Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Data Collection
2.2. Sampling and Analysis
2.2.1. Sample Collection
2.2.2. Individual Particle Measurements and Analysis
2.2.3. Regional Transport Analysis
3. Results and Discussion
3.1. Overview of Meteorological and Pollution Characteristics
3.2. Classification and Mixing States of the Types of Particles
3.3. Individual Particle Characteristics at the Urban and Rural Sites
3.4. Regional Transport Analysis
3.4.1. Backward Trajectory Analysis
3.4.2. WCWT Analysis Results
3.5. Comparison of Soot Particles at the Urban and Rural Sites
3.6. Aging Comparison of SIA Particles Coated with OM at the Urban and Rural Sites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontes, T.; Li, P.L.; Barros, N.; Zhao, P.J. Trends of PM2.5 concentrations in China: A long term approach. J. Environ. Manag. 2017, 196, 719–732. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Shi, G.L.; Wang, H.T.; Ma, X.; Wu, J.H.; Shi, X.; Feng, Y.C. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer. Sci. Total Environ. 2017, 598, 341–352. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Xu, L.; Liu, X.H.; Zhang, J.C.; Lin, Y.T.; Yao, X.H.; Gao, H.W.; Zhang, D.Z.; Chen, J.M.; Wang, W.X.; et al. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci. Adv. 2017, 3, e1601749. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Zhang, X.; Bai, P.C.; Zhang, L.L.; Huang, S.J.; Pointing, S.B.; Nagao, S.; Chen, B.; Toriba, A.; et al. Abundance, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 in the urban atmosphere of Singapore. Atmosphere. 2022, 13, 1420. [Google Scholar] [CrossRef]
- Duan, Z.; Han, X.; Bai, Z.; Yuan, Y.D. Fine particulate air pollution and hospitalization for pneumonia: A case-crossover study in Shijiazhuang, China. Air Qual. Atmos. Health 2015, 9, 723–733. [Google Scholar] [CrossRef]
- Geng, G.N.; Xiao, Q.Y.; Zheng, Y.X.; Tong, D.; Zhang, Y.X.; Zhang, X.Y.; Zhang, Q.; He, K.B.; Liu, Y. Impact of China’s air pollution prevention and control action plan on PM2.5 chemical composition over eastern China. Sci. China Earth Sci. 2019, 62, 1872–1884. [Google Scholar] [CrossRef]
- Wang, J.Q.; Gao, J.; Che, F.; Wang, Y.L.; Lin, P.C.; Zhang, Y.C. Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011–2020). Sci. Total Environ. 2022, 832, 154664. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Tang, G.Q.; Zhang, J.K.; Liu, B.X.; Liu, C.; Zhang, J.; Cong, L.L.; Cheng, M.T.; Yan, G.X.; Gao, W.K.; et al. Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. J. Environ. Sci. 2021, 100, 1–10. [Google Scholar] [CrossRef]
- Luo, J.Q.; Huang, X.J.; Zhang, J.K.; Luo, B.; Zhang, W.; Song, H.Y. Characterization of aerosol particles during the most polluted season (winter) in urban Chengdu (China) by single-particle analysis. Environ. Sci. Pollut. Res. 2019, 26, 17685–17695. [Google Scholar] [CrossRef]
- Song, S.J.; Nenes, A.; Gao, M.; Zhang, Y.Z.; Liu, P.F.; Shao, J.Y.; Ye, D.C.; Xu, W.Q.; Lei, L.; Sun, Y.L.; et al. Thermodynamic modeling suggests declines in water uptake and acidity of inorganic aerosols in Beijing winter haze events during 2014/2015–2018/2019. Environ. Sci. Technol. Lett. 2019, 6, 752–760. [Google Scholar] [CrossRef]
- Zhang, J.K.; Huang, X.J.; Li, J.Q.; Chen, L.Y.; Zhao, R.; Wang, R.; Sun, W.; Chen, C.Y.; Su, Y.F.; Wang, F.Z.; et al. Chemical composition, sources and evolution of PM2.5 during wintertime in the city cluster of southern Sichuan, China. Atmos. Pollut. Res. 2023, 14, 101635. [Google Scholar] [CrossRef]
- Zhang, J.K.; Li, J.Q.; Su, Y.F.; Chen, C.Y.; Chen, L.Y.; Huang, X.J.; Wang, F.Z.; Huang, Y.W.; Wang, G.H. Interannual evolution of the chemical composition, sources and processes of PM2.5 in Chengdu, China: Insights from observations in four winters. J. Environ. Sci. 2023, 138, 32–45. [Google Scholar] [CrossRef]
- Zhang, J.K.; Li, H.; Chen, L.Y.; Huang, X.J.; Wei, Z.; Zhao, R. Particle composition, sources and evolution during the COVID-19 lockdown period in Chengdu, southwest China: Insights from single particle aerosol mass spectrometer data. Atmos. Environ. 2021, 268, 118844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.J.; Wang, Y.Y.; Teng, X.M.; Zhang, Y.X.; Xu, L.; Yuan, Q.; Wu, G.F.; Niu, H.Y.; Shao, L.Y. Structural collapse and coating composition changes of soot particles during long-range transport. J. Geophys. Res. Atmos. 2023, 128, 038871. [Google Scholar] [CrossRef]
- Zhang, J.K.; Su, Y.F.; Chen, C.Y.; Fu, X.Y.; Long, Y.H.; Peng, X.X.; Huang, X.J.; Wang, G.H.; Zhang, W. Insights into the seasonal characteristics of single particle aerosols in Chengdu based on SPAMS. J. Environ. Sci. 2025, 149, 431–443. [Google Scholar] [CrossRef]
- Zhang, J.K.; Su, Y.F.; Chen, C.Y.; Guo, W.K.; Tan, Q.W.; Feng, M.; Song, D.L.; Jiang, T.; Chen, Q.; Li, Y.; et al. Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: A case study at the beginning of 2023. Atmos. Chem. Phys. 2024, 24, 2803–2820. [Google Scholar] [CrossRef]
- Xu, W.Q.; Sun, Y.L.; Wang, Q.Q.; Zhao, J.; Wang, J.F.; Ge, X.L.; Xie, C.H.; Zhou, W.; Du, W.; Li, J.; et al. Changes in aerosol chemistry from 2014 to 2016 in Winter in Beijing: Insights from high-resolution aerosol mass spectrometry. J. Geophys. Res. Atmos. 2019, 124, 1132–1147. [Google Scholar] [CrossRef]
- Feng, R.; Xu, H.M.; Wang, Z.X.; Gu, Y.X.; Liu, Z.; Zhang, H.J.; Zhang, T.; Wang, Q.Y.; Zhang, Q.; Liu, S.X.; et al. Quantifying air pollutant variations during COVID-19 lockdown in a capital city in Northwest China. Atmosphere 2021, 12, 788. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, M.; He, Y.; Wang, Q.Q.; Xie, C.H.; Xu, W.Q.; Zhao, J.; Du, W.; Qiu, Y.M.; Lei, L.; et al. Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environ. Pollut. 2019, 255, 113345. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Sun, J.; Chen, Q.; Meng, X.; Wang, L.; Tao, H.; Yang, L. Characteristics of volatile organic compounds and secondary organic aerosol pollution in different functional areas of petrochemical industrial cities in Northwest China. Sci. Total Environ. 2023, 858, 159903. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Li, J.; Wang, G.H.; Ho, K.F.; Han, J.; Dai, W.T.; Wu, C.; Cao, C.; Liu, L. In-vitro oxidative potential and inflammatory response of ambient PM2.5 in a rural region of Northwest China: Association with chemical compositions and source contribution. Environ. Res. 2022, 205, 112466. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.P.; Yu, Y.; Li, J.L.; Yin, D.Y.; Qi, S.F.; Qin, D.H. Response of particle number concentrations to the clean air action plan: Lessons from the first long-term aerosol measurements in a typical urban valley in western China. Atmos. Chem. Phys. 2021, 21, 14959–14981. [Google Scholar] [CrossRef]
- Zhong, M.; Xu, J.Z.; Wang, H.Q.; Gao, L.; Zhu, H.X.; Zhai, L.X.; Zhang, X.H.; Zhao, W.H. Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: Integrating optical properties with chemical processes. Atmos. Chem. Phys. 2023, 23, 12609–12630. [Google Scholar] [CrossRef]
- Zhang, X.H.; Xu, J.Z.; Zhao, W.H.; Zhai, L.X.; Kang, S.C.; Wang, J.F.; Ge, X.L.; Zhang, Q. High-spatial-resolution distributions of aerosol chemical characteristics in urban Lanzhou, western China, during wintertime: Insights from an on-road mobile aerosol mass spectrometry measurement experiment. Sci. Total Environ. 2022, 819, 153069. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Zaizen, Y.; Kajino, M.; Igarashi, Y. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan. J. Geophys. Res. 2014, 119, 5386–5396. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Shi, Z.B.; Chen, J.M.; Yang, L.X.; Yuan, Q.; Yan, C.; Zhang, X.Y.; Wang, Y.Q.; Sun, J.Y.; et al. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. J. Geophys. Res. Atmos. 2014, 119, 1044–1059. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Zhang, D.Z.; Ro, C.-U.; Hu, M.; Bi, X.H.; Geng, H.; Matsuki, A.; Niu, H.Y.; Chen, J.M. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Clean. Prod. 2016, 112, 1330–1349. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.Z.; Li, W.J. Microscopic comparison of aerosol particles collected at an urban site in North China and a coastal site in Japan. Sci. Total Environ. 2019, 669, 948–954. [Google Scholar] [CrossRef]
- Pósfai, M.; Buseck, P.R. Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci. 2010, 38, 17–43. [Google Scholar] [CrossRef]
- Guan, X.; Wang, M.; Du, T.; Tian, P.F.; Zhang, N.Y.; Shi, J.S.; Chang, Y.; Zhang, L.; Zhang, M.; Song, X.; et al. Wintertime aerosol optical properties in Lanzhou, Northwest China: Emphasis on the rapid increase of aerosol absorption under high particulate pollution. Atmos. Environ. 2021, 246, 118081. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Wang, G.H.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.G.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Shao, L.Y. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J. Geophys. Res. 2009, 114, D09302. [Google Scholar] [CrossRef]
- Marple, V.A.; Rubow, K.L.; Olson, B.A. Inertial, gravitational, centrifugal, and thermal collection techniques. In Aerosol Measurement; Willike, K., Baron, P.A., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1993; pp. 206–233. [Google Scholar]
- Zhang, J.K.; Sun, W.; Su, Y.F.; Peng, X.Y.; Chen, C.Y.; Fu, X.Y.; Long, Y.H.; Wang, G.H.; Rao, Z.; Han, L.; et al. Chemical composition, sources, and processes of winter haze in Chengdu, China: Insights from integrating the bulk chemical and single particle approaches. Atmos. Environ. 2024, 322, 120371. [Google Scholar] [CrossRef]
- Wang, S.; Liao, K.Z.; Zhang, Z.J.; Cheng, Y.Y.; Wang, Q.Q.; Chen, H.Z.; Yu, J.Z. Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: Multi-temporal-scale variations and evolution characteristics during PM2.5 episodes. Atmos. Chem. Phys. 2024, 24, 5803–5821. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.J.; Zheng, Y.; Liao, K.; Koenig, T.K.; Ge, Y.; Zhu, T.; Ye, C.; Qiu, X.; Chen, Q. Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: Contributions to secondary organic aerosol and steric hindrance. Atmos. Chem. Phys. 2024, 24, 2099–2112. [Google Scholar] [CrossRef]
- She, Y.L.; Li, J.Y.; Lyu, X.P.; Guo, H.; Qin, M.M.; Xie, X.; Gong, K.; Ye, F.; Mao, J.; Huang, L.; et al. Current status of model predictions of volatile organic compounds and impacts on surface ozone predictions during summer in China. Atmos. Chem. Phys. 2024, 24, 219–233. [Google Scholar] [CrossRef]
- Boyd, C.M.; Nah, T.; Xu, L.; Berkemeier, T.; Ng, N.L. Secondary organic aerosol (SOA) from nitrate radical oxidation of monoterpenes: Effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. Environ. Sci. Technol. 2017, 51, 7831–7841. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.D.; Wang, H.Y.; Wang, F.L.; Lv, S.J.; Wu, C.; Zhao, Y.; Zhang, S.; Liu, S.J.; Xu, X.B.; Lei, Y.L.; et al. Secondary formation of atmospheric brown carbon in China haze: Implication for an enhancing role of ammonia. Environ. Sci. Technol. 2023, 57, 11163–11172. [Google Scholar] [CrossRef]
- Xu, L.; Liu, L.; Zhang, J.; Zhang, Y.X.; Ren, Y.; Wang, X.; Li, W.J. Morphology, composition, and mixing state of individual aerosol particles in Northeast China during wintertime. Atmosphere 2017, 8, 47. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Q.; Liu, L.; Wang, Y.Y.; Zhang, Y.X.; Xu, L.; Pang, Y.E.; Zhu, Y.H.; Niu, H.Y.; Shao, L.Y.; et al. Trans-regional transport of haze particles from the North China Plain to Yangtze River Delta during Winter. J. Geophys. Res. Atmos. 2021, 126, jd033778. [Google Scholar] [CrossRef]
- Yuan, Q.; Teng, X.; Tu, S.; Feng, B.; Wu, Z.; Xiao, H.; Cai, Q.; Zhang, Y.; Lin, Q.; Liu, Z.; et al. Atmospheric fine particles in a typical coastal port of Yangtze River Delta. J. Environ. Sci. 2020, 98, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Y.; Chen, L.C.; Liu, Y.; Zhang, P.; Chen, T.Z.; Chu, B.W.; Tang, M.J.; Ma, Q.X.; He, H. A study on the influence of inorganic ions, organic carbon and microstructure on the hygroscopic property of soot. Atmos. Chem. Phys. 2024, 24, 993–1003. [Google Scholar] [CrossRef]
- Weger, M.; Heinold, B. Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling. Atmos. Chem. Phys. 2023, 23, 13769–13790. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, M.; Zhao, X.; Chen, D.; Fan, S.; Guo, J.; Ali, S. Impacts of aerosol–radiation interaction on meteorological forecasts over northern China by offline coupling of the WRF-Chem-simulated aerosol optical depth into WRF: A case study during a heavy pollution event. Atmos. Chem. Phys. 2020, 20, 12527–12547. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, B.; Liu, J.; Wang, T.; Li, S.; Xie, M.; Li, M.; Chen, P.; Zhao, M. Characteristics of ozone and particles in the near-surface atmosphere in the urban area of the Yangtze River Delta, China. Atmos. Chem. Phys. 2019, 19, 4153–4175. [Google Scholar] [CrossRef]
- Liu, D.; Whitehead, J.; Alfarra, M.R.; Reyes-Villegas, E.; Spracklen, D.V.; Reddington, C.L.; Kong, S.; Williams, P.I.; Ting, Y.-C.; Haslett, S.; et al. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat. Geosci. 2017, 10, 184–188. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Liu, T.; He, Q.; Zhang, Z.; Zhang, Y.; Song, W.; Dai, Q.; Chen, S.; Dong, F. Secondary inorganic aerosols and aerosol acidity at different PM2.5 pollution levels during winter haze episodes in the Sichuan Basin, China. Sci. Total Environ. 2024, 918, 170512. [Google Scholar] [CrossRef]
- He, X.; Pang, S.F.; Ma, J.B.; Zhang, Y.H. Influence of relative humidity on heterogeneous reactions of O3 and O3/SO2 with soot particles: Potential for environmental and health effects. Atmos. Environ. 2017, 165, 198–206. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.Z.; Chu, B.W.; Ma, Q.X.; He, H. Atmospheric heterogeneous reactions on soot: A review. Fundam. Res. 2023, 3, 579–591. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, T.Z.; Ma, Q.X.; Chu, B.W.; Wang, Y.H.; Mu, Y.J.; Yu, Y.B.; He, H. Diesel soot photooxidation enhances the heterogeneous formation of H2SO4. Nat. Commun. 2022, 13, 5364. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Jerrett, M.; Anderson, H.R.; Burnett, R.T.; Stone, V.; Derwent, R.; Atkinson, R.W.; Cohen, A.; Shonkoff, S.B.; Krewski, D.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 2009, 374, 2091–2103. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Shao, L.; Hu, W.; Zhang, D.; Zhao, C.; Xing, J.; Huang, X.; Hu, M. Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. Sci. Total Environ. 2018, 619–620, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Long, Y.; Yao, X.; Chen, C.; Sun, W.; Zhao, R.; Zhang, J. Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China. Toxics 2024, 12, 525. https://doi.org/10.3390/toxics12070525
Su Y, Long Y, Yao X, Chen C, Sun W, Zhao R, Zhang J. Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China. Toxics. 2024; 12(7):525. https://doi.org/10.3390/toxics12070525
Chicago/Turabian StyleSu, Yunfei, Yuhan Long, Xunzhe Yao, Chunying Chen, Wei Sun, Rui Zhao, and Junke Zhang. 2024. "Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China" Toxics 12, no. 7: 525. https://doi.org/10.3390/toxics12070525
APA StyleSu, Y., Long, Y., Yao, X., Chen, C., Sun, W., Zhao, R., & Zhang, J. (2024). Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China. Toxics, 12(7), 525. https://doi.org/10.3390/toxics12070525