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Abstract: Increasing evidence has suggested that nanoplastic pollution has become a global concern.
More importantly, transgenerational toxicity can be induced by nanoplastics at predicted environ-
mentally relevant doses (ERDs). Considering that amino modification could increase nanoplastic
toxicity, we compared transgenerational neurotoxicity between pristine polystyrene nanoparticle
(PS-NP) and amino-modified PS-NP (NH2-PS-NP) in Caenorhabditis elegans. At 0.1–10 µg/L, NH2-
PS-NP caused more severe transgenerational toxicity on locomotion and neuronal development.
Accompanied with a difference in transgenerational neuronal damage, compared to PS-NP (10 µg/L),
NH2-PS-NP (10 µg/L) induced more severe transgenerational activation of mec-4, crt-1, itr-1, and
tra-3, which are required for the induction of neurodegeneration. Moreover, NH2-PS-NP (10 µg/L)
caused more severe transgenerational inhibition in expressions of mpk-1, jnk-1, dbl-1, and daf-7 than
PS-NP (10 µg/L), and RNA interference (RNAi) of these genes conferred susceptibility to the toxicity
of PS-NP and NH2-PS-NP on locomotion and neuronal development. NH2-PS-NP (10 µg/L) further
caused more severe transgenerational activation of germline ligand genes (ins-3, ins-39, daf-28, lin-44,
egl-17, efn-3, and lag-2) than PS-NP (10 µg/L), and RNAi of these ligand genes caused resistance to the
toxicity of PS-NP and NH2-PS-NP on locomotion and neuronal development. Our results highlighted
more severe exposure risk of amino-modified nanoplastics at ERDs in causing transgenerational
neurotoxicity in organisms.
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1. Introduction

Together with the increased generation of waste plastics, their ecological risk has
also been assessed and received attention [1,2]. This is largely due to the environmental
existence of microplastics and nanoplastics caused by release after human use or the frag-
mentation of waste plastics undergoing degradation [3,4]. Nanoplastics are distributed
ubiquitously in the environment encompassing marine and aquatic environments [5,6],
and detected in the tissues of organisms and in the food web [7,8]. Accompanied with
body accumulation, nanoplastic exposure leads to multiple toxicities in organisms, such as
reproductive impairment and damage to organ systems [9–11]. The predicted environmen-
tally relevant doses (ERDs) range in ng/L or µg/L for nanoplastics [12,13]. For example,
nanoplastics could be detected in sampled Swedish lakes and streams at mean doses of
563 µg/L [14]. Nanoplastics at ERDs could further induce some toxic effects on both plants
and animals, such as the induction of oxidative damage and ferroptosis [15–18]. Moreover,
nanoplastics caused transgenerational toxicity in the offspring of exposed organisms, such
as rotifers and fish [19–22].

Caenorhabditis elegans exhibits high sensitivity to environmental pollutants [23–26].
C. elegans is thus helpful to detect pollutant toxicity at ERDs [27–31]. It can be applied
for the toxicological study of both microplastics and nanoplastics in several aspects, such
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as reproductive toxicology [32,33]. During development, the life cycle of C. elegans is
only approximately 4–5 days, and this makes it suitable to assess the transgenerational
toxicity of a pollutant [34–36]. Pristine and aged polystyrene nanoparticles (PS-NPs) at
ERDs resulted in transgenerational damage to the functions of neurons and gonads [37,38].
Transgenerational PS-NP toxicity is regulated by some secreted ligands, including Notch
and fibroblast growth factor (FGF) ligands [39,40]. Additionally, epigenetic regulations,
such as histone methylation, also control the transgenerational toxicity of PS-NPs [41–43].

The nanoplastic toxicity induction was influenced by some determining factors, includ-
ing sizes, type, and source [44,45]. Besides these, in the parental generation (P0-G), PS-NP
toxicity was also influenced by some chemical modifications, including amino modification
and epoxy modification [46,47]. For example, amino modification strengthened PS-NP
toxicity in P0-G [48]. However, it is not entirely clear why this modification is thought
to have this impact. Among the sublethal endpoints used for toxicity assessment, the
endpoints reflecting neurotoxicity showed a more sensitive property in nematodes [49]. We
assumed that amino-modified PS-NPs at ERDs may induce more severe transgenerational
neurotoxicity compared to pristine PS-NPs. Thus, we aimed to compare transgenerational
neurotoxicity between pristine and amino-modified PS-NPs. The neurotoxicity of pol-
lutants is reflected by the damage on both the development and function of C. elegans
neurons [50]. Locomotion is controlled by the motor neurons in GABAergic neurons [51],
and the motor neurons could be damaged by PS-NPs in P0-G [52]. Moreover, some molec-
ular signals (DBL-1, DAF-7, JNK-1, and MPK-1) functioned in neurons to control PS-NP
toxicity in P0-G [53–56]. We further determined the underlying mechanism for possible
enhancement in transgenerational PS-NP neurotoxicity by amino modification. The results
suggest that exposure to amino-modified nanoplastics carries a more severe risk for causing
transgenerational neurotoxicity.

2. Materials and Methods
2.1. Nanoplastic Properties

The pristine PS-NPs (35 nm) and amino-modified PS-NPs (NH2-PS-NP, 35 nm) were
gifts from Prof. Xianzheng Yuan’s lab [48]. Other reagents were purchased from Sigma-
Aldrich (Milwaukee, Germany). The morphology was spherical, and the particle sizes were
34.7 ± 3.6 nm (PS-NPs) and 35.2 ± 3.1 nm (NH2-PS-NPs, 35 nm), respectively, confirmed
by transmission electron microscopy (Figure 1A). The zeta potentials of the PS-NPs and
NH2-PS-NPs were −19.8 ± 1.79 mV and −25.1 ± 0.87 mV, respectively. The FTIR spectrum
and the Raman spectrum of the PS-NPs and NH2-PS-NPs have been described in our
previous report [48].

2.2. Animal Maintenance

Wild-type N2 from the Caenorhabditis Genetics Center was grown on nematode
growth medium (NGM) plates, and Escherichia coli OP50 was fed as C. elegans food [57].
When adults attained maximum oviposition, they were lysed with a lysis solution (2%
HOCl, 0.45 M NaOH). The eggs were placed onto an NGM medium to grow into L1
larvae [58]. C. elegans was cultured in strict accordance with the ARRIVE Guidelines.

2.3. Exposure

Concentrations of PS-NPs (0.1–10 µg/L) were selected [59], which belong to the
predicted ERDs of the nanoplastics [12–14]. The C. elegans were placed in a solution
containing PS-NPs from L1 larvae for 6.5 days, referred to as P0-G. During exposure, the
PS-NPs were replaced daily. The eggs of the P0-G were transferred to NGM plates to
develop into adulthood, referred to as F1-G. The following generations of offspring (F2-G
to Fn-G) were also prepared in the same way.
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Figure 1. Comparison of transgenerational effect between pristine and amino-modified PS-NPs on
locomotion behavior. (A) TEM images of pristine and amino-modified PS-NPs before sonication.
(B) Comparison of transgenerational effect between pristine and amino-modified PS-NPs on head
thrash and body bend. ** p < 0.01 vs. control.

2.4. Neurotoxicity Assessment

Locomotion reflects the function of the motor neurons [60]. To assess the effect on
locomotion, animals were allowed to recover for one minute before assessing their head
thrashes and body bends. A head thrash is defined as a change in the direction of head
movement [61], and a body bend is defined as a change in direction at mid-body [62]. Fifty
animals were analyzed for each treatment.

A transgenic strain of EG1285 with the fused expression of GFP was used to visualize
the D-type motor neurons [63]. The extent of neurotoxicity by PS-NPs was reflected by
the number of neurons, ventral cord gap, fluorescence intensity, and cell body size of
neurons [64]. The cell body size and GFP fluorescence intensity were semi-quantified using
Image J software. The number of neurons and the ventral cord gap on the ventral cord
were directly counted under a laser confocal microscope. Fifty animals were analyzed for
each treatment.
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2.5. Gene Expression

The nematodes were added to Trizol reagent to extract their RNA and kept at −80 ◦C.
The cDNA was synthesized next. A quantitative real-time polymerase chain reaction (qRT-
PCR) was conducted with the SYBR Green PCR kit (Takara, Kusatsu, Japan). The PCR
cycling conditions were an initial denaturation at 95 ◦C for 5 min, followed by 32 cycles of
94 ◦C for 30 s, 52 ◦C for 30 s, and extension at 72 ◦C for 30 s. tba-1 acted as the reference
gene for the normalization of the target genes [65]. Information on the primers is provided
in Table S1. Three replicates were performed.

2.6. RNA Interference (RNAi)

RNAi constructs with gene-specific sequences were transforming into E. coli HT115 [66].
The RNAi bacteria were cultured in LA medium overnight, followed by treatment with
100 µg/mL tetracycline and 5 mM isopropyl thiogalactoside for 5 h [67]. RNAi was
generated by feeding the L1 larvae with RNAi bacteria. The offspring were exposed to PS-
NPs. L4440, an empty vector, acted as the control [68]. The RNAi efficiency was confirmed
by qRT-PCR (Figure S1).

2.7. Data Analysis

Data are presented as means ± standard derivation (SD). Statistical analysis was
conducted by SPSS v19.0 software (IBM, Armonk, NY, USA). The significant difference
among different groups was examined using one-way or two-way analysis of variance
(ANOVA) followed by the Tukey post hoc test. The p-value of <0.01 (**) was deemed
statistically significant.

3. Results
3.1. Amino Modification Increased Transgenerational Toxicity of PS-NPs on Locomotion

After exposure in P0-G, 0.1 µg/L PS-NPs did not cause toxicity on locomotion in the
offspring, whereas 1 µg/L PS-NPs caused a decrease in locomotion from P0-G to F2-G, and
10 µg/L PS-NPs induced a decrease in locomotion from P0-G to F3-G (Figure 1B). Different
from these, after P0-G exposure, 0.1 µg/L NH2-PS-NPs could affect locomotion in both
P0-G and F1-G; 1 µg/L NH2-PS-NPs altered locomotion from P0-G to F3-G; and 10 µg/L
NH2-PS-NPs decreased locomotion from P0-G to F4-G (Figure 1B).

3.2. Amino Modification Increased Transgenerational Toxicity of PS-NPs on Neuronal
Development of D-Type Motor Neurons

Motor neurons are located on the ventral nerve cord of the C. elegans GABAergic
system. Exposure to 10 µg/L PS-NPs and NH2-PS-NPs all did not affect the fluores-
cent intensity and size of the cell body of motor neurons in P0-G and in their offspring
(Figure 2A–C). However, 10 µg/L PS-NPs resulted in neuronal loss and ventral cord gap
in both P0-G and F1-G (Figure 2C,E). Moreover, 10 µg/L NH2-PS-NPs caused neuronal
loss and ventral cord gap from P0-G to F2-G (Figure 2C,E).

3.3. Amino Modification Strengthened Transgenerational Effect of PS-NPs on Expressions of Genes
Governing Neurodegeneration

To determine the molecular basis for the difference between pristine and amino-
modified PS-NPs in causing transgenerational toxicity on neuronal development, we com-
pared transgenerational expressions of the genes governing neurodegeneration. Among
the examined genes, PS-NPs (10 µg/L) and NH2-PS-NPs (10 µg/L) did not affect the
expressions of deg-3, unc-68, clp-1, asp-3, and asp-4 in P0-G (Figure 3A). However, the expres-
sions of mec-4, ctr-1, itr-1, and tra-3 were increased by PS-NPs (10 µg/L) and NH2-PS-NPs
(10 µg/L), and NH2-PS-NPs (10 µg/L) caused a more severe increase in the expressions of
mec-4, ctr-1, itr-1, and tra-3 compared to those in PS-NP (10 µg/L)-exposed nematodes in
P0-G (Figure 3A).
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Figure 2. Comparison of transgenerational effect between pristine and amino-modified PS-NPs on
development of D-type motor neurons. (A) Images of D-type motor neurons. Transgenic strain
of EG1285 with the fused expression of GFP was used to visualize D-type motor neurons. The
asterisks indicate the position with neuronal loss. (B) Comparison of relative fluorescence intensity.
(C) Comparison of neuronal loss. (D) Comparison of cell body size. (E) Comparison of ventral cord
gaps. ** p < 0.01 vs. control.

After PS-NP (10 µg/L) exposure, increased expressions of mec-4, ctr-1, itr-1, and tra-3
were detected in F1-G (Figure 3B). Different from this, after NH2-PS-NP exposure, increased
expressions of mec-4, ctr-1, itr-1, and tra-3 were observed in F1-G and F2-G (Figure 3B).

3.4. Amino Modification Strengthened Transgenerational Inhibition of jnk-1, mpk-1, daf-7, and
dbl-1 by PS-NP Exposure

Considering the requirement of neuronal JNK-1, MPK-1, DAF-7, and DBL-1 for the
toxicity of PS-NPs [53–56], we also compared the effect between pristine and amino-
modified PS-NPs on their expressions. In P0-G, their expressions were decreased by
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PS-NPs (10 µg/L) and NH2-PS-NPs (10 µg/L), and NH2-PS-NPs (10 µg/L) caused a more
severe inhibition in their expressions than PS-NPs (10 µg/L) did (Figure 4A).
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Figure 3. Comparison of transgenerational effect between pristine and amino-modified PS-NPs on
expressions of genes governing neurodegeneration. (A) Comparison of effect between pristine and
amino-modified PS-NPs on expressions of genes governing neurodegeneration at P0-G. (B) Compari-
son of transgenerational effect between pristine and amino-modified PS-NPs on expressions of mec-4,
ctr-1, itr-1, and tra-3. ** p < 0.01 vs. control (if not specially indicated).

After exposure to PS-NPs (10 µg/L) in P0-G, a decrease in these four genes’ expressions
was also observed from F1-G to F3-G (Figure 4B). Different from this, after NH2-PS-NP
(10 µg/L) exposure in P0-G, a decrease in their expressions could be further found from
F1-G to F4-G (Figure 4B).
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Figure 4. Comparison of transgenerational effect between pristine and amino-modified PS-NPs
on expressions of mpk-1, dbl-1, jnk-1, and daf-7. (A) Comparison of effect between pristine and
amino-modified PS-NPs on expressions of mpk-1, dbl-1, jnk-1, and daf-7 at P0-G. (B) Comparison of
transgenerational effect between pristine and amino-modified PS-NPs on expressions of mpk-1, dbl-1,
jnk-1, and daf-7. ** p < 0.01 vs. control (if not specially indicated).

3.5. RNAi of jnk-1, mpk-1, daf-7, and dbl-1 Increased Neurotoxicity of Both Pristine and
Amino-Modified PS-NPs

Under normal conditions, locomotion was not affected by RNAi of jnk-1, mpk-1, daf-7,
and dbl-1 (Figure 5A,B). After PS-NP exposure, more severe locomotory inhibition was
observed in jnk-1(RNAi), mpk-1(RNAi), daf-7(RNAi), and dbl-1(RNAi) nematodes than that
in wild-type nematodes (Figure 5A). Similarly, RNAi of these genes caused a more severe
inhibition in locomotion in NH2-PS-NP-exposed nematodes (Figure 5B). Meanwhile, RNAi
of these genes resulted in a more severe induction of neurodegeneration reflected by the
related endpoints in PS-NP- or NH2-PS-NP-exposed nematodes (Figure S2).
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Figure 5. Effect of RNAi of mpk-1, dbl-1, jnk-1, and daf-7 on toxicity of PS-NP (A) and NH2-PS-NP
(B) in decreasing locomotion behavior. ** p < 0.01.

3.6. Amino Modification Strengthened Transgenerational Activation of Germline Ligand Genes by
PS-NP Exposure

The germline ligands of insulin, Wnt, FGF, Ephrin, and Notch regulated the transgen-
erational PS-NP toxicity [39,40,59,69,70]. In P0-G, the germline expressions of ins-3, ins-39,
daf-28, lin-44, egl-17, efn-3, and lag-2 were increased by PS-NPs (10 µg/L) and NH2-PS-NPs
(10 µg/L), and NH2-PS-NPs (10 µg/L) resulted in a more severe increase in the germline
expressions of these ligand genes than PS-NPs (10 µg/L) did (Figure 6A).

After PS-NP (10 µg/L) exposure in P0-G, increased germline expressions of these
ligand genes could be further found from F1-G to F3-G (Figure 6B). After exposure to
NH2-PS-NPs (10 µg/L) in P0-G, activation of these germline ligand genes was further
observed from F1-G to F4-G (Figure 6B).
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Figure 6. Comparison of transgenerational effect between pristine and amino-modified PS-NPs on
expressions of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2. (A) Comparison of effect between
pristine and amino-modified PS-NPs on expressions of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and
lag-2 at P0-G. (B) Comparison of transgenerational effect between pristine and amino-modified
PS-NPs on expressions of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2. ** p < 0.01 vs. control (if
not specially indicated).

3.7. RNAi of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2 Inhibited Neurotoxicity of Both
Pristine and Amino-Modified PS-NPs

The decrease in locomotion caused by PS-NPs and NH2-PS-NPs could be significantly
inhibited by RNAi of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2 (Figure 7A,B). More-
over, the neurodegeneration induced by PS-NPs and NH2-PS-NPs was also suppressed by
RNAi of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2 (Figure S3).
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4. Discussion

It has been well recognized that amino modification could increase the adverse effects
of nanoplastics on organisms [47,71]. Amino modification increased both the cytotoxicity
and genotoxicity of PS-NPs in A549 cells [71]. Amino modification further enhanced PS-NP
toxicity on the reproductive system in male mice [47]. Amino modification could even
affect the effect of PS-NPs on microbial communities in sediment [72]. In nematodes,
amino modification increased PS-NP reproductive toxicity in P0-G [48]. In the current
study, we further observed that amino modification strengthened the transgenerational
PS-NP neurotoxicity on both locomotion and neuronal development. With 10 µg/L as
the example, PS-NPs caused decreased locomotion behavior from P0-G to F3-G, whereas
NH2-PS-NPs resulted in decreased locomotion behavior from P0-G to F4-G (Figure 1B).
Meanwhile, compared to the neurodegeneration induced in P0-G and F1-G by PS-NPs
(10 µg/L), NH2-PS-NPs (10 µg/L) caused neurodegeneration from P0-G to F2-G (Figure 2).
These demonstrated the potential of amino modification in enhancing transgenerational
PS-NP toxicity on both locomotion and neuronal development. Compared to the endpoints
reflecting neuronal development, the endpoints reflecting locomotion were relatively more
sensitive for assessing the transgenerational toxicity of nanoplastics. The reproductive
toxicity of PS-NPs was also increased by amino modification, and a 4-day exposure of L1
larvae to NH2-PS-NPs (10 µg/L) induced inhibition in the brood size in both P0-G and
F1-G [73]. Hormesis is an adaptative response induced by stresses and pollutants to protect
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biological systems against damage formation [74–76]. What we performed was long-term
exposure to both 35 nm PS-NPs and 35 nm NH2-PS-NPs. Nevertheless, we did not observe
the hormesis response after exposure to 35 nm PS-NPs and 35 nm NH2-PS-NPs. Different
from this, we observed the hormesis response after exposure to 100 nm PS-NPs at similar
doses [77–80].

The transgenerational damage of PS-NPs on the neuronal development of D-type
motor neurons by amino modification was partially due to the differential effect on genes
governing neurodegeneration. In C. elegans, the activation of DEF-3 and MEC-4, two
excitotoxic-like ion channels, triggers neurodegeneration [81]. Both PS-NPs (10 µg/L) and
NH2-PS-NPs (10 µg/L) could increase mec-4 expression, and NH2-PS-NPs (10 µg/L) caused
a more severe transgenerational increase in mec-4 expression than PS-NPs (10 µg/L) did
(Figure 3B). Endoplasmic reticulum (ER)-residential calcium chaperon CTR-1 and inositol
1,4,5-riphosphate receptor ITR-1 act downstream of MEC-4 to control calcium ion release
from the ER [82,83]. Following MEC-4 activation, NH2-PS-NPs (10 µg/L) induced a more
severe transgenerational increase in ctr-1 and itr-1 expressions than PS-NPs (10 µg/L)
did (Figure 3B). Neurodegeneration is directly caused by the activation of the proteases,
calpain proteases and aspartyl proteases [84]. Among the genes encoding these proteases,
NH2-PS-NPs (10 µg/L) further caused a more severe transgenerational increase in the
expression of tra-3 encoding calpain protease than PS-NPs (10 µg/L) did (Figure 3B).

For an enhancement in the transgenerational PS-NP neurotoxicity, we raised two other
aspects of the molecular mechanisms. One of them was that amino modification enhanced
the transgenerational PS-NP neurotoxicity by causing more severe transgenerational inhibi-
tion in MPK-1, JNK-1, DBL-1, and DAF-7. On the one hand, NH2-PS-NPs (10 µg/L) caused
a more severe transgenerational decrease in their expressions than PS-NPs (10 µg/L) did
(Figure 4B). On the other hand, susceptibility to the toxicity of PS-NPs and NH2-PS-NPs on
D-type motor neurons involved in locomotion and development was caused by RNAi of
these genes (Figures 5 and S2). In C. elegans, MPK-1, JNK-1, DBL-1, and DAF-7 functioned
in neurons to regulate nanoplastic toxicity [53–56]. Therefore, the transgenerational inhi-
bition of these neuronal signals mediated the toxicity of PS-NPs and NH2-PS-NPs across
multiple generations.

Besides the role of these neuronal signals, the transgenerational activation of germline
secreted ligands also contributed to the toxicity induction of PS-NPs and NH2-PS-NPs
across multiple generations. NH2-PS-NPs (10 µg/L) caused a more severe transgenerational
increase in the expressions of germline insulin, Wnt, FGF, Ephrin, and Notch ligand genes
than PS-NP (10 µg/L) did (Figure 6B). Moreover, resistance to the neurotoxicity of PS-NPs
and NH2-PS-NPs could be induced by RNAi of insulin, Wnt, FGF, Ephrin, and Notch
ligand genes (Figures 7 and S3). In C. elegans, germline INS-3, INS-39, DAF-28, LIN-44,
EGL-17, EFN-3, and LAG-2 functioned together with their receptors (DAF-2, MIG-1, EGL-
15, VAB-1, and GLP-1) to regulate the transgenerational nanoplastic toxicity [39,40,59,69,70].
That is, amino modification could further enhance transgenerational PS-NP neurotoxicity
by resulting in a more severe transgenerational activation of germline insulin, Wnt, FGF,
Ephrin, and Notch ligand genes.

5. Conclusions

Together, NH2-PS-NPs could cause more severe transgenerational neurotoxicity than
PS-NPs at 0.1–10 µg/L in C. elegans. The observation of more severe transgenerational
damage on D-type motor neurons by NH2-PS-NPs than PS-NPs was partially due to the
more severe transgenerational activation of genes governing neurodegeneration. NH2-PS-
NPs also caused more severe transgenerational neurotoxicity than PS-NPs by inducing
more severe transgenerational inhibition in the expressions of mpk-1, jnk-1, dbl-1, and
daf-7, and transgenerational activation of the expressions of germline ligand genes (ins-3,
ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2). Compared with the well-described role of
amino modification in increasing the nanoplastic toxicity in P0-G, our results provided
an important molecular basis for amino modification to enhance the transgenerational
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neurotoxicity of PS-NPs. Our data further implied that the exposure risk of amino-modified
nanoplastics in causing more severe transgenerational toxicity needs to be carefully paid
attention to. In the future, neuroprotective compounds (such as natural extracts or drugs)
with the function of attenuating or preventing transgenerational neurotoxicity induced by
PS-NPs and NH2-PS-NPs by upregulating MPK-1, JNK-1, DBL-1, and DAF-7 are suggested
to be further screened and identified using C. elegans as an animal model.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxics12080555/s1: Figure S1: RNAi efficiency of daf-7, jnk-1,
dbl-1, and mpk-1; Figure S2: Effect of RNAi of mpk-1, dbl-1, jnk-1, and daf-7 on toxicity of PS-NP and
NH2-PS-NP in causing damage on D-type motor neurons on GABAergic system; Figure S3: Effect
of RNAi of ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2 on toxicity of PS-NP and NH2-PS-NP
in causing damage on D-type motor neurons on GABAergic system; Table S1: Primer information
for qRT-PCR.
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