
GenX exposure [16]. The findings from our research provide insights into the underlying
genetic mechanisms and toxicological impacts of GenX exposure across different species.
Furthermore, our results offer valuable references for future studies utilizing animal models
to examine the toxicological effects of human exposure to GenX.

2. Materials and Methods
2.1. Transcriptome Data Collection

GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/, accessed
on 13 June 2024) is a public database providing functional genomic information from
high-throughput gene expression data. We searched the GEO database to find the tran-
scriptome data of human samples exposure to GenX with the following search terms
‘(GenX) AND “Homo sapiens”[porgn:__txid9606]’, or ‘(HFPO-DA) AND “Homo sapi-
ens”[porgn:__txid9606]’. Then, the datasets were manually checked for final inclusion.
Related datasets in mouse, rat, or zebrafish samples were also searched with similar terms
and included. The GEO dataset was downloaded and imported into R (https://www.r-
project.org/, accessed on 13 June 2024, version 4.4.0) by using the R package “GEOquery” [17]
for further analysis.

https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
https://www.r-project.org/
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2.2. The Merging of the Transcriptome Data with the Rank-In Algorithm

To merge the genes from different species, the genes from different datasets were firstly
normalized with the trimmed mean of M values (TMM), a method used in transcriptome
sequencing data analysis to normalize gene expression data across samples, by the R
package edgeR [18]. Meanwhile, the genes were screened to select the gene homologs across
species with the R package homologene. Then, the gene expression matrices containing
the homologous genes across different datasets from different species were identified. The
transcriptome datasets were merged by the rank-in algorithm following the instructions
described by the authors of the rank-in algorithm [14], with the locally executable program
supported by Python 3.9 downloaded at http://www.badd-cao.net/rank-in/index.html
(accessed on 13 June 2024).

2.3. The Machine Learning Classification Algorithm

To investigate the key genes for GenX exposure, all the samples were divided into the
GenX/nonGenX groups for the subsequent machine learning classification. To determine
the key genes for classification algorithms, recursive feature elimination (RFE) was per-
formed on the corresponding genes in the rank-in merged data by using the caret package
in R. Then, the variables with the highest accuracy were selected for the subsequent classifi-
cation algorithms. These key genes were validated with two classification algorithms, that
is, random forest and support vector machine (SVM), with a 70/30 split for the training
data and test data, in both the merged dataset and the datasets in different species. The
random forest model was created and tested with the R package caret, and the SVM model
was created and tested with the R package e1071.

2.4. Bioinformatic Analysis of the Mechanism of GenX Exposure and the Key Genes

To explore the gene that are correlated with GenX exposure and the key genes,
weighted gene co-expression network analysis (WGCNA) was performed on the homolog
genes in human dataset samples by using the R package WGCNA [15,16] as we previously
described with minor revisions [10]. Considering that WGCNA quantifies the module–trait
association by calculating the Pearson correlation and the trait variable should be numeric,
the GenX/nonGenX traits were assigned a value 1 or 0 based on whether the sample was
exposed to GenX or not. The other traits, such as the GenX exposure doses and time,
were also included for calculation. The verbose value of all relative functions was set
at 3 (the default value). Then, the genes in the key modules were annotated for Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Disease Ontol-
ogy with the R package culsterProfiler [19] and DOSE [20], as described in our previous
work [10]. After that, the key genes identified by the machine learning algorithm and the
top 50 genes, based on module membership in the WGCNA modules, were put in STRING
(https://cn.string-db.org/, accessed on 13 June 2024) to construct the protein–protein inter-
action network of candidate genes [21,22]. Finally, analysis of the immune infiltration of
the gene dataset was performed with the CIBERSORT approach [23] to reflect the potential
alterations in immune cells induced by GenX.

2.5. Statistical Analysis and Plotting

A p-value < 0.05 was generally considered statistically significant unless otherwise
stated. The correlation between variables were calculated with the R package Hmisc and
the Pearson correlation method, and the correlation heatmaps were plotted with the R
package pheatmap. The density plot of gene expression before and after rank-in was
plotted by the limma package in R.

3. Results
3.1. Transcriptome Datasets

The search term ‘(GenX) AND “Homo sapiens”[porgn:__txid9606]’ on GEO returned
three dataset results. One was excluded due to too few samples in which each dose had less

http://www.badd-cao.net/rank-in/index.html
https://cn.string-db.org/
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than three replicates, and one was excluded because it was a mixture of human and mouse
samples, and only the mouse samples were exposed to GenX. The final one was checked
carefully, and the samples were not exposed to GenX alone but to a mixture of multiple
PFASs. The search term ‘(HFPO-DA) AND “Homo sapiens”[porgn:__txid9606]’ on GEO
returned one dataset result, GSE248251, which included 220 samples of human hepatocyte
samples. Surprisingly, the dataset also contains 880 other samples from rat and mouse
hepatocytes; among these samples, 220 wildtype B6129SF2/J mouse hepatocyte samples
and 220 rat hepatocyte samples were also included. Given that GenX, like other PFASs,
is present in aquatic environments and that zebrafish are utilized as a model organism in
toxicological studies of GenX [24], we then searched the GEO dataset for GenX experiments
performed on the zebrafish model, and one GEO dataset, GSE198976, with 19 samples was
included. Samples from GSE248251 were exposed to GenX at different doses for different
exposure times; samples from zebrafish were exposed to GenX at different doses for 72 h.
The summary of these datasets is shown in Table 1, and the gene density plots of these
datasets before and after the rank-in were shown in Figure 1.

Table 1. The summary of the datasets included in the study.

GEO Dataset Species Number of
Samples in Total

Number of Samples
Exposed to GenX

Features of
Exposure Patterns

Gene Expression
Unit

GSE248251 human 220 40 dose; exposure
time count

GSE248251 mouse 220 40 dose; exposure
time count

GSE248251 rat 220 40 dose; exposure
time count

GSE198976 zebrafish 19 16 dose TMM

Toxics 2024, 12, x FOR PEER REVIEW  4  of  16 
 

 

3. Results 

3.1. Transcriptome Datasets 

The search term ‘(GenX) AND “Homo sapiens”[porgn:__txid9606]’ on GEO returned 

three dataset results. One was excluded due to too few samples in which each dose had 

less than three replicates, and one was excluded because it was a mixture of human and 

mouse samples, and only the mouse samples were exposed to GenX. The final one was 

checked carefully, and the samples were not exposed to GenX alone but to a mixture of 

multiple PFASs. The search term ‘(HFPO-DA) AND “Homo sapiens”[porgn:__txid9606]’ 

on GEO returned one dataset result, GSE248251, which included 220 samples of human 

hepatocyte samples. Surprisingly, the dataset also contains 880 other samples from rat and 

mouse hepatocytes; among  these  samples, 220 wildtype B6129SF2/J mouse hepatocyte 

samples and 220 rat hepatocyte samples were also included. Given that GenX, like other 

PFASs, is present in aquatic environments and that zebrafish are utilized as a model or-

ganism in toxicological studies of GenX [24], we then searched the GEO dataset for GenX 

experiments performed on the zebrafish model, and one GEO dataset, GSE198976, with 

19 samples was  included. Samples from GSE248251 were exposed  to GenX at different 

doses for different exposure times; samples from zebrafish were exposed to GenX at dif-

ferent doses for 72 h. The summary of these datasets is shown in Table 1, and the gene 

density plots of these datasets before and after the rank−in were shown in Figure 1. 

Table 1. The summary of the datasets included in the study. 

GEO Dataset  Species 
Number of Samples 

in Total 

Number of Samples Exposed 

to GenX 

Features of Exposure 

Patterns 

Gene Expression 

Unit 

GSE248251  human  220  40  dose; exposure time  count 

GSE248251  mouse  220  40  dose; exposure time  count 

GSE248251  rat  220  40  dose; exposure time  count 

GSE198976  zebrafish  19  16  dose  TMM 

We then obtained the homolog genes among the datasets of human, mouse, rat, and 

zebrafish. By performing homolog gene transformation in R and obtaining the intersected 

probes,  4838  genes were  identified  as  common  genes  among  the  datasets  of  human, 

mouse, rat, and zebrafish, which are listed in Supplementary Table S1. Then, each dataset 

was normalized with TMM, and  the 4838 genes were  selected and combined with  the 

rank-in algorithm to obtain the combined dataset for further analysis. 

 

Figure 1. The gene density plot of each dataset before and after the rank-in. For density plot before 

rank-in, the gene expression values higher than 150 were removed. The plot without removing ex-

treme values is shown in Supplementary Figure S1. 

   

Figure 1. The gene density plot of each dataset before and after the rank-in. For density plot before
rank-in, the gene expression values higher than 150 were removed. The plot without removing
extreme values is shown in Supplementary Figure S1.

We then obtained the homolog genes among the datasets of human, mouse, rat, and
zebrafish. By performing homolog gene transformation in R and obtaining the intersected
probes, 4838 genes were identified as common genes among the datasets of human, mouse,
rat, and zebrafish, which are listed in Supplementary Table S1. Then, each dataset was
normalized with TMM, and the 4838 genes were selected and combined with the rank-in
algorithm to obtain the combined dataset for further analysis.



Toxics 2024, 12, 516 5 of 15

3.2. Machine Learning Identified Seven Key Genes for Distinguishing the GenX and
Non-GenX Groups

The result of RFE on the merged dataset (Table 2), with samples classified as GenX and
non-GenX groups, showed that seven variables reached the highest accuracy with the least
number of variables. Therefore these seven genes, TTR, ATP6V1B1, EPHX1, ITIH3, ATXN10,
UBXN1, and HPX, were considered key genes for distinguishing the GenX exposure group.

Table 2. The result of RFE on the merged dataset with GenX and non-GenX classification.

Number of Variables Accuracy Kappa Accuracy SD Kappa SD

1 0.979122 0.936034 0.021961 0.065543
2 0.993706 0.97971 0.010136 0.032714
3 0.995833 0.986885 0.008784 0.027648
4 0.995789 0.986267 0.008878 0.028988
5 0.997917 0.993443 0.006588 0.020736
6 0.997917 0.993443 0.006588 0.020736
7 1 1 0 0
8 1 1 0 0
9 1 1 0 0
10 1 1 0 0

4838 1 1 0 0

To further verify whether the seven key genes can distinguish the GenX and non-GenX
groups, we performed two classification algorithms: random forest and SVM, with ranked-
in data in both all samples and samples of different species. The result showed that the
seven genes reached a high accuracy at 1, in all samples and in samples of different species,
as shown in Table 3 and Figure 2.

Table 3. The classification accuracy of the random forest and SVM of the ranked-in data. The results
are expressed as accuracy (95% confidence interval).

Algorithm Integrated
Dataset Human Mouse Rat Zebrafish

Accuracy in random forest model 1 (0.9819, 1) 1 (0.9456, 1) 1 (0.9456, 1) 1 (0.9456, 1) 1 (0.3976, 1)
Accuracy in SVM model 1 (0.9819, 1) 1 (0.9456, 1) 1 (0.9456, 1) 1 (0.9456, 1) 1 (0.3976, 1)

To further verify whether the seven genes were significant for distinguishing the GenX
and non-GenX groups, the random forest and SVM classification were also performed
on the datasets before rank-in. The results showed that the classification with the seven
genes also achieved high accuracy in the human, mouse, and rat datasets before rank-in,
ranging from 0.7879 to 0.8788, as shown in Table 4 and Figure 3. Taken together, these
results suggest that the seven genes were the key genes for distinguishing the GenX and
non-GenX groups, at least in the GSE248251 datasets of human, mouse, and rat.

Table 4. The classification accuracy of the random forest and SVM on the data before rank-in. The
results are expressed as accuracy (95% confidence interval).

Algorithm Human Mouse Rat Zebrafish

Accuracy in random
forest model 0.803 (0.6868, 0.8907) 0.7879 (0.6698, 0.8789) 0.8788 (0.7751, 0.9462) 0.5 (0.0676, 0.9324)

Accuracy in
SVM model 0.8182 (0.7039, 0.9024) 0.8182 (0.7039, 0.9024) 0.8182 (0.7039, 0.9024) 0.5 (0.0676, 0.9324)
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Figure 3. The receiver operating characteristic (ROC) curves of the machine learning algorithms on
the data before rank-in. Curves in zebrafish were not plotted due to the low accuracy.

3.3. The Gene Function and Network Analysis Revealed Mitochondrial Function and Metabolic
Process as Being Potential Modulated by GenX and the Key Genes

To further explore whether and how the seven key genes may be involved in the
toxicity of GenX, we performed gene correlation network analysis and function annotation
for the potential genes. Given that human exposure to GenX is what we focused on most,
we used the human cell line data in GSE248251 with the 4838 common genes selected
for further research. We initially performed WGCNA to divide the genes into different
modules. After the soft power calculation, we set the soft-thresholding power at six so that
the scale-free R-square reached >0.80 (Figure 4a,b). Then the 4838 genes were divided into
10 modules marked with different colors, as shown in Figure 4c. The result showed that the
modules correlated with these key genes, especially five of the key genes (EPHX1, ITIH3,
ATXN10, UBXN1, and HPX), were also correlated with GenX doses and exposure times,
suggesting the dose- and time-response potentials of these genes. Among the gene modules,
turquoise, green, and yellow were the modules correlated with GenX doses and exposure
times that were also correlated with the five key genes (Figure 4c); the red module was the
module that was significantly associated with GenX or non-GenX classification and was
the module where UBXN1 and HPX were (Figure 4c, Supplementary Table S2). Therefore,
the turquoise, green, yellow, and red modules were enrolled in the subsequent study.
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Figure 4. The result of WGCNA. (a) The result of soft-power selection. (b) The cluster dendrogram
at the selected soft-power. (c) The module–trait relationships of the different modules and GenX
exposure dose and time patterns and the seven key genes; the color in each cell indicates the
correlation r value, ranging from −1 to 1 (color green to color red). Values in each cell were the r
values, and the corresponding p values (In the bracket).
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The gene functions of genes from the turquoise, green, yellow, and red modules were
annotated. As shown in Figure 5, all the turquoise, yellow, and red genes were annotated
in mitochondrial and metabolic terms, such as mitochondrial translation, ATP metabolism,
and carboxylic and amino acid metabolism, while the genes in the green module were
annotated in RNA process and protein metabolism. These results suggest that GenX and
the key genes, especially the five genes EPHX1, ITIH3, ATXN10, UBXN1, and HPX, were
correlated with genes potentially modulating mitochondrial function and metabolic process.
The gene network correlation between genes in the modules and the seven key genes is
shown in Figure 6.
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Figure 5. The gene annotation result of different modules. (a–c) The GO, KEGG, and Disease
Ontology annotation of genes from the turquoise module; (d) the GO annotation of genes from the
green module (KEGG and Disease Ontology returned no significant terms); (e–g) the GO, KEGG, and
Disease Ontology annotation of genes from the yellow module; (h–j) the GO, KEGG, and Disease
Ontology annotation of genes from the red module.
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green module and the 7 genes; (c) the top 50 module membership genes in the yellow module and
the 7 genes; (d) the top 50 module membership genes in the red module and the 7 genes.

3.4. The Immune Function Showed No Dose-Response Relationship with GenX Exposure Doses

We finally performed immune infiltration analysis with the CIBERSORT approach
to evaluate the potential of GenX to disrupt immune function. As shown in Figure 7, the
immune infiltration result showed correlations with time and several key genes, but most
of the parameters were not significantly correlated with GenX concentration, suggesting
that immune function may not be dose-responsively correlated with GenX, which indicates
that the immune system may not be a sensitive target of the toxicity of GenX.
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4. Discussion

In the present study, we investigated the genetic mechanism underlying the GenX
exposure by searching and analyzing the transcriptomes in the GEO database. By using
the rank-in algorithm for merging different gene expression datasets and machine learning
classification for samples exposed to GenX or not, we successfully identified seven key
genes as the features for distinguishing the GenX-exposed group and non-GenX-exposed
group, in both the rank-in combined dataset or the separate datasets of human, mouse,
and rat, before and after the rank-in. The results suggested that the seven key genes TTR,
ATP6V1B1, EPHX1, ITIH3, ATXN10, UBXN1, and HPX may play critical roles in the GenX
exposure and toxic effects across human and animal models. Our research sheds light
on the fundamental genetic pathways and toxicological consequences of GenX exposure
across various species and provides crucial references for future investigations using animal
models to assess the toxic effects of human exposure to GenX.

Transcriptome data analysis is an indispensable step towards deciphering the genetic
underpinnings of various biological phenomena. Nonetheless, researchers frequently
encounter the confounding issue of batch effects in transcriptome data. To address this
challenge, a multitude of algorithms, including SVA and rank-in, have been devised to
correct batch effects [13,14]. The rank-in algorithm, in particular, has proven invaluable for
cross-platform comparisons of transcriptome data [15]. This algorithm operates by ranking
genes based on their expression levels across diverse platforms, subsequently pinpointing
consistent patterns of gene expression [14]. Therefore, the rank-in algorithm facilitates the
comparative analysis of transcriptome data derived from different platforms, enabling the
discovery of conserved biological pathways or regulatory networks. In our present study,
we for the first time employed the rank-in algorithm to amalgamate transcriptome data
from disparate species. The outcome demonstrated a commendable identification of key
genes, a finding that was corroborated by applying machine learning methods to both
the combined and individual datasets. Our findings suggest that the rank-in algorithm,
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when integrated with machine learning techniques, may serve as an effective strategy for
elucidating the genetic mechanisms underlying transcriptome data across various species
(Figures 2 and 3). This approach is particularly pertinent to toxicological research, where
animal models are frequently employed for evaluating toxicological effects.

After the machine learning process identified seven genes based on the GenX and
non-GenX classification, we performed a correlation analysis of GenX exposure doses
and times with the seven key genes and other genes. The correlation with gene modules
distinguished by WGCNA showed that the turquoise, green, yellow, and red modules
were closely correlated with GenX exposure and the key genes, especially the five genes
EPHX1, ITIH3, ATXN10, UBXN1, and HPX (Figure 4). The correlation exhibited a high
degree of coherence with the machine learning results, confirming the efficacy of the rank-in
integrated machine learning approach in identifying key genes involved in GenX exposure.
Among the five genes, EPHX1 (Epoxide Hydrolase 1) encodes a member of the epoxide
hydrolase family of enzymes, which are involved in the metabolism of many compounds,
including drugs and xenobiotics. This gene plays a crucial role in the biotransformation
and detoxification of potentially harmful compounds [25]. ITIH3 (Inter-Alpha-Trypsin
Inhibitor Heavy Chain 3) is part of the inter-alpha-trypsin inhibitor family, a group of
proteins that circulate in the blood and are involved in the stabilization of the extracellular
matrix [26]. They also have roles in wound repair and inflammation [27]. ATXN10 (Ataxin-
10) encodes a protein that belongs to the family of ataxin proteins, which are implicated
in neurodegenerative disorders such as spinocerebellar ataxia and may have roles in
transcriptional regulation and RNA processing [28]. UBXN1 (UBX domain-containing
protein 1) encodes a protein that contains a UBX domain, which is a motif found in
proteins associated with the ubiquitin-proteasome system, and is responsible for degrading
unneeded or damaged proteins in cells [29]. HPX (Hemopexin) is a plasma glycoprotein
that is involved in the transport of heme to liver cells, where it is degraded and recycled [30].
Hemopexin helps to prevent heme-induced oxidative damage and is important in iron
metabolism and regulation [31]. All five genes were not previously reported to be correlated
with GenX. We further analyzed the function of key modules—turquoise, green, yellow,
and red—and found that these four modules were mainly related to mitochondria and
metabolic activities (Figure 5), while EPH1 has been reported to be correlated with PPARα
and mitochondrial fatty acid degradation and glycolysis in antitumor research in a rat
model [32]. Interestingly, PPARα, as was focused on by the original authors of GSE248251,
has been found to be a crucial toxic mechanism of GenX [33]. Although the calculation
methods were different, our finding also support the conclusion of the original research of
the authors of dataset GSE248251.

The issue of whether mitochondria serve as a toxic target for GenX has been shrouded
in controversy. The United States Environmental Protection Agency (USEPA) has suggested
that mitochondrial metabolism could be one of the targets affected by GenX exposure [34].
However, subsequent literature reviews have generally not found sufficient evidence to
support claims of mitochondrial dysfunction associated with GenX [35]. Despite this,
other research contends that there is indeed a connection between GenX exposure and
mitochondrial disruption, indicating that further investigation is necessary to conclusively
determine the relationship between GenX and mitochondrial health [36]. In the current
study, we found by gene annotation that mitochondrial and metabolic activities were
correlated with GenX exposure (Figure 5). Although our study does not provide conclusive
evidence, our gene annotation analysis and network graphs (Figure 6) can offer research
clues on the relationship between GenX toxicity and mitochondria, providing research
value to resolve this controversial issue.

Finally, we explored the immune response to GenX with the CIBERSORT algorithm.
CIBERSORT was developed for deconvoluting bulk gene expression data to estimate the
composition and abundance of cell types in a mixed cell population [23]. I CIBERSORT
was initially developed for characterizing the immune cell composition in tumor tissues.
However, its application has since expanded to non-tumor tissues as well and now has
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become a valuable tool in immunology research [37]. In the present study, we utilized
CIBERSORT to investigate the immune response to GenX in a human dataset. The results
revealed that there were no significant immune changes associated with varying doses of
GenX (Figure 7). Additionally, we applied CIBERSORT to the zebrafish dataset GSE198976,
which similarly indicated that there were no immune changes correlated with GenX doses.
However, recent studies in lung cells and oysters reported that several immune-related
genes were regulated by GenX [38,39]. In fact, the key gene UBXN1 identified in the current
research is also an immune-related gene that was reported to be involved in antiviral
immune response [40]. In brief, whether GenX may exert immune-related toxicity and how
to evaluate the effect of GenX on the immune system need further research.

There are limitations of the current study. One is that the transcriptome samples in
zebrafish are not enough to support the machine learning calculation (Tables 3 and 4).
Second, in the WGCNA, most gene modules correlated with time and exposure time,
which may because of the natural alterations in gene expression with the cell culture time.
In future research, it may be necessary to develop improved computational methods to
eliminate the changes in gene expression caused by time effects themselves, thereby more
accurately identifying the key genes associated with chemical exposure.

5. Conclusions

In conclusion, our study identified seven genes—TTR, ATP6V1B1, EPHX1, ITIH3,
ATXN10, UBXN1, and HPX—as key markers for distinguishing GenX exposure groups.
These findings were derived from transcriptome datasets across different species using
rank-based integrated machine learning algorithms. The underlying mechanisms of GenX
toxicity appear to be linked to mitochondrial and metabolic activities, which may be
modulated by these key genes. Future experimental research is necessary to further validate
and explore the mechanisms of GenX toxicity.
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