Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Population
2.2. Psoriasis Definition
2.3. Environmental Contaminant Exposures
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Association between Contaminant Exposure and Psoriasis Prevalence
3.3. WQS Regressions Stratified by Healthy Lifestyle Score
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greb, J.E.; Goldminz, A.M.; Elder, J.T.; Lebwohl, M.G.; Gladman, D.D.; Wu, J.J.; Mehta, N.N.; Finlay, A.Y.; Gottlieb, A.B. Psoriasis. Nat. Rev. Dis. Primers 2016, 2, 16082. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Mehta, M.D.; Schupp, C.W.; Gondo, G.C.; Bell, S.J.; Griffiths, C.E.M. Psoriasis Prevalence in Adults in the United States. JAMA Dermatol. 2021, 157, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Takahashi, H.; Kawada, A.; Iizuka, H.; Nakagawa, H.; Japanese Society For Psoriasis, R. Epidemiological survey from 2009 to 2012 of psoriatic patients in Japanese Society for Psoriasis Research. J. Dermatol. 2018, 45, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Okuyama, R.; Seki, T.; Kobayashi, A.; Oiso, N.; Muto, M.; Nakagawa, H.; Kawada, A. Epidemiological survey of patients with psoriasis in Matsumoto city, Nagano Prefecture, Japan. J. Dermatol. 2018, 45, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Icen, M.; Crowson, C.S.; McEvoy, M.T.; Dann, F.J.; Gabriel, S.E.; Maradit Kremers, H. Trends in incidence of adult-onset psoriasis over three decades: A population-based study. J. Am. Acad. Dermatol. 2009, 60, 394–401. [Google Scholar] [CrossRef]
- Vanderpuye-Orgle, J.; Zhao, Y.; Lu, J.; Shrestha, A.; Sexton, A.; Seabury, S.; Lebwohl, M. Evaluating the economic burden of psoriasis in the United States. J. Am. Acad. Dermatol. 2015, 72, 961–967.e965. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Dauden, E.; Blasco, A.J.; Bonanad, C.; Botella, R.; Carrascosa, J.M.; Gonzalez-Parra, E.; Jodar, E.; Joven, B.; Lazaro, P.; Olveira, A.; et al. Position statement for the management of comorbidities in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2058–2073. [Google Scholar] [CrossRef]
- Naldi, L. Psoriasis and smoking: Links and risks. Psoriasis 2016, 6, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Han, K.D.; Han, J.H.; Lee, J.H. Smoking and risk of psoriasis: A nationwide cohort study. J. Am. Acad. Dermatol. 2017, 77, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Murzaku, E.C.; Bronsnick, T.; Rao, B.K. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J. Am. Acad. Dermatol. 2014, 71, 1053.E1–1053.E16. [Google Scholar] [CrossRef] [PubMed]
- Brenaut, E.; Horreau, C.; Pouplard, C.; Barnetche, T.; Paul, C.; Richard, M.A.; Joly, P.; Le Maitre, M.; Aractingi, S.; Aubin, F.; et al. Alcohol consumption and psoriasis: A systematic literature review. J. Eur. Acad. Dermatol. Venereol. 2013, 27 (Suppl. S3), 30–35. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Ma, C.; Kanada, K.N.; Armstrong, A.W. Diet and nutrition in psoriasis: Analysis of the National Health and Nutrition Examination Survey (NHANES) in the United States. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk Factors for the Development of Psoriasis. Int. J. Mol. Sci. 2019, 20, 4347. [Google Scholar] [CrossRef] [PubMed]
- Do, Y.K.; Lakhani, N.; Malhotra, R.; Halstater, B.; Theng, C.; Østbye, T. Association between psoriasis and leisure-time physical activity: Findings from the National Health and Nutrition Examination Survey. J. Dermatol. 2015, 42, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W. Air pollution and skin disorders. Int. J. Womens Dermatol. 2021, 7, 91–97. [Google Scholar] [CrossRef]
- Mancebo, S.E.; Wang, S.Q. Recognizing the impact of ambient air pollution on skin health. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2326–2332. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Nandar, S.K.; Kathuria, S.; Ramesh, V. Effects of air pollution on the skin: A review. Indian. J. Dermatol. Venereol. Leprol. 2017, 83, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Fuks, K.B.; Hüls, A.; Sugiri, D.; Altug, H.; Vierkötter, A.; Abramson, M.J.; Goebel, J.; Wagner, G.G.; Demuth, I.; Krutmann, J.; et al. Tropospheric ozone and skin aging: Results from two German cohort studies. Environ. Int. 2019, 124, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.C.; Alleyne, B.; Varghai, K.; Kinder, K.; Guyuron, B. Facial changes caused by smoking: A comparison between smoking and nonsmoking identical twins. Plast. Reconstr. Surg. 2013, 132, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Xue, C.H.; Hwang, S.K.; Li, W.H.; Chen, Z.; Zhang, J.Z. Exposure to fine particulate matter associated with senile lentigo in Chinese women: A cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef] [PubMed]
- Marrot, L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr. Med. Chem. 2018, 25, 5469–5486. [Google Scholar] [CrossRef] [PubMed]
- Liaw, F.Y.; Chen, W.L.; Kao, T.W.; Chang, Y.W.; Huang, C.F. Exploring the link between cadmium and psoriasis in a nationally representative sample. Sci. Rep. 2017, 7, 1723. [Google Scholar] [CrossRef]
- Lowe, M.E.; Akhtari, F.S.; Potter, T.A.; Fargo, D.C.; Schmitt, C.P.; Schurman, S.H.; Eccles, K.M.; Motsinger-Reif, A.; Hall, J.E.; Messier, K.P. The skin is no barrier to mixtures: Air pollutant mixtures and reported psoriasis or eczema in the Personalized Environment and Genes Study (PEGS). J. Expo. Sci. Environ. Epidemiol. 2023, 33, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pan, Z.; Shen, J.; Wu, Y.; Fang, L.; Xu, S.; Ma, Y.; Zhao, H.; Pan, F. Associations of exposure to blood and urinary heavy metal mixtures with psoriasis risk among U.S. adults: A cross-sectional study. Sci. Total Environ. 2023, 887, 164133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, W.; Zhang, Z. Potential molecular mechanisms underlying the effect of arsenic on angiogenesis. Arch. Pharm. Res. 2019, 42, 962–976. [Google Scholar] [CrossRef] [PubMed]
- Wacewicz-Muczynska, M.; Socha, K.; Soroczynska, J.; Niczyporuk, M.; Borawska, M.H. Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits. Sci. Total Environ. 2021, 757, 143967. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, J.C.; Kang, S.Y.; Kim, H.O.; Park, C.W.; Chung, B.Y. Rapamycin Alleviates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Aggravated Dermatitis in Mice with Imiquimod-Induced Psoriasis-Like Dermatitis by Inducing Autophagy. Int. J. Mol. Sci. 2021, 22, 3968. [Google Scholar] [CrossRef] [PubMed]
- Borska, L.; Andrys, C.; Krejsek, J.; Palicka, V.; Vorisek, V.; Hamakova, K.; Kremlacek, J.; Borsky, P.; Fiala, Z. Influence of dermal exposure to ultraviolet radiation and coal tar (polycyclic aromatic hydrocarbons) on the skin aging process. J. Dermatol. Sci. 2016, 81, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, Y.; Li, J.; Liu, Y.; Zhou, L.; Yu, Y. Association between Healthy Eating Index-2015 and physical frailty among the United States elderly adults: The National Health and Nutrition Examination Survey (NHANES) 2011–2014. Aging Clin. Exp. Res. 2021, 33, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.J.; Gebreab, S.Y.; Gaye, A.; Crespo, P.R.; Xu, R.; Davis, S.K. Associations of smoking indicators and cotinine levels with telomere length: National Health and Nutrition Examination Survey. Prev. Med. Rep. 2019, 15, 100895. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Lu, T.; Chen, Y.; Yuan, M.; Yu, H.; Liu, R.; Xie, X. Association Between Psoriasis and Nonalcoholic Fatty Liver Disease Among Outpatient US Adults. JAMA Dermatol. 2022, 158, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, H.; Wang, S. Interaction effect of psoriasis and chronic kidney disease on the risk of all-cause mortality: A prospective cohort study of NHANES data. Nephrol. Dial. Transplant. 2023, 38, 2474–2484. [Google Scholar] [CrossRef] [PubMed]
- Hajifathalian, K.; Sagvand, B.T.; McCullough, A.J. Effect of Alcohol Consumption on Survival in Nonalcoholic Fatty Liver Disease: A National Prospective Cohort Study. Hepatology 2019, 70, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Jayanama, K.; Theou, O.; Godin, J.; Cahill, L.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Park, Y.-M.; Fung, T.T.; Rockwood, K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 2021, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Chen, C.; Pan, X.F.; Guo, J.; Li, Y.; Franco, O.H.; Liu, G.; Pan, A. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: Two prospective cohort studies. BMJ 2021, 373, n604. [Google Scholar] [CrossRef] [PubMed]
- DeSalvo, K.B.; Olson, R.; Casavale, K.O. Dietary Guidelines for Americans. JAMA 2016, 315, 457–458. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xiao, Y.; Jing, D.; Huang, Y.; Yang, S.; Huang, Z.; Yang, G.; Duan, Y.; He, M.; Su, J.; et al. Arsenic exposure and pruritus: Evidence from observational, interventional, and Mendelian randomization studies. Allergy 2023, 78, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Khan, S.; Kolachi, N.F.; Wadhwa, S.K.; Shah, F.; et al. Evaluation of cadmium, chromium, nickel, and zinc in biological samples of psoriasis patients living in Pakistani cement factory area. Biol. Trace Elem. Res. 2011, 142, 284–301. [Google Scholar] [CrossRef]
- Samejo, S.; Kazi, A.G.; Afridi, H.I.; Kazi, T.G. Evaluate the effect of cadmium on levels of zinc in scalp hair and blood samples of smoker and nonsmoker psoriatic patients at different stage. Environ. Sci. Pollut. Res. Int. 2019, 26, 31763–31769. [Google Scholar] [CrossRef] [PubMed]
- Van der Zee, S.C.; Fischer, P.H.; Hoek, G. Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environ. Res. 2016, 148, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Woodby, B.; Prieux, R.; Valacchi, G. Involvement of 4-hydroxy-2-nonenal in pollution-induced skin damage. BioFactors 2019, 45, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, H.; Yang, R.; Yu, H.; Shang, S.; Hu, Y. Short-term exposure to ambient fine particulate matter and psoriasis: A time-series analysis in Beijing, China. Front. Public Health 2022, 10, 1015197. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xia, Y.; Zhang, X.; Qiao, N.; Ke, S.; Fang, Q.; Ye, D.; Fan, Y. Short-term effects of air pollutants on outpatients with psoriasis in a Chinese city with a subtropical monsoon climate. Front. Public Health 2022, 10, 1071263. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Huang, Q.; Yang, L.; Li, Y.; Yang, J.; Jiang, B.; Zhao, L.; Xia, Y.; Yu, X.; Tao, J. Effects of ambient air pollution on outpatient visits for psoriasis in Wuhan, China: A time-series analysis. Br. J. Dermatol. 2023, 188, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Park, S.; Cho, M.K.; Kim, S. Associations of particulate matter with atopic dermatitis and chronic inflammatory skin diseases in South Korea. Clin. Exp. Dermatol. 2022, 47, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Hennig, B.; Ettinger, A.S.; Jandacek, R.J.; Koo, S.; McClain, C.; Seifried, H.; Silverstone, A.; Watkins, B.; Suk, W.A. Using Nutrition for Intervention and Prevention against Environmental Chemical Toxicity and Associated Diseases. Environ. Health Perspect. 2007, 115, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, L.; Yang, H.; Wu, X.; Luo, X.; Shen, J.; Xiao, Z.; Zhao, Y.; Du, F.; Chen, Y.; et al. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. Environ. Pollut. 2023, 339, 122730. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Fang, J.; Ren, H.; Sun, P.; Liu, J.; Deng, F.; Zhang, S.; Wang, Q.; Wang, J.; Tong, S.; et al. Association between exposure to chemical mixtures and epigenetic ageing biomarkers: Modifying effects of thyroid hormones and physical activity. J. Hazard. Mater. 2024, 469, 134009. [Google Scholar] [CrossRef] [PubMed]
- Capon, F. The Genetic Basis of Psoriasis. Int. J. Mol. Sci. 2017, 18, 2526. [Google Scholar] [CrossRef] [PubMed]
- Dopytalska, K.; Ciechanowicz, P.; Wiszniewski, K.; Szymańska, E.; Walecka, I. The Role of Epigenetic Factors in Psoriasis. Int. J. Mol. Sci. 2021, 22, 9294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Cheng, H.; Zhou, F. AIM2 and Psoriasis. Front. Immunol. 2023, 14, 1085448. [Google Scholar] [CrossRef] [PubMed]
- Nedoszytko, B.; Szczerkowska-Dobosz, A.; Stawczyk-Macieja, M.; Owczarczyk-Saczonek, A.; Reich, A.; Bartosińska, J.; Batycka-Baran, A.; Czajkowski, R.; Dobrucki, I.; Dobrucki, L.; et al. Pathogenesis of psoriasis in the “omic” era. Part II. Genetic, genomic and epigenetic changes in psoriasis. Adv. Dermatol. Allergol. 2020, 37, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, I.Y.K.; Parisi, R.; Griffiths, C.E.M.; Ashcroft, D.M. Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender. Br. J. Dermatol. 2021, 184, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Borska, L.; Andrys, C.; Krejsek, J.; Palicka, V.; Chmelarova, M.; Hamakova, K.; Kremlacek, J.; Fiala, Z. Oxidative damage to nucleic acids and benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA adducts and chromosomal aberration in children with psoriasis repeatedly exposed to crude coal tar ointment and UV radiation. Oxid. Med. Cell. Longev. 2014, 2014, 302528. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Huang, Y.; He, J.; Li, D.; Li, W.; Xiao, H.; Xu, X.; Zhang, Y.; Wang, R. Associations of lifestyle characteristics with circulating immune markers in the general population based on NHANES 1999 to 2014. Sci. Rep. 2024, 14, 13444. [Google Scholar] [CrossRef] [PubMed]
Variables | Model I 1 | Model II 2 | ||||
---|---|---|---|---|---|---|
Total/Psoriasis 3 | OR (95%CI) | p Value | Total/Psoriasis | OR (95%CI) | p Value | |
Urinary arsenic species | 5381/149 | 0.97 (0.81, 1.15) | 0.721 | 5345/145 | 0.90 (0.75, 1.08) | 0.244 |
Blood cadmium, lead, and mercury | 13,772/382 | 0.97 (0.89, 1.05) | 0.413 | 13,659/374 | 1.04 (0.96, 1.13) | 0.305 |
Urinary perchlorate, nitrate, and thiocyanate | 6086/166 | 1.03 (0.95, 1.13) | 0.464 | 6047/161 | 1.10 (1.00, 1.21) | 0.049 |
Urinary phenols | 3372/97 | 1.09 (0.89, 1.34) | 0.408 | 3341/95 | 1.08 (0.88, 1.33) | 0.471 |
Urinary phthalates | 3372/97 | 0.95 (0.83, 1.10) | 0.507 | 3341/95 | 0.99 (0.87, 1.13) | 0.888 |
Urinary polyaromatic hydrocarbons | 3755/105 | 1.03 (0.93, 1.15) | 0.585 | 3717/103 | 1.01 (0.91, 1.13) | 0.840 |
Blood polyfluoroalkyl chemicals | 3664/97 | 1.08 (0.73, 1.61) | 0.690 | 3629/95 | 1.00 (0.68, 1.47) | 0.992 |
Urinary pesticides | 3967/104 | 1.11 (0.73, 1.68) | 0.635 | 3929/104 | 0.95 (0.65, 1.40) | 0.799 |
Model I 1 | Model II 2 | ||||
---|---|---|---|---|---|
Variables | OR (95%CI) | p Value | Variables | OR (95%CI) | p Value |
Urinary perchlorate, nitrate, and thiocyanate | Urinary perchlorate, nitrate, and thiocyanate | ||||
Thiocyanate (ng/mL) | 1.06 (0.89, 1.28) | 0.508 | Thiocyanate (ng/mL) | 1.08 (0.89, 1.31) | 0.426 |
Perchlorate (ng/mL) | 1.02 (0.82, 1.27) | 0.868 | Perchlorate (ng/mL) | 1.05 (0.83, 1.33) | 0.710 |
Nitrate (ng/mL) | 0.94 (0.76, 1.16) | 0.566 | Nitrate (ng/mL) | 0.95 (0.75, 1.21) | 0.683 |
Urinary arsenic species | Urinary arsenic species | ||||
Arsenic acid (ug/L) | 0.96 (0.44, 2.11) | 0.923 | Arsenic acid (ug/L) | 0.99 (0.46, 2.11) | 0.974 |
Blood cadmium, lead, and mercury | Blood cadmium, lead, and mercury | ||||
Cadmium (ug/L) | 0.95 (0.79, 1.12) | 0.519 | Cadmium (ug/L) | 0.92 (0.78, 1.09) | 0.331 |
Urinary phenols | Urinary phenols | ||||
Ethyl paraben(ng/mL) | 1.21 (1.02, 1.44) | 0.041 | Ethyl paraben (ng/mL) | 1.19 (1.00, 1.43) | 0.053 |
Urinary phthalates | Urinary phthalates | ||||
Mono-benzyl phthalate (ng/mL) | 1.04 (0.86, 1.24) | 0.716 | Mono-(2-ethyl-5-oxohexl) phthalate (ng/mL) | 1.01 (0.87, 1.18) | 0.907 |
Urinary polyaromatic hydrocarbons | Urinary polyaromatic hydrocarbons | ||||
2-hydroxynaphthalene (ng/L) | 1.15 (0.95, 1.40) | 0.165 | 1-hydroxynaphthalene (ng/L) | 0.99 (0.87, 1.12) | 0.824 |
Blood polyfluoroalkyl chemicals | Blood polyfluoroalkyl chemicals | ||||
Perëuoroheptanoic acid (ng/mL) | 1.11 (0.79, 1.55) | 0.545 | Perëuoroheptanoic acid (ng/mL) | 1.06 (0.73, 1.52) | 0.759 |
Urinary pesticides | Urinary pesticides | ||||
2-isopropyl-4-methylpyrimidinol (ug/L) | 0.79 (0.52, 1.20) | 0.260 | 2-isopropyl-4-methylpyrimidinol (ug/L) | 0.80 (0.53, 1.22) | 0.288 |
Variables | HLS 0–2 (Model I 1) | HLS 3–4 (Model I) | HLS 0–2 (Model II 2) | HLS 3–4 (Model II) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total/ Psoriasis 3 | OR (95%CI) | p Value | Total/ Psoriasis | OR (95%CI) | p Value | Total/ Psoriasis | OR (95%CI) | p Value | Total/ Psoriasis | OR (95%CI) | p Value | |
Urinary arsenic species | 2602/81 | 0.91 (0.66, 1.26) | 0.571 | 2779/68 | 1.05 (0.77, 1.44) | 0.754 | 2580/78 | 0.82 (0.60, 1.13) | 0.233 | 2765/67 | 1.10 (0.82, 1.49) | 0.529 |
Blood cadmium, lead, and mercury | 6754/211 | 1.10 (1.00, 1, 21) | 0.059 | 7018/171 | 0.93 (0.82, 1.04) | 0.212 | 6685/204 | 1.03 (0.93, 1.14) | 0.558 | 6974/170 | 0.95 (0.85, 1.06) | 0.347 |
Urinary perchlorate, nitrate, and thiocyanate | 2957/89 | 1.16 (1.00, 1, 34) | 0.049 | 3129/77 | 0.97 (0.86, 1.09) | 0.597 | 2933/85 | 1.08 (0.94, 1.24) | 0.255 | 3114/76 | 0.93 (0.81, 1.06) | 0.254 |
Urinary phenols | 1651/53 | 1.14 (0.84, 1.55) | 0.395 | 1721/44 | 1.20 (0.91, 1.59) | 0.203 | 1628/51 | 1.19 (0.88, 1.60) | 0.255 | 1713/44 | 1.16 (0.91, 1.49) | 0.237 |
Urinary phthalates | 1651/53 | 0.92 (0.77, 1.10) | 0.353 | 1721/44 | 0.94 (0.75, 1.18) | 0.603 | 1628/51 | 0.93 (0.75, 1.17) | 0.553 | 1713/44 | 1.03 (0.81, 1.29) | 0.834 |
Urinary polyaromatic hydrocarbons | 1846/60 | 1.10 (0.96, 1.25) | 0.182 | 1909/45 | 0.84 (0.69, 1.03) | 0.102 | 1818/58 | 1.10 (0.95, 1.28) | 0.219 | 1899/45 | 0.96 (0.82, 1.11) | 0.565 |
Blood polyfluoroalkyl chemicals | 1777/51 | 1.19 (0.72, 1.97) | 0.499 | 1887/46 | 0.92 (0.46, 1.84) | 0.818 | 1757/50 | 0.81 (0.41, 1.58) | 0.534 | 1872/45 | 1.58 (0.69, 3.59) | 0.279 |
Urinary pesticides | 1947/54 | 0.76 (0.40, 1.46) | 0.409 | 2020/50 | 1.45 (0.83, 2.54) | 0.188 | 1925/54 | 0.79 (0.39, 1.56) | 0.491 | 2004/50 | 1.05 (0.66, 1.66) | 0.850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Tu, B.; Li, D.; Zhi, L.; Zhang, Y.; Xiao, H.; Li, W.; Xu, X. Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey. Toxics 2024, 12, 522. https://doi.org/10.3390/toxics12070522
Guo L, Tu B, Li D, Zhi L, Zhang Y, Xiao H, Li W, Xu X. Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey. Toxics. 2024; 12(7):522. https://doi.org/10.3390/toxics12070522
Chicago/Turabian StyleGuo, Linfen, Beilin Tu, Deng Li, Lin Zhi, Yange Zhang, Haitao Xiao, Wei Li, and Xuewen Xu. 2024. "Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey" Toxics 12, no. 7: 522. https://doi.org/10.3390/toxics12070522
APA StyleGuo, L., Tu, B., Li, D., Zhi, L., Zhang, Y., Xiao, H., Li, W., & Xu, X. (2024). Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey. Toxics, 12(7), 522. https://doi.org/10.3390/toxics12070522