Biochar Amendments and Phytoremediation: A Combined Approach for Effective Lead Removal in Shooting Range Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection and Characterization
2.2. Material Collection and Characterization
2.3. Data Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Characterization
3.2. Effects of Amendments on Soil pH
3.3. Effects of Amendments on Pb Levels
3.4. Effects of Pb on Seed Germination and Seedling Growth
3.5. Effects of Pb Levels on Physiological Parameters
3.6. Effectiveness of Amendments
4. Conclusions and Perspectives for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Env. Health Insights 2023, 17, 11786302231201259. [Google Scholar] [CrossRef]
- Duggan, J.; Dhawan, A. Speciation and Vertical Distribution of Lead and Lead Shot in Soil at a Recreational Firing Range. Soil Sediment Contam. 2007, 16, 351–369. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D. Assessment of Iron-Based and Calcium-Phosphate Nanomaterials for Immobilisation of Potentially Toxic Elements in Soils from a Shooting Range Berm. J. Environ. Manag. 2020, 267, 110640. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.P.; Soares, L.C.d.R.; Viegas, R.M.A.; Chiavone-Filho, O.; do Nascimento, C.A.O. Lead (Pb) in Shooting Range Soil: A Systematic Literature Review of Contaminant Behavior, Risk Assessment, and Remediation Options. Water Air Soil Pollut. 2024, 235, 1. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Chen, J.P.; Wang, L.K.; Wang, M.S.; Hung, Y.T.; Shammas, N.K. Remediation of Heavy Metals in the Environment; CRC Press: Boca Raton, FL, USA, 2016; Volume 75. [Google Scholar]
- Hidalgo, J.; Gómez-Sagasti, M.T.; Anza, M.; Artetxe, U.; Epelde, L.; Becerril, J.M.; Garbisu, C. Plant-Based Remediation of Industrially Contaminated Soils: Principles and Case Study. Adv. Bot. Res. 2024, 109, 105–158. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Molina, L.; Prieto-Fernández, M.Á.; Segura, A. Past, Present and Future Trends in the Remediation of Heavy-Metal Contaminated Soil-Remediation Techniques Applied in Real Soil-Contamination Events. Heliyon 2023, 9, e16692. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Mishra, S.; Agrawal, M. Causes, Effects and Sustainable Approaches to Remediate Contaminated Soil. Environ. Pollut. Remediat. 2021, 451–459. [Google Scholar]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Hou, J.; Pugazhendhi, A.; Sindhu, R.; Vinayak, V.; Thanh, N.C.; Brindhadevi, K.; Lan Chi, N.T.; Yuan, D. An Assessment of Biochar as a Potential Amendment to Enhance Plant Nutrient Uptake. Environ. Res. 2022, 214, 113909. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, A.; Vithanage, M. Biochar-Mediated Soils for Efficient Use of Agrochemicals. Agrochem. Detect. Treat. Remediat. Pestic. Chem. Fertil. 2020, 621–645. [Google Scholar] [CrossRef]
- Boorboori, M.R.; Lackóová, L. Biochar an Effective Factor in Improving Phytoremediation of Metal(Iod)s in Polluted Sites. Front. Environ. Sci. 2023, 11, 1253144. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Chand, N. Effect of Biochar Amendment on Metal Mobility, Phytotoxicity, Soil Enzymes, and Metal-Uptakes by Wheat (Triticum aestivum) in Contaminated Soils. Chemosphere 2022, 307, 135889. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Stephen, J. Biochar for Environmental Management: Science, Technology and Implementation; Taylor & Francis: Raton, FL, USA, 2015; Volume 1. [Google Scholar]
- Nepal, J.; Ahmad, W.; Munsif, F.; Khan, A.; Zou, Z. Advances and Prospects of Biochar in Improving Soil Fertility, Biochemical Quality, and Environmental Applications. Front. Environ. Sci. 2023, 11, 1114752. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.H.; Kwon, E.E. Biochar as a Tool for the Improvement of Soil and Environment. Front. Environ. Sci. 2023, 11, 1324533. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, G.; Liu, L.; He, F.; Arinzechi, C.; Liao, Q.; Yang, W.; Si, M. Simultaneous Immobilization of Lead, Cadmium and Arsenic in Soil by Iron-Manganese Modified Biochar. Front. Environ. Sci. 2023, 11, 1281341. [Google Scholar] [CrossRef]
- Sun, J.; Cui, L.; Quan, G.; Yan, J.; Wang, H.; Wu, L. Effects of Biochar on Heavy Metals Migration and Fractions Changes with Different Soil Types in Column Experiments. Bioresources 2020, 15, 4388–4406. [Google Scholar] [CrossRef]
- Ali, S.; Shahid, M.J.; Hussain, A.; Rizwan, M.; Ahmad, A.; Adrees, M. Metals Phytoextraction by Brassica Species. In Approaches to the Remediation of Inorganic Pollutants; Hasanuzzaman, M., Ed.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Asikin, A.; Hoon Lim, L.; Metali, F. Heavy metal tolerance and accumulation in the Brassica species (Brassica chinensis var. parachinensis and Brassica rapa L.): A pot experiment. Heliyon 2024, 10, e29528. [Google Scholar] [CrossRef]
- Masotla, M.K.L.; Melato, F.A.; Mokgalaka-Fleischmann, N.S. Extraction Potential of Lolium perenne L. (Perennial Rye Grass) for Metals in Landfill Soil: Its Tolerance and Defense Strategies. Minerals 2023, 13, 873. [Google Scholar] [CrossRef]
- Li, F.-L.; Qiu, Y.; Xu, X.; Yang, F.; Wang, Z.; Feng, J.; Wang, J. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicol. Environ. Saf. 2020, 191, 110185. [Google Scholar] [CrossRef] [PubMed]
- Sammar Raza, M.A.; Saleem, M.F.; Khan, I.H.; Jamil, M.; Ijaz, M.; Khan, M.A. Evaluating the Drought Stress Tolerance Efficiency of Wheat (Triticum aestivum L.) Cultivars. Russ. J. Agric. Socioecon. Sci. 2012, 12, 41–46. [Google Scholar] [CrossRef]
- Maceiras, R.; Alfonsin, V.; Martinez, J.; Martinez Vara de Rey, C. Remediation of Diesel-Contaminated Soil by Ultrasonic Solvent Extraction. Int. J. Environ. Res. 2018, 12, 651–659. [Google Scholar] [CrossRef]
- López-Mateo, C.; Marcos-Rodríguez, R.; Díaz-Rodríguez, F.; Fernandez-Marcos, M.L. Forms of Toxic and Trace Metals in Grassland Soils of Galicia, Spain. Span. J. Soil Sci. 2023, 13, 11201. [Google Scholar] [CrossRef]
- Alvarez, E.; Martinez, A.; Calvo, R. Geochemical Aspects of Aluminium in Forest Soils in Galicia (N.W. Spain). Biogeochemistry 1992, 16, 167–180. [Google Scholar] [CrossRef]
- Reyes Guzman, M. Comportamiento de Los Metales Pesados En El Suelo. Rev. Épsilon 2010, 15, 181–189. [Google Scholar]
- McBride, M.B. Environmental Chemistry of Soils. In Environmental Chemistry of Soils; Soils Oxford University Press, Inc.: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Raton, FL, USA, 2010. [Google Scholar]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production-FAO Irrigation and Drainage Paper 48. FAO Irrig. Drain. Pap. 2012. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Anderson, C.R.; Peterson, M.E.; Frampton, R.A.; Bulman, S.R.; Keenan, S.; Curtin, D. Rapid Increases in Soil PH Solubilise Organic Matter, Dramatically Increase Denitrification Potential and Strongly Stimulate Microorganisms from the Firmicutes Phylum. PeerJ 2018, 6, e6090. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of Soil Amendments on Soil Acidity and Crop Yields in Acidic Soils: A World-Wide Meta-Analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Wang, P.; Kim, G.; Kim, S.; Park, S.; Hwang, Y.-S.; Lim, Y.-P.; Lee, E.M.; Ham, I.; Jo, M.H.; et al. Effects of Soil PH on Nutritional and Functional Components of Chinese Cabbage (Brassica rapa ssp. Campestris). Hortic. Sci. Technol. 2010, 28, 353–362. [Google Scholar]
- Javaid, M.M.; Mahmood, A.; Alshaya, D.S.; AlKahtani, M.D.F.; Waheed, H.; Wasaya, A.; Khan, S.A.; Naqve, M.; Haider, I.; Shahid, M.A.; et al. Influence of Environmental Factors on Seed Germination and Seedling Characteristics of Perennial Ryegrass (Lolium perenne L.). Sci. Rep. 2022, 12, 9522. [Google Scholar] [CrossRef] [PubMed]
- Helaoui, S.; Boughattas, I.; Mkhinini, M.; Chebbi, L.; Elkribi-Boukhris, S.; Alphonse, V.; Livet, A.; Banni, M.; Bousserrhine, N. Biochar Amendment Alleviates Heavy Metal Phytotoxicity of Medicago Sativa Grown in Polymetallic Contaminated Soil: Evaluation of Metal Uptake, Plant Response and Soil Properties. Plant Stress 2023, 10, 100212. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; El-Sherbini, M.A.A.; Selim, E.M.M. Effects of Biochar on Soil Properties, Heavy Metal Availability and Uptake, and Growth of Summer Squash Grown in Metal-Contaminated Soil. Sci. Hortic. 2022, 301, 111097. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Anne, O.; Mockevičienė, I.; Karčauskienė, D.; Repšienė, R.; Šiaudinis, G.; Barčauskaitė, K.; Žilė, G. Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil. Sustainability 2024, 16, 183. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, S.; Su, C. Impact of Biochar on the Bioremediation and Phytoremediation of Heavy Metal(loid)s in Soil. In Advances in Bioremediation and Phytoremediation; Shiomi, N., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Yang, J.E.; Ro, H.M.; Lee, Y.H.; Ok, Y.S. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol. Environ. Saf. 2012, 79, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ge, S.; Ye, L.; Zhou, C. Study on the adsorption characteristics of lead in soil by biochar from co-pyrolysis of rice straw and sludge. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1171, p. 012062. [Google Scholar] [CrossRef]
- Hamzah, A.; Priyadarshini, R.; Astuti, A. The potential use of humic acid-coated biochar for reducing Pb and Cu in the soil to improve plant growth. J. Degrad. Min. Lands Manag. 2022, 10, 4001. [Google Scholar] [CrossRef]
- Duan, S.; AL-Huqail, A.A.; Alsudays, I.M.; Younas, M.; Aslam, A.; Shahzad, A.N.; Qayyum, M.F.; Rizwan, M.; Alhaj Hamoud, Y.; Shaghaleh, H.; et al. Effects of Biochar Types on Seed Germination, Growth, Chlorophyll Contents, Grain Yield, Sodium, and Potassium Uptake by Wheat (Triticum aestivum L.) under Salt Stress. BMC Plant Biol. 2024, 24, 487. [Google Scholar] [CrossRef]
- Islam, E.; Liu, D.; Li, T.; Yang, X.; Jin, X.; Mahmood, Q.; Tian, S.; Li, J. Effect of Pb Toxicity on Leaf Growth, Physiology and Ultrastructure in the Two Ecotypes of Elsholtzia Argyi. J. Hazard. Mater. 2008, 154, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of Biochars on Flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Waters, D.; Van Zwieten, L.; Singh, B.P.; Downie, A.; Cowie, A.L.; Lehmann, J. Biochar in Soil for Climate Change Mitigation and Adaptation. In Soil health and Climate Change; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; De MacÊdo, J.L.V.; Blum, W.E.H.; Zech, W. Long Term Effects of Manure, Charcoal and Mineral Fertilization on Crop Production and Fertility on a Highly Weathered Central Amazonian Upland Soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (Citrus aurantium L.) Plants. the Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Tian, J. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Front. Environ. Sci. 2020, 8, 521512. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar Boosts Tropical but Not Temperate Crop Yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
pH | 7.6 | |
Density | g/cm3 | 0.4 |
Particle size | mm | 0.05–4 |
Carbon | % | 67.1 |
Nitrogen | % | 3.7 |
Hydrogen | % | 9.2 |
Pb | mg/kg | 2.7 |
S | mg/kg | 4287 |
Specific area (BET) | m2/g | 140 |
Water holding capacity | % | 108 |
Ref. | Location | Biochar (% wt.) | Distribution |
---|---|---|---|
Z1 0 | Zone 1 | 0 | - |
Z1 5S | Zone 1 | 5 | superficial |
Z1 10S | Zone 1 | 10 | superficial |
Z1 15S | Zone 1 | 15 | superficial |
Z1 5M | Zone 1 | 5 | mixed |
Z1 10M | Zone 1 | 10 | mixed |
Z1 15M | Zone 1 | 15 | mixed |
Z2 0 | Zone 2 | 0 | - |
Z2 5S | Zone 2 | 5 | superficial |
Z2 10S | Zone 2 | 10 | superficial |
Z2 15S | Zone 2 | 15 | superficial |
Z2 5M | Zone 2 | 5 | mixed |
Z2 10M | Zone 2 | 10 | mixed |
Z2 15M | Zone 2 | 15 | mixed |
Uncontaminated Soil | Zone 1 | Zone 2 | |
---|---|---|---|
Particle size distribution | |||
Sand (%) | 99.8 | 99.9 | 99.6 |
Silt (%) | 0.2 | 0.1 | 0.4 |
Soil pH | 5.5 | 8.2 | 8.1 |
Electrical conductivity (μS/cm) | 110 | 50 | 120 |
Pb (mg/kg) | 46.2 | 171.0 | 116,486.0 |
Ref. | Biochar (% wt.) | Distribution | Stem Length | Root Length | GS (S/d) |
---|---|---|---|---|---|
Z1 5S | 5 | superficial | 5.4 ± 1.7 | 1.7 ± 0.9 | 0.88 |
Z1 10S | 10 | superficial | 6.7 ± 0.8 | 2.9 ± 1.3 | 1.43 |
Z1 15S | 15 | superficial | 6.3 ± 2.1 | 3.3 ± 0.7 | 0.87 |
Z1 5M | 5 | mixed | 3.8 ± 1.0 | 1.6 ± 0.6 | 1.67 |
Z1 10M | 10 | mixed | 6.0 ± 0.7 | 1.8 ± 1.3 | 2.45 |
Z1 15M | 15 | mixed | 4.1 ± 2.1 | 1.7 ± 1.1 | 1.50 |
Variables | F-Value | p-Value | |
---|---|---|---|
Zone 1 | Biochar distribution | 193.7 | 0.0006 |
% Biochar | 2.8 | 0.1905 | |
Zone 2 | Biochar distribution | 83.6 | 0.0021 |
% Biochar | 1.4 | 0.3154 |
Variables | F-Value | p-Value | |
---|---|---|---|
G | Biochar distribution | 5.8 | 0.0914 |
% Biochar | 0.1 | 0.7888 | |
g | Biochar distribution | 2.5686 | 0.2294 |
% Biochar | 2.8823 | 0.1881 | |
IG | Biochar distribution | 54.3 | 0.004 |
% Biochar | 7.7 | 0.0697 | |
GS | Biochar distribution | 3.1 | 0.1902 |
% Biochar | 7.8 | 0.0685 | |
RSLTI | Biochar distribution | 10.2 | 0.0441 |
% Biochar | 8.4 | 0.0625 | |
SLSTI | Biochar distribution | 1.1 | 0.4687 |
% Biochar | 4.8 | 0.1171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maceiras, R.; Perez-Rial, L.; Alfonsin, V.; Feijoo, J.; Lopez, I. Biochar Amendments and Phytoremediation: A Combined Approach for Effective Lead Removal in Shooting Range Soils. Toxics 2024, 12, 520. https://doi.org/10.3390/toxics12070520
Maceiras R, Perez-Rial L, Alfonsin V, Feijoo J, Lopez I. Biochar Amendments and Phytoremediation: A Combined Approach for Effective Lead Removal in Shooting Range Soils. Toxics. 2024; 12(7):520. https://doi.org/10.3390/toxics12070520
Chicago/Turabian StyleMaceiras, Rocio, Leticia Perez-Rial, Victor Alfonsin, Jorge Feijoo, and Ignacio Lopez. 2024. "Biochar Amendments and Phytoremediation: A Combined Approach for Effective Lead Removal in Shooting Range Soils" Toxics 12, no. 7: 520. https://doi.org/10.3390/toxics12070520
APA StyleMaceiras, R., Perez-Rial, L., Alfonsin, V., Feijoo, J., & Lopez, I. (2024). Biochar Amendments and Phytoremediation: A Combined Approach for Effective Lead Removal in Shooting Range Soils. Toxics, 12(7), 520. https://doi.org/10.3390/toxics12070520