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Abstract: Regulations of cosmetic ingredients and products have been the most advanced in em-
bracing new approach methodologies (NAMs). Consequently, the cosmetic industry has assumed a
forerunner role in the development and implementation of animal-free next-generation risk assess-
ment (NGRA) that incorporates defined approaches (DAs) to assess the skin sensitization potency
of ingredients. A Bayesian network DA predicting four potency categories (SkinSens-BN) was con-
structed against reference Local Lymph Node Assay data for a total of 297 substances, achieving a
predictive performance similar to that of other DAs. With the aim of optimally informing risk assess-
ment with a continuous point of departure (PoD), a weighted sum of the SkinSens-BN probabilities
for four potency classes (non-, weak, moderate, and strong/extreme sensitizer) was calculated, using
fixed weights based on associated LLNA EC3-values. The approach was promising, e.g., the derived
PoDs for substances classified as non-sensitizers did not overlap with any others and 77% of PoDs
were similar or more conservative than LLNA EC3. In addition, the predictions were assigned a
level of confidence based on the probabilities to inform the evaluation of uncertainty in an NGRA
context. In conclusion, the PoD derivation approach can substantially contribute to reliable skin
sensitization NGRAs.

Keywords: skin sensitization; risk assessment; point of departure; Bayesian network; defined approach

1. Introduction

Initiated by societal pressure and ethical concerns, political chemical safety pro-
grams around the globe are aiming at moving away from animal-based solutions and
are calling for hazard and risk assessment approaches based on new approach method-
ologies (NAMs). Regulations of cosmetic ingredients and products have been the most
advanced in abandoning animal experiments and embracing NAM solutions, especially
in Europe [1,2]. Consequently, the cosmetic industry has assumed a forerunner role in the
development and implementation of animal-free approaches to assess the primarily hazard
of chemical ingredients.

Substantial efforts have been made to pave the way to advance NAMs for skin sensi-
tization, which have led to substantial progress [3]. Based on the qualitative mechanistic
understanding operationalized in the OECD skin sensitization adverse outcome pathway
(AOP) [4], in vitro and in chemico test methods have been developed to address the first
three key events (KEs) of the AOP. Based on thorough validation and independent assess-
ment, several NAMs have been included in OECD Test Guidelines (TGs). TG 442C contains
three in chemico reactivity test methods modeling the molecular initiating event (MIE) or
KE1 “covalent binding of a chemical to skin protein” [5,6]: the Direct Peptide Reactivity
Assay (DPRA), the Amino acid Derivative Reactivity Assay, and the kinetic DPRA (kDPRA),
which were reviewed by Alépée, et al. [7]. TG 442D includes the KeratinoSens™ and the
very similar LuSens, two in vitro test methods modeling KE2 “Keratinocyte activation” [8],
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while TG 442E features the four cell-based test methods U-SENS™, h-CLAT, IL8-Luc, and
the GARD™skin that model KE3 “Dendritic cell activation” [9].

Although addressing the MIE could in theory be sufficient to cover a sequential chain
of KEs, modeling errors inherent to the NAMs have led to the common understanding
that a combination of NAMs covering at least two KEs of the skin sensitization AOP are
required to provide high predictivity [10]. Consequently, a plethora of combinations of skin
sensitization NAMs and also including other information sources, the so-called defined
approaches (DAs), have been developed, including the sequential stacking tier strategy
DAs developed somewhat later [11,12]. The majority of DAs have been reviewed by
Kleinstreuer, et al. [13]. Recently, two DAs with a relatively simple decision tree approach
to either predict skin sensitization hazard or United Nations (UN) Globally Harmonized
System (GHS) classification categories have been adopted by the OECD [14]. The first three
DAs included in this guideline use combinations of OECD-validated in chemico and in vitro
test data, in some cases along with in silico information. The DAs currently described in
this guideline are: (i) the “2 out of 3” (2o3) defined approach for hazard identification and
(ii) two versions of the integrated testing strategy (ITSv1) for hazard and UN GHS potency
categorization, both of which use the same test methods to address KE1 and KE3, but differ
in the in silico predictions they incorporate (ITSv1: Derek Nexus; ITSv2: (OECD QSAR
Toolbox 4.5)). The other Das have been developed for risk assessment purposes, i.e., they
provide predictions of four categories or of a continuous value (see, for example, [13,15–17]).
DAs can be applied as or transformed into a NAM-based point of departure (PoD) to be
used in the next-generation risk assessment (NGRA) framework for skin sensitization,
replacing the traditionally used animal-based or human-based PoDs [18,19].

Among them, a DA based on a Bayesian network, usually referred to as the Bayesian
integrated testing strategy (ITS) for skin sensitization potency assessment, has been developed
to derive a potency prediction of being a non-, weak, moderate, or extreme/strong sensitizer
based on the Bayes factor [20]. Bayesian networks are probabilistic by definition, as they
describe relationships between variables of the system of interest by conditional probabilities,
which together form the joint probability distribution of the system. Bayesian networks can
be graphically described by directed acyclic graphs (DAGs) comprising input variables, latent
variables, and connections between dependent variables [21]. The advantages of Bayesian ap-
proaches have been acknowledged for risk assessment in general and for skin sensitization in
particular, comprising the representation of the underlying mechanistic/dependent processes
through DAGs, the ability to compensate for missing input data, and the inherent ability
to address uncertainty [20,22–25]. In a risk assessment context, the selection of a category,
either based on the maximum posterior probability or the Bayes factor, and subsequently of
the lowest value in a category as the PoD, results in a limited number of potential PoDs. In
addition, such a PoD comes with an unknown level of associated uncertainty, as the distance
between the lowest category value and the true value can fall anywhere in the range that the
category spans, as highlighted in a case study [18].

Building on the advantages of the Bayesian integrated testing strategy (ITS) for skin
sensitization, a Bayesian network model (SkinSens-BN) was built to assess potency classifi-
cation. This new DA offers enhanced flexibility by expanding the scope of the input data
used and the covered chemistry (i.e., mainly cosmetic ingredients). While predicting four
potency categories, which can be reduced to obtain predictions of UN GHS categories and
skin sensitization hazard, the SkinSens-BN posterior probabilities were used to predict, in
addition, a continuous PoD and to derive a categorical indicator of confidence associated
with the predicted results.

2. Materials and Methods
2.1. Data Inputs
2.1.1. NAMs

The 13 inputs included in the Bayesian network were selected to inform several bio-
logical events relevant for the skin sensitization mode of action. Building upon previous
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work (for example, summarized by [13,26]), bioavailability was addressed by three physico-
chemical properties (molecular weight (MW) calculated from the structure, octanol–water
partition coefficient (clogP) from Biobyte v.5.2, and volatility from EPISuite v. 4.1 catego-
rized according to [27]), metabolism by Tissue Metabolism Simulator (TIMES-SS, v2.29.1.28
model v23.28), and the reactivity mode of action by the ToxTree module “Skin sensitization
reactivity domains” (version 2.6.13) [28]. The three AOP key events were covered with the
in vitro/chemico test methods DPRA, KeratinoSens™ [29] and the U-SENS™ [30,31], the
latter two also informing cytotoxicity. Local Lymph Node Assay (LLNA) data extracted
from the OECD database were used as a reference [32]. Further details are provided in
Supplemental Table S1 “Inputs”.

In total, 297 chemicals were selected using pre-defined criteria, such as the avail-
ability of LLNA test results, which were used to determine the reference result for de-
termining a substance’s potency. Data were retrieved from two sources: 219 substances,
including 70 proprietary substances (identity not revealed) from Tourneix, Alépée, De-
troyer, Eilstein, Martinozzi Teissier, Nardelli, Noçairi, Pauloin, Piroird and Del Bufalo [12],
which included 184 cosmetic ingredients, inter alia, 72 dyes, 22 preservatives, and 40 fra-
grances; and 78 from the OECD database [32]. A total of 3861 input data were retrieved.
NAM data were also collected from additional sources [12,33]. The data are summa-
rized in Supplemental Table S1 “Data”. Training set input data were complete, except for
40 substances with inconclusive (12) or partly missing (28) DPRA data, one substance with
partly missing KeratinoSens™ data, 14 substances with inconclusive volatility data, and
39 substances with inconclusive TIMES-SS predictions. Input data for the test set were com-
plete, except for six substances not tested in the U-SENS™, four substances with inconclu-
sive or missing DPRA data, four substances for which no or partly missing KeratinoSens™

data were available, and six substances with inconclusive TIMES-SS predictions.

2.1.2. In Vivo Reference Data

As the Bayesian network was to be constructed against reference data, Local Lymph
Node Assay (LLNA) data were extracted from the OECD database [32]. Supplemental
Table S1 “Data” includes the EC3 value for each substance, i.e., the interpolated dose
that stimulates a three-fold increase in lymph node cell proliferative activity compared
to the vehicle control. For non-sensitizers, the EC3 value was set at 100%, as conducted
previously (for example, [18,34]). In addition, the skin sensitization categories of the UN
GHS, i.e., Cat. 1A for EC3 ≤ 2% (strong/extreme sensitizers), Cat. 1B for EC3 between 2
and 100%, and no category (NS), and a 4-class categorization that divides the GHS Cat.
1B into weak (EC3 ≥ 10%) and moderate skin sensitizers (2% < EC3 < 10%), are presented
(Figure 1) [35,36].
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2.2. Bayesian Network
2.2.1. Construction and Training

The Bayesian network was generated with BayesiaLab v10.2, a commercial software
(available at https://www.bayesia.com (accessed on 17 July 2024)). The input parameters
used are listed in Supplemental Table S1 “Inputs”, structured by the biological event they
inform. Each quantitative input variable was discretized into two or three categories using
by using a Minimum Description Length approach for finding the value of the thresholds
and their number [37]. For the prediction of the four LLNA potency classes as described
above, each quantitative input variable was discretized into two or three categories using
data-driven thresholds. For example, the U-SENS™ EC150 thresholds were 3.86 and
51.79, resulting in three categories. All discretization thresholds for the quantitative input
variables are provided in Supplemental Table S1 “Inputs”.

The SkinSens-BN network, based on data-driven and expert knowledge, is structurally
similar to the one by Jaworska, Natsch, Ryan, Strickland, Ashikaga and Miyazawa [20],
who described the rationale for the network structure, the direct dependencies, and the
direction between nodes/inputs. The arrows connect the conditionally dependent variables.
This representation allows to reduce the complexity of the network, i.e., the number of
probabilities to estimate. Expert knowledge was used to create meaningful latent variables
that allow to create probabilistic summaries of the associated manifest variables. The
rationale of the selection of input variables that cover the three first key events of the AOP
for skin sensitization and of the structure is provided in Supplemental Table S1 “Input”.

The 297 substances were divided into training and test sets based on the two major
sources used for substance selection and data retrieval. The network was trained with the
input data of 219 chemicals [11], which are provided in Supplemental Table S1 “Data”, to
predict the posterior distribution of the probabilities of a chemical belonging to each potency
class given the observations. The resulting network was tested with the 78 substances from
the OECD database [32]. These were primarily selected to obtain the coverage of the LLNA
potency spectrum and of the physico-chemical properties (MW, clogP, and volatility similar
to that of the training set (Supplemental Figure S1)). However, the two sets differed in the
proportion of UN GHS Cat. 1A substances (lower in the test set) and the clogP (higher in
the test).

Four latent variables (bioavailability, metabolism, cysteine, and U-SENS™) were used
to structure the network by connecting related inputs, e.g., the three physico-chemical
inputs’ molecular weight, clogP and volatility informing bioavailability. The DAG repre-
senting the network was further structured manually.

2.2.2. Performance Analysis

The Skin-Sens-BN obtained with the training set was internally validated by 5-fold
cross-validation, stratified to obtain identical distribution in the 4 LLNA potency classes.
Cross-validation resulted in an average accuracy of 61%, which was considered to suffi-
ciently demonstrate the robustness and generalizability of the predictive performance of
the BN.

The predictive capacity for four potency classes (non-sensitizer, weak, moderate, and
strong/extreme), determined by the most likely predicted class, the three UN GHS (1A
and 1B vs. No Category), and for skin sensitization hazard (NS vs. S) was assessed by
comparison with the LLNA reference results using contingency tables. For a four-class
prediction (NS/weak/moderate/strong–extreme), randomly assigning each item to a class
would result in a 25% accuracy rate. In the current study, the achieved percentage surpasses
this probability and even more the 50% chance of landing on either side for the binary
S/NS prediction. As highlighted schematically in Figure 1, classes/categories are simply
combined moving from potency to UN GHS to hazard. Pertinent predictive parameters,
i.e., accuracy, and specificity and sensitivity for hazard classification were calculated.

https://www.bayesia.com
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2.3. Confidence Categorization

In order to derive an indicator of confidence of a chemical belonging to a potency class,
the predicted probabilities, called probability profile, were converted to Generalized Bayes
Factors (GBFs) applying the same formula used by Jaworska, Natsch, Ryan, Strickland,
Ashikaga and Miyazawa [20], i.e., calculating the ratio of the posterior odds and the prior
odds in the training set per class. Subsequently, we transformed the GBFs to what was
termed “weight of evidence” (W = 10 × log10 (GBF)), which is measured in deciban, with
one deciban being “about the smallest change in W that is directly perceptible to human
intuition” [38]. The confidence in the prediction was categorized based on the maximum
W-values across the four potency classes. Based on Jeffreys’ decision rule [39], W-values
between −5 and 5 were associated with “weak” confidence, W-values between −10 and
−5 and between 5 and 10 with “moderate” confidence, and W-values smaller −10 or larger
than 10 with “high” confidence.

In other words, the SkinSens-BN model provides for each substance an indication of
the confidence in the predicted potency class result based on the data observation.

2.4. PoD Derivation

The final node of the Bayesian network returns the discrete probability p for a sub-
stance belonging to each of the four classes (non-sensitizer (NS), “weak”, “moderate” and
“strong or extreme” sensitizer). Using fixed weights for each of the classes that were based
on associated LLNA EC3-values, i.e., 100 for NS, 10 for weak, 2 for moderate, and 0.2
for strong or extreme) the point of departure (PoD) was defined as the following sum of
weighted probabilities:

PoDBN [%] = p(NS) × 100 + p(weak) × 10 + p(moderate) × 2 + p(strong or extreme) × 0.2 (1)

The weights relate to LLNA EC3-value, with 100 representing a non-sensitizing result
in the LLNA, 10 representing to lowest EC3 considered to be weak, 2 representing the EC3
used to discriminate UN GHS categories 1A and 1B, and 0.2 considered as a representative
value for strong and extreme sensitizer [36]. The PoD sum assumes its maximum when
p(NS) = 100 and the other probabilities are 0. In this case, the PoD is 100, corresponding
to a negative LLNA. The minimum is obtained for p(strong or extreme) = 100 (and the
other probabilities being 0), resulting in a PoD of 0.2%. As this minimum is larger than the
LLNA EC-value of 0.2%, the approach will, in comparison to the LLNA, systematically
underpredict the PoD for highly potent sensitizers. This limitation is acknowledged, but
considered acceptable, as substances with a low PoD are rarely used as cosmetic ingredients.
On the other end of the spectrum, PoDBN will practically always be <100%.

3. Results
3.1. SkinSens-BN and Its Predictive Performance
3.1.1. The Network Structure

The Bayesian network, referred to as SkinSens-BN, was constructed using 13 inputs
informing various biologically relevant events, including mechanistic key events as opera-
tionalized in the skin sensitization AOP, and 219 defined substances, for which most inputs
were available, and four latent variables. A graphical representation of the SkinSens-BN is
shown in Figure 2. The inputs are displayed as circles. The four latent variables “Bioavail-
ability”, “Metabolism”, “Cysteine”, and “U-SENS” are indicated as rounded rectangles,
while the final node “LLNA potency prediction” is represented as a target. Arrows connect
the dependent variables, with the arrow direction indicating the relationship.
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3.1.2. Predictivity: Training and Test Sets, Individual and Combined

The SkinSens-BN predictivity for the training set obtained by comparison to the
LLNA reference data was calculated for discriminating four potency classes, the UN GHS
categories, and a binary hazard classification. The results are summarized at the top of
Table 1. The accuracy of prediction was 64% for the four potency categories, increasing
to 68% for UN GHS categories and to 84% for hazard classes. For hazard, the specificity
was 80% (55/69), the sensitivity 87% (130/150), and the balanced accuracy, i.e., the average
of specificity and sensitivity, 84%. The number of substances over-predicted and under-
predicted was very similar in each of the sub-tables, indicating the SkinSens-BN equally
weighted mispredictions, i.e., not reducing mispredictions in one direction at the cost of
the other directions.

In comparison to the training set, the test set predictions were lower for the potency
classes and the UN GHS category, as indicated by reduced accuracies by 11% and 5%,
respectively (Table 1, middle). The lower test set predictivity of the potency classes is
primarily caused by the overprediction of weak sensitizers and mispredictions of moderate
sensitizers. A potential reason explaining mispredictions is an imbalanced distribution of
chemistry or other important factors between the training and test sets. For example, of the
eight acrylates, three were in the training set and five in the test set, including four weak
sensitizers that were overpredicted as strong/extreme. Note that three out of these four
overpredicted weak sensitizers (GHS Cat. 1B) were also overpredicted as GHS Cat. 1A
by both ITSv1 and ITSv2 [32]. Interestingly, the accuracy for hazard was higher (by 2%),
as was the sensitivity (130/150 = 87% in the training set vs. 47/50 = 94% in the test set),
while the specificity (55/69 = 80% in the training set vs. 20/28 = 71% in the test set) and
balanced accuracy (83.2% in the training set vs. 82.7% in the test set) were lower. Table 1
also includes the predictivity when combining the training and test sets (at the bottom).



Toxics 2024, 12, 536 7 of 16

Table 1. Contingency tables for training set predictions at the top and test set predictions in the middle and the combined sets at the bottom (gray shades: indicator
of misprediction severity; bold: correct predictions; NS: non-sensitizer; mod.: moderate; extr.: extreme; S: sensitizer (weak/moderate/strong/extreme)).

Training Set LLNA Reference Data Classes/Categories

A: 4 potency classes NS weak mod. strong/extr. Σ B: UN GHS
categories no Cat. Cat. 1B Cat. 1A Σ C: hazard NS S Σ

SkinSens-BN

NS 55 12 7 1 75 NS 55 19 1 75 NS 55 20 75
weak (EC3 ≥ 10%) 7 20 8 6 41 weak/mod. 11 44 12 67 S 14 130 144

mod. (2% ≤ EC3 < 10%) 4 2 14 6 26 strong/extr. 3 23 51 77 Σ 69 150 219
strong/extr. (EC3 < 2%) 3 5 18 51 77 Σ 69 86 64 219

Σ 69 39 47 64 219

accuracy 64% (140/219) 68% (150/219) 84% (185/219)

Test set

A: 4 potency classes NS weak mod. strong/extreme Σ B: UN GHS
categories no Cat. Cat. 1B Cat. 1A Σ C: hazard NS S Σ

SkinSens-BN

NS 20 1 2 0 23 NS 20 3 0 23 NS 20 3 23
weak (EC3 ≥ 10%) 6 7 6 1 20 weak/mod. 6 20 4 30 S 8 47 55

mod. (2% ≤ EC3 < 10%) 0 2 5 3 10 strong/extr. 2 14 9 25 Σ 28 50 78
strong/extr. (EC3 < 2%) 2 7 7 9 25 Σ 28 37 13 78

Σ 28 17 20 13 78

accuracy 53% (41/78) 63% (49/78) 86% (67/78)

Training and test set

A: 4 potency classes NS weak mod. strong/extreme Σ B: UN GHS
categories no Cat. Cat. 1B Cat. 1A Σ C: hazard NS S Σ

SkinSens-BN

NS 75 13 9 1 98 NS 75 22 1 98 NS 75 23 98
weak (EC3 ≥ 10%) 13 27 14 7 61 weak/mod. 17 64 16 97 S 22 177 199

mod. (2% ≤ EC3 < 10%) 4 4 19 9 36 strong/extr. 5 37 60 102 Σ 97 200 297
strong/extr. (EC3 < 2%) 5 12 25 60 102 Σ 97 123 77 297

Σ 97 56 67 77 297

accuracy 61% (181/279) 67% (199/297) 85% (252/297)
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3.1.3. Confidence Assessment

The confidence in the SkinSens-BN prediction was determined in relation to the
maximum GBFs across the four potency classes, which were derived from the probability
profile, i.e., the posterior distribution, and the prior. The maximum GBF was transformed
into a W-value, which was interpreted using a simplification of the Jeffrey’s decision. The
level of confidence was grouped into the three categories of high, moderate, and low. This
level of confidence is intended to provide risk assessors with an indication of confidence
when using SkinSens-BN results, informing the next risk assessment step. To summarize
the results, these were grouped by potency category with the highest GBF.

Of the 98 substances predicted as NS, the majority (71/98 = 72.4%) were associated
with a “high” level of confidence. “Weak” substances were predominant (51/61 = 83.6%),
with an assigned “moderate” level of confidence, as were substances with “moderate”
potency (29/36 = 80.5%). The level of confidence of substances predicted as extreme/strong
sensitizers was most evenly distributed, with a “high” level of confidence assigned to 48.0%
(49/102) of the substances.

Table 2 exemplifies the approach of transforming the probability profile into a W-value,
from which the level of confidence is derived by using three substances that were weak
sensitizers in the LLNA. “Weak” was also the most likely predicted class in the SkinSens-
BN probability profile. However, the individual probability profiles differ in shape, in
particular the probability of the weak class (p(weak)). While p(weak) was very high for
geraniol, it was just slightly higher than p(moderate) for hydroxycitronellal. This difference
was also reflected in the W-values, leading to a high confidence for geraniol, a moderate
confidence for N,N-dibutylaniline, and a low confidence for hydroxycitronellal.

Table 2. SkinSens-BN probability profile of three example substances, with the corresponding
W-values, predicted classes, and confidence levels.

Substance Name Geraniol N,N-dibutylaniline Hydroxycitronellal

LLNA EC3 (UN GHS cat.) 26% (1B) 19.6% (1B) 33% (1B)

SkinSens-BN Prob. Profile W Prob. Profile W Prob. Profile W

p(NS) 0.1539 −4.02 0.0247 −1.26 0.0017 −2.43
p(weak) 0.7240 10.96 0.5687 7.97 0.3912 4.84

p(moderate) 0.1144 −3.38 0.2930 1.69 0.3810 3.41
p(strong/ext.) 0.0078 −1.72 0.1135 −5.08 0.2261 −1.45

predicted class weak weak weak

confidence high moderate low

3.2. Derivation of a Continuous PoD with SkinSens-BN and Its Comparison to EC3

The discrete SkinSens-BN a posteriori probability distribution for the four potency
classes, i.e., the probability profile, was used to construct an approach to derive a con-
tinuous PoD (PoDBN). For each of the 297 substances, a sum of these probabilities asso-
ciated with fixed weights, which were based on LLNA EC3 values associated with each
class, was calculated. The probability profiles for all substances and the PoDBN are pro-
vided in Supplemental Table S1. The PoDBN ranged from the absolute PoD minimum of
0.20%, which was obtained for four substances (lauryl gallate, tetrachlorosalicylanilide,
dinitrochlorobenzene, and 4-nitrobenzyl bromide), to the maximum PoDBN of 99.76%
(Figure 3), with a median of 14.23%, a lower quartile of 1.52%, and an upper quartile of
78.84%.

To exemplify the approach, we selected three substances from the test set. Their
identities, LLNA EC3 values, UN GHS category, probability profiles, predicted class, i.e.,
derived from the max. of the probability profile, and PoD estimates are summarized in
Table 3.
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Figure 3. Comparison of PoDBN (y-axis) and the predicted most likely potency class (x-axis), i.e., the
class with the highest probability, with the number of substance (n) in the class: (A) as a dotplot (with
median line) and (B) as a boxplot.

Table 3. PoDBN derivation for three example substances (bold: class with the highest probability).

Substance Name Lilial 4-Methoxy-α-methyl
benzenpropanal

3,4-Dihydro-
coumarin

LLNA EC3 8.6% 23.6% 5.6%

UN GHS category 1B 1B 1B

SkinSens-BN
probability profile

p(NS) 0.0244 0.1605 0.1614
p(weak) 0.5685 0.5185 0.3946

p(moderate) 0.2934 0.2736 0.4284
p(strong/extreme) 0.1138 0.0474 0.0156

predicted class
(PoD as lower bound of predicted class)

Weak
(10%)

Weak
(10%)

Moderate
(2%)

confidence moderate moderate low

PoDBN 8.73% 21.79% 20.94%

For Lilial, all PoD (LLNA EC3, based on predicted class and PoDBN) were very similar.
With an EC3 of 8.6%, the PoDBN was almost identical (8.7%), while the PoD derived from
the max. of the probability profile was 10%, i.e., the lower bound of the weak category. For
4-Methoxy-α-methyl benzenpropanal, the PoDBN was similar to the EC3, both approx. a
factor two higher compared to the approach of assigning it to the most likely potency class,
i.e., a category PoD of 10%. For 3,4-Dihydro-coumarin, the class-based PoD and the EC3
were similar, while the PoDBN was higher.

This comparison of the PoDBN to the most likely potency class was conducted for
all 297 substances. The results are summarized in Figure 3. Of the 297 substances, for 98,
the most likely potency class was non-sensitizers. The PoDBN in this class ranged from
50.62% to 99.76%, with a median of 94.94%, and was higher than all other PoDBN, except
for one proprietary substance predicted in the weak potency class. The PoDBN of the
102 substances in the strong/extreme potency class ranged from 0.20% to 11.47%, with a
median of 0.7% and an upper quartile of 1.64%. The values clearly overlapped with the
PoDBN of the substances in the moderate potency class (33 substances), while the PoDBN
of 5 of those 33 overlapped with the weak potency class. Weak and moderate predicted
potency classes, with medians 20.07% and 5.81%, respectively, showed wider distributions
and overlapped considerably.
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The large overlap indicated that potency grouping by the max. value in the probability
profile may suggest a certainty in the result that is not reflected when considering the
entire profile.

Figure 3 also demonstrates that the PoDBN will generally be higher than a PoD derived
from the lowest threshold value of the predicted potency class. This is, for example, indi-
cated by 22 substances in the strong/extreme potency class with a PoDBN > 2%, including
1 substance with a PoDBN of 11.5% and by only 1 substance in the moderate potency class
with a PoD < 2%. In contrast, 21 of the 61 substances in the weak class had a PoD < 10%
(min. of 4.89%).

Next, the continuous PoDs were compared with the corresponding LLNA reference
EC3-values, assigning an EC3 of 100 to non-sensitizers. A dotplot of all PoDBN-EC3 pairs
is shown in Figure 4. The data were clearly positively correlated, with highly statistically
significant (p-values < 0.001) Pearson and Spearman correlation coefficients of 0.75 and 0.73,
respectively, compared to the LLNA EC3. The data points below the line of identity indicate
substances for which the PoDBN is lower, and those above the line of identity indicate
substances for which the PoDBN is higher. For example, the cluster of data points (triangles)
in the upper left corner of Figure 4A had a clearly higher PoBBN and the substances with
EC3-values between 2 and 10 were frequently overpredicted (black dots in Figure 4B low
the line of identity).
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To further quantify the similarity, the PoDBN/EC3 ratios were investigated. Values
below 1 indicated substances with PoDBN < EC3, i.e., more conservative-derived PoD, and
values above 1 indicated substances with PoDBN > EC3, i.e., less conservative-derived PoD.
The ratios are represented as a histogram in Figure 5A. Ratios between 0.316 and 3.16, i.e.,
maximum 100.5-fold difference in PoDBN and EC3 in either direction, were considered as
“similar”. This approach is based on the median LLNA EC3 standard deviation when using
the same vehicle, i.e., 0.25, and the calculations presented by Hoffmann (2015). This group
comprised 58.9% (175/297) of all substances. For 17.9% (53/297) of the substances, the
PoDBN was at least 3.16-times lower than EC3, i.e., more conservative, while the PoDBN was
less conservative for 23.2% (69/297). The occurrence of more severe less conservative ratios
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can partly be explained by the difference in the scaling of the two parameters at the lower
end (minimum PoDBN: 0.2% vs. minimum EC3: 0.0003%). The least conservative PoD
derived with the SkinSens-BN was derived for oxazolone, with a ratio of 6960 (20.88/0.003),
which was also the most severely underpredicted substance in the linear regression-based
PoD models by Natsch and Gerberick [15]. As a summary measure, the geometric mean
fold error was calculated as 3.55 for all substances and as 3.97 for the test set only, indicating
a slight decrease in performance.
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Figure 5. (A): Histogram of the ratio of the PoDBN and the LLNA EC3 for the substances (n = 297).
(B): Histogram of the ratio of the PoDBN and the LLNA EC3 for substances with an EC3 ≥ 0.2
(n = 268). Substances with a ratio < 0.316 had a more conservative PoDBN and substances with a
ratio > 3.16 had a less conservative PoDBN (gray shades).

To explore this effect of different scaling, a histogram without the substances with
LLNA EC-values < 0.2, i.e., 29 most extreme skin sensitizers in the LLNA, is presented in
Figure 5B. The absolute number of substances, for which the PoDBN was more conservative,
remained the same, i.e., 53, resulting in 19.8% due to the smaller total amount of substances.
Except for a proprietary substance (OA39:EC3 = 0.1 and PoDBN = 0.48), also the “similar”
substances were not affected. However, as expected, the number of substances, for which
the PoDBN was less conservative, was substantially reduced by 28. It remains to be explored
how to best address these scaling differences, e.g., by not deriving a PoDBN for substances
with a probability profile maximum value for the extreme/strong potency category that is
associated with at the least moderate confidence.
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4. Discussion

Skin sensitization is the human health effect for which a generally applicable, system-
atic, and exclusively NAM-based risk assessment approach is most advanced. An NGRA
framework has been proposed that provides guidance for a tiered and transparent integra-
tion of relevant information, while allowing for flexibility [18,19]. This NGRA framework
has been applied in various case studies to demonstrate its applicability and to initiate
a constructive dialogue with stakeholders [22,40–43]. A centerpiece of the NGRA is the
defined approaches (DAs) that integrate data from experimental NAMs that address at
least two key events of the skin sensitization AOP [4]. Several DAs of different levels of
complexity have been developed. These comprise two decision-tree-based DAs for hazard
identification and classification according to the UN GHS, which were recently adopted by
the OECD [14]. In addition, DAs using more sophisticated statistical approaches providing
results that can, either directly or transformed, be used to derive a PoD for risk assessment
have been proposed [20,44,45]. Among these, the Bayesian network by Jaworska, Natsch,
Ryan, Strickland, Ashikaga and Miyazawa [20] is of particular interest due to its strengths,
such as the provision of a probability profile across the potency classes, which can be used
to quantify uncertainty associated with predictions, and the ability to cope with missing
data. In contrast, the property that such network predictions are categorical limits the
ability to derive a more precise PoD than the lower LLNA EC3-values associated with
each class.

Building on the strengths, a Bayesian network similar to the one of Jaworska, Natsch,
Ryan, Strickland, Ashikaga and Miyazawa [20] was developed, called SkinSens-BN. The
main differences were the adaptation to some new input parameters and an increased total
number of substances used that covered a broad spectrum of physico-chemical properties
and LLNA EC3-values, including non-sensitizers. Overall, the predictive performance was
considered in the range of the OECD-adopted DAs. The skin sensitization hazard was
predicted as good, as reported for the ‘2of3′ DA [14,46]. Small differences in sensitivity and
specificity were evened out, as indicated by the almost identical accuracies and balanced
accuracies that ranged from 83% to 85%. In terms of UN GHS category predictions, the
SkinSens-BN was compared to the “Integrated Testing Strategy (ITS)” DA, also included
in the OECD TG 497. For both ITS versions, an accuracy of 71% was reported, with no
misprediction over two categories and some inconclusive predictions. The respective
accuracy of the SkinSens-BN was 67%. Six substances were mispredicted by two classes,
five LLNA non-sensitizers as GHS Cat. 1A and one LLNA GHS Cat. 1A as a non-sensitizer
(highlighted in Supplemental Table S1 “Data”). However, only one of those substances was
part of the data used for calculating the ITS predictive performance in OECD TG 497. For
these comparisons, it needs to be kept in mind that the number of substances was more
than twice as high and that no inconclusive predictions were present for the SkinSens-BN.

Regarding the prediction of four potency classes, which was 53% for the test set and
61% overall, a comparison with the Bayesian integrated testing strategy (ITS) for skin sensi-
tization potency assessment would be most informative [20]. However, an independent
evaluation is, to our knowledge, not available. An evaluation of the Bayesian integrated
testing strategy (ITS) for skin sensitization potency assessment regarding three LLNA
potency classes, which are similar to the GHS categories, obtained an accuracy of 68% with
115 substances, a predictivity very similar to the GHS predictivity of the SkinSens-BN [13].
Indications such as the seemingly lower predictivity for acrylates could be conducted as
follow-up to further improve the SkinSens-BN, and may allow the further improvement in
the predictive performance for four classes. However, it needs to keep in mind that the con-
struction of the SkinSens-BN was primarily a means to an end. Nevertheless, the successful
construction of a Bayesian network can contribute to building trust in the general approach
and demonstrates the flexibility of the approach in terms of the inputs and chemistry to
be covered.

Once it was confirmed that the SkinSens-BN performed promisingly, the primary
goal of constructing an approach to derive a continuous PoD was addressed. A weighted
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sum combining fixed weights-associated LLNA EC3-values for each of the classes with
the respective probabilities of their probability profile as weights was constructed. This
approach, which is generally applicable, resulted in continuous PoDs in the theoretical
range from 0.2 to 100%. The comparison of the SkinSens-BN PoD and the respective LLNA
EC3-values showed that, for 77% of the 297 substances, a similar or more conservative PoD
was derived.

Options to further characterize and improve the SkinSens-BN include conducting a
sensitivity analysis to characterize the impact that individual inputs have on the prediction,
assessing the impact of missing inputs, and tuning it more toward human relevance, as
conducted by Natsch [47]. The PoDBN issue of underpredictions of strong and extreme
sensitizers could be solved by the combination with an approach that can reliably iden-
tify extreme sensitizers in a first step, for example, by the use of NAMs targeting the
identification of strong and extreme sensitizers, as the kDPRA [48], or by exploring tar-
geted prediction models, as described for the ADRA by Alépée, Tourneix, Singh, Ade and
Grégoire [7]. In addition, the adaptation of the PoDBN algorithm and the adjustment of the
PoDBN based on analog information or a tiered decision process that specifically addresses
extreme potency prediction, e.g., by not deriving a PoDBN for substances with a probability
profile maximum value for the extreme/strong potency category that is associated with
at the least moderate confidence, could be explored. Although it needs to be considered
that strong and extreme skin sensitizers are only very rarely, if at all, used as cosmetic
ingredients, the improvement in an adapted strategy for these potency classes could be
applicable to other industries, such as agrochemicals, botanicals, and medical and wearable
devices, which are faced with the same concerns [49–52].

In addition, similarly to the approach of rating the confidence in predictions using the
Bayes factor applied by Jaworska, Natsch, Ryan, Strickland, Ashikaga and Miyazawa [20],
the probability profile was the basis to assign the prediction of confidence levels. The GBFs
were transformed into W-values, which were categorized to provide the three confidence
levels of “low”, “moderate”, and “high”. In essence, the approach resulted in a higher
confidence the more probability was assigned to one of the four potency classes, or, in other
words, the higher the distribution peak. On average, non-sensitizer potency predictions
were associated with the highest confidence and moderate potency predictions with the
lowest confidence.

The confidence rating is expected to substantially inform the next risk assessment
steps in a weight of evidence approach. The overall risk assessment outcome is evaluated
as a weight of evidence considering the calculated PoD [and, in the case of SkinSens-BN,
the probability profile], the confidence in the use of NAM input data within the DAs
(applicability domain), and the relative conservatism in the transformation of the DA
outcome to a PoD (the most likely predicted class). For cases with insufficient confidence
to reach a decision, it may, in combination with the detailed evaluation of individual
inputs, point to the next steps in the process, which are needed to increase the confidence.
Alternatively, the margin of exposure could be increased. This is intended to explore the
usefulness of the SkinSens-BN-derived PoDs with associated confidence levels in several
case studies, which may also identify potential avenues to improve the approach.

In conclusion, the development of the SkinSens-BN model and its related PoD deriva-
tion approach, in the context of the NGRA, clearly indicates that quantitative risk as-
sessments of skin sensitization can be achieved without a reliance on data from studies
conducted on animals.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics12080536/s1, Figure S1: Comparison of EC3 val-
ues, GHS categories, and three physico-chemical properties of the training and the test sets using the
Kruskal–Wallis test, with p-values; Table S1: Summary of all inputs used to construct the Bayesian
network [5,27–31].
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