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Abstract: Microbial degradation is acknowledged as a viable and eco-friendly approach for dimin-
ishing residues of neonicotinoid insecticides. This study reports the dominant strain of Md2 that
degrades acetamiprid was screened from soil and identified as Aspergillus heterochromaticus, and the
optimal degradation conditions were determined. Research indicated that the degradation of Md2
to 100 mg/L acetamiprid was 55.30%. Toxicological analyses of acetamiprid and its metabolites
subsequently revealed that acetamiprid and its metabolites inhibited the germination of cabbage seed,
inhibited the growth of Escherichia coli, and induced the production of micronuclei in the root tip cells
of faba beans. Based on the analysis of metabolic pathways, it has been determined that the primary
metabolic routes of acetamiprid include N-demethylation to form IM-2-1 and oxidative cleavage of
the cyanoimino group to produce IM-1-3. Using 16S rRNA high-throughput sequencing, the results
showed that acetamiprid and Md2 elevated the relative abundance of Acidithiobacillus, Ascomycetes,
and Stramenobacteria, with increases of 10~12%, 6%, and 9%, respectively, while reducing the relative
abundance of Acidobacteria, Chlorobacteria, Ascomycetes, and Sporobacteria, with decreases of 15%,
8%, 32%, and 6%, respectively. The findings will facilitate the safety evaluation of the toxicological
properties of neonicotinoid insecticides, their biodegradable metabolites, and associated research on
their degradation capabilities.

Keywords: neonicotinoid insecticide; biodegradation; microbial community; metabolic route

1. Introduction

Acetamiprid, one of the most significant neonicotinoid pesticides, has been extensively
advocated and employed in agricultural crop protection globally [1,2]. Acetamiprid targets
insect nicotinic (acetylcholine) receptors (nAChR), causing abnormal excitation in pests
leading to complete convulsions and paralysis, ultimately resulting in their death [3]. It has
been used to control Hemiptera, mainly aphids, tassel-winged insects and Lepidoptera,
to protect a wide range of crops, especially vegetables, fruits, and tea [4]. Due to its high
insecticidal efficacy and lack of cross-resistance with conventional long-acting insecticides,
it has been widely used over the past two decades [5]. Neonicotinoids are efficient insecti-
cides with low toxicity, but their long-term usage has generated extensive environmental
problems [6]. Some reports indicate that there is a potential toxicity risk to nontarget
organisms (bees, birds, and mammals) [7] and a threat to their survival [8]. Other studies
have suggested that acetamiprid may decrease human fertility [9].

Moreover, besides spraying on crop surfaces, root irrigation, and seed treatment,
considerable amounts of the pesticide eventually enter the soil [10–12]. Extensive appli-
cation of acetamiprid negatively impacts soil biochemical characteristics and microbial
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activity [13,14]. It can reduce microbial diversity, alter the community structure of soil mi-
croorganisms, affect soil bacterial abundance [15], and significantly inhibit soil respiration
and phosphatase activity [16]. These impacts have prompted researchers to actively explore
rapid and effective remediation strategies to mitigate these adverse environmental effects.
Previous studies have shown that the microbial degradation of neonicotinoids is considered
to be the most efficient and environmentally friendly in situ repair pathway [17]. Using
potential and degradative microorganisms, which can grow and survive under high-stress
concentrations of insecticides, offers a possible opportunity for the remediation of toxic
pollutants from contaminated environments [18–22].

To this end, the present study undertook the following specific investigations: Initially,
it explored the screening and identification of the dominant strain Md2 from soil that can
effectively degrade acetamiprid, and how to screen out strains with efficient degradation
ability from a large number of soil microorganisms has been a focus of attention for
many researchers and scholars. Secondly, the dominant strain was utilized to degrade
100 mg/L of acetamiprid. The effects of pH, temperature, and inoculum size on the
degradation rate were analyzed using the response surface methodology, and the optimal
degradation conditions were determined. Subsequently, the toxicological properties of
acetamiprid and its metabolites were assessed. The changes in toxicity during the initial
and metabolic stages of acetamiprid degradation and their impact on biological systems
were determined. Additionally, the metabolic pathways of acetamiprid were analyzed,
which not only aids in a deeper understanding of the degradation process but also helps
evaluate the potential environmental and biological impacts of its metabolites. Finally,
the impact of the acetamiprid-degrading dominant strain Md2 on microbial diversity and
community composition in contaminated soil was investigated using Illumina MiSeq high-
throughput sequencing technology. This area has received relatively little attention so
far. Simulating and assessing the effects of dominant strains on soil ecosystems under
experimental conditions is of significant importance for environmental protection and
agricultural sustainability. This study comprehensively tracked the process of microbial
remediation of pesticide-contaminated soil, aiming to address the critical issue of pesticide
residues in soil through the use of dominant strains. The findings are expected to provide
scientific information to support the rational use of insecticides.

2. Materials and Methods
2.1. Chemicals and Materials

Acetamiprid (99%) was purchased from Shandong Zhongnong United Biotechnology,
Inc. (Jinan, China). Methanol and acetonitrile (HPLC grade) were purchased from Thermo
Fisher Scientific (China), Inc. (Beijing, China). Agarose was purchased from Beijing
Aobixing Biotechnology, Inc. (Beijing, China). All other chemicals and reagents were
of analytical grade and purchased from China National Medicine Chemical Reagent Inc.
(Huaian, China). The composition of Luria-Bertani (LB) liquid medium was as follows:
10 g peptone, 5 g yeast extract, 5 g NaCl at pH 6, and distilled water to 1 L. Solid medium
was prepared by incorporating 1.5% agarose into the previously described liquid medium.
The inorganic salt medium (L−1) comprised 4 g Na2HPO4, 1.5 g KH2PO4, 1 g NH4Cl, 0.2 g
MgSO4•7H2O, 0.02 g CaCl2, 0.03 g FeSO4•7H2O, 1.0 g NaNO3, and 1 mL of trace elements
solution at pH 6. Malt extract liquid medium (L−1) was prepared using 20 g malt extract.
All media were sterilized at 121 ◦C for 30 min.

2.2. Enrichment, Isolation, and Characterization of the Acetamiprid-Degrading Strain

In this study, the soil samples used for strain screening were collected from the 5–15 cm
surface layer of soil in areas of the campus that had not been previously treated with
acetamiprid. All soil samples were taken at five randomly selected points, impurities were
removed, and the samples were thoroughly mixed and placed in sealed polyethylene bags.
The experimental soil samples were brown soil from the campus that had not been treated
with acetamiprid (pH 7.9, organic matter content 1.67%, total salt content 0.11 ms/cm). The
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surface soil was air-dried in a cool place, gently ground, and sieved through a 40-mesh sieve.
An acetamiprid biodegradation system was constructed using five grams of sieved soil and
100 mL of solution containing 20 mg/L acetamiprid at pH 7.0, in which acetamiprid served
as the sole source of carbon, nitrogen, and energy. The system was incubated in a rotary
shaker at 150 rpm at 30 ◦C for 7 days [23]. Every 7 days, 10% inoculum was transferred to a
fresh medium until the acetamiprid concentration reached 200 mg/L. The 10 mL mixed
bacterial solution was subsequently transferred to an inorganic salt medium containing
90 mL 100 mg/L acetamiprid and incubated in a rotary shaker for 7 days. The degradation
rate of the formed mixed bacterial consortia was determined using high-performance
liquid chromatography (methanol:water = 60:40 (V/V), column temperature 40 ◦C, flow
rate 1 mL/min) [24]. The bacterial consortia exhibiting superior degradation effects were
further isolated and purified. The degradation rate of each individual pure strain was then
measured, and the strain with the highest degradation rate was selected to be numbered
and preserved for subsequent studies.

The isolated strain was designated Md2 and analyzed through 16S rRNA gene sequenc-
ing. Cell morphology was observed under an optical microscope using cells from exponen-
tial growth. DNA was extracted using a Genomic DNA Extraction Kit [25], and the univer-
sal primers ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTCCGCTTATTGATATGC)
were used to amplify the ITS region. PCR products were recovered using an AxyPrepDNA
gel Recovery Kit and DNA sequenced. The PCR amplification products were subsequently
validated using agarose gel electrophoresis and compared with the NCBI 16S database [26]
to obtain the strain with the highest homology to Md2.

2.3. Optimization of Acetamiprid-Degrading Conditions

The dominant strain Md2 underwent cultivation in LB liquid medium with 100 mg/L
acetamiprid and was incubated on a shaker at 150 rpm for 7 days. To evaluate bacterial
proliferation, samples were taken at 12 h intervals, followed by analysis of the cell-free
supernatants for acetamiprid degradation [27]. The response surface method (RSM) was
used to optimize the degradation conditions of acetamidine by strain Md2. Based on the
methodology of Q. Zhai et al., the significant variables influencing the biodegradation of
acetamiprid were optimized using the Box–Behnken design. A total of 17 experiments
were conducted in a random order [24]. The concentration of acetamiprid was adjusted to
100 mg/L, with the optimal ranges of three factors selected for acetamiprid biodegradation,
i.e., pH (6~8), temperature (25~35 ◦C), and inoculum size (0.1~0.3 g) [24,28,29]. The
collected samples were analyzed using HPLC.

2.4. Toxicity Analysis of Acetamiprid and Its Metabolites
2.4.1. Effects of Acetamiprid and Its Metabolites on Cabbage Seed

Seed germination experiments serve as an excellent indicator for assessing the impact
of pollutants [30]. The experiment concentrated on cabbage seeds to analyze the toxicity
of acetamiprid and the toxicity of its metabolites within 14 days of degradation by the
dominant strain. The Petri dishes were wrapped in newspaper and sterilized with steam
at 121 ◦C for 30 min. Under aseptic conditions, UV-sterilized filter paper was cut and
placed into the Petri dishes. Different treated inorganic salt media were evenly applied
to moisten the filter paper. The top and bottom of the Petri dishes were lined with a
thin layer of paper, and the corresponding solutions were sprayed to maintain humidity.
The experiment involved three treatment groups: (A) sterilized (121 ◦C 30 min) inorganic
salt medium with the addition of 5 mL acetamiprid (concentrations of 5 mg/L, 10 mg/L,
20 mg/L, 50 mg/L, and 100 mg/L); (B) sterilized inorganic salt medium supplemented
with its corresponding concentration of metabolites; (C) blank control group CK (sterilized
inorganic salt medium). Three parallel experiments were conducted for each group. A
specific amount of cabbage seeds was evenly scattered in the Petri dishes and subsequently
stored in a steady-temperature incubator at 25 ◦C in darkness. Samples were taken at 24 h



Toxics 2024, 12, 572 4 of 16

intervals, with 5 days as the testing cycle. The seed germination rate was determined by
counting the number of germinated seeds, and germination shoot length was measured.

2.4.2. Effects of Acetamiprid and Its Metabolites on Escherichia coli

Escherichia coli is frequently used as a classic model organism in pesticide toxicology
studies due to its ease of cultivation and manipulation, as well as its rapid growth cycle [31].
Therefore, Escherichia coli was utilized to evaluate the toxicity of acetamiprid (before/after)
biodegradation by the dominant strain in this study. A small amount of preserved E. coli
was selected, inoculated into LB solid medium, and incubated at 37 ◦C and 150 rpm for
2 days. After three rounds of subculturing, the bacteria were inoculated into LB liquid
medium and incubated at a constant temperature for 18 h to prepare the activated E. coli
stock solution [32]. The experiment involved three treatment groups: to freshly prepared
sterilized LB liquid medium, (A) add 10 mL inorganic salt solution of the dominant strain
degrading acetamiprid (100 mg/L) for 14 d and 1 mL activated E. coli stock solution with
OD600 value of 0.5; (B) add 10 mL sterilized inorganic salt solution containing 100 mg/L
acetamiprid and 1 mL of identical E. coli stock solution; (C) blank control group CK, 10 mL
of sterilized inorganic salt solution and 1 mL of identical E. coli stock solution. Throughout
the experiment, the absorbance at OD600 of the E. coli solution was measured at intervals
(2 h, 4 h, 6 h, 8 h, 10 h, and 12 h) using a UV-visible spectrophotometer to monitor E. coli
growth. Three parallel experiments were conducted for each group.

2.4.3. Micronucleus Test

Faba bean seeds of uniform size were washed and placed in a 25 ◦C light-proof
incubator. They were immersed in deionized water for 36 h, with the water changed
every 12 h. The fully soaked seeds were then placed in a dissecting tray lined with moist
absorbent cotton and gauze. The seeds were germinated in the dark at 25 ◦C for 12–24 h.
When the embryonic roots reached a length of 1.5~2 cm, each Petri dish received four seeds,
which were then exposed to acetamiprid solution in varying concentrations of 5 mg/L,
10 mg/L, 20 mg/L, 50 mg/L, and 100 mg/L for 5 h [33]. The metabolite treatment solution
post-degradation of acetamiprid by the dominant strain at a corresponding concentration
was used as a control experiment. Post-treatment, the seeds and root tips underwent a
triple rinse with deionized water and were incubated in a constant-temperature chamber at
25 ◦C for 24 h, aiding in the repair and growth of root tip cells. Subsequently, the cut 1 cm
long root tips were fixed in 2 mL Carnot’s fixative for 36~48 h. Rinsing with SO2 solution
and deionized water resulted after the Feulgen staining process. Slides were fabricated by
the pressing method, and three root tip cells removed from each treatment described above
were visualized under a light microscope, with 1000 cells counted per root tip. Ultimately,
the process involves identifying micronuclei, counting MCN frequencies per 100 tetrads
(MCN‰), numbering mitotic cells, and calculating the mitotic index (MI). The results were
obtained and expressed as mean ± standard error.

2.5. Bioremediation of Acetamiprid-Contaminated Soil by Dominant Strain Md2

To investigate the degradation ability of Md2 on acetamiprid in simulated contami-
nated soil, 20 mg of acetamiprid was dissolved in 50 mL of methanol to prepare a 400 mg/L
acetamiprid–methanol solution. An amount of 50 mL of this solution was evenly sprayed
onto 1 kg of naturally air-dried soil, mixed thoroughly, and dried in a dark fume hood
for 24 h until the methanol evaporated. This process yields simulated contaminated soil
with an acetamiprid concentration of 20 mg/kg. An amount of 0.1 g of Md2 was sepa-
rately inoculated into sterilized (121 ◦C 30 min) and non-sterilized soil samples through
the plate punching method, ensuring thorough mixing and dispensing into small flower-
pots. The experiment included four treatment groups: (A) W-D: non-sterilized soil with
only acetamiprid added; (B) M-D: sterilized soil with only acetamiprid added; (C) W-
DJ: non-sterilized soil with Md2 inoculated and acetamiprid added; (D) M-DJ: sterilized
soil with Md2 inoculated and acetamiprid added. Subsequently, the soil was placed in a
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constant-temperature incubator with the cultivation conditions: a 12 h day cycle (25 ◦C,
light intensity of 40 lx) and a 12 h night cycle (20 ◦C, no light). Throughout the study,
sterile water was regularly added to maintain the soil moisture at 20% of its water-holding
capacity [34]. At specific intervals (0, 3, 5, 7, 10, and 14 days), 5 g of cultured soil samples
were obtained to measure the degradation rate, with three parallel experiments per group.

2.6. Analysis of Microbial Communities by High-Throughput Sequencing

DNA extraction from soil samples was performed using the FastDNA Spin Kit (MP
Biomedicals, Santa Ana, CA, USA). Validation of the isolated DNA was conducted through
0.8% agarose gel electrophoresis, while the quality of DNA was evaluated using a UV
spectrophotometer. DNA samples were preserved at −20 ◦C to facilitate further PCR ampli-
fication. For PCR amplification, the fungal ITS region of the 16S rRNA gene was amplified
using universal primers TCCGTAGGTGAACCTGCGG and TCCTCCGCTTATTGATATGC.
The PCR cycling procedure entailed an initial denaturation at 98 ◦C for 30 s, followed by
27 cycles of 15 s at 98 ◦C, 30 s at 50 ◦C, and 30 s at 72 ◦C, and a final extension at 72 ◦C
for 5 min [35]. The PCR products underwent purification using a 2% agarose gel DNA
Purification Kit before being dispatched to PacBio in Shanghai, China, for sequencing.

Community DNA segments underwent bipartite sequencing utilizing the Illumina
MiSeq system. The paired-end sequences were merged using FLASH (version 1.2.11, https:
//ccb.jhu.edu, accessed on 23 January 2023) and assigned to each sample based on unique
barcodes and primers using Mothur software (version 1.35.1, http://www.mothur.org,
accessed on 27 February 2023). Sequence analysis was performed using USEARCH soft-
ware (version 8.0.1517, http://www.drive5.com/usearch/, accessed on 27 February 2023).
Based on ≥97% similarity, sequences were assigned to the same operational classification
unit (OTU). OTUs were categorized using the RDP classifier (http://rdp.cme.msu.edu/,
accessed on 27 February 2023) with 80% confidence to obtain species-level taxonomy infor-
mation for each OTU. Subsequent analysis of α-diversity and β-diversity was performed
using QIIME (version 1.9.1) and R software (version 2.15.3) based on the normalized data
output [23]. Community diversity was estimated using the Chao1, observed species, Shan-
non, and Simpson indices. Principal coordinates analysis (PCoA) was used to visualize
intergroup distances and correlations in bacterial community structure.

3. Results and Discussion
3.1. Identification of Acetamiprid Degrading Strain

The dominant strains Md2 that utilized acetamiprid as the sole carbon and nitrogen
source were isolated from vegetation soil. The fungus Md2 is distinguished by its radial
peduncles of conidiophores that are colorless or mildly yellowish, featuring green spherical
conidiophores (Figure 1). Culturing in malt extract medium, Md2 appeared fluffy and
initially white, turning pale green after 1~2 days and subsequently turning to ash green
within 3~5 days. Certain colonies formed droplets that were either colorless or yellowish,
while the reverse side of the colony exhibited a light-yellow hue. Sequencing of the 16S
rRNA gene revealed 99.63% sequence identity with Aspergillus versicolor. Based on its
morphology and genetic sequencing data, Md2 was identified as Aspergillus versicolor.

3.2. Optimization of Acetamiprid Degrading Conditions

A multiple linear regression analysis was applied to the experimental data for three
factors (pH (X1), temperature (X2), and inoculum size (X3)). Each factor varied at three lev-
els (−1, 0, and 1). A polynomial quadratic equation was found to represent the percentage
of acetamiprid degradation, as given by the following mathematical expression:

Y = 56.58 − 4.09X1 + 2.72X2 − 0.047X3 + 0.92X1X2 − 1.65X1X3 + 0.50X2X3 − 16.58(X1)
2 − 12.87(X2)

2 − 9.50(X3)
2

where Y is the degradation rate of Md2 to acetamiprid, the regression coefficient R2 = 0.9824,
and p < 0.0001, indicating the accuracy of the employed model and good prediction of the
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response. The p-values for the three factors were as follows: pH, p = 0.0031; temperature,
p = 0.0220; and inoculum size, p = 0.9606. Among these, influence size: pH > temperature >
inoculum size. Through the analysis of contour plots, it was determined that the optimal
degradation rate of acetamiprid is observed at intermediate values of pH, temperature,
and inoculum size (Figure 2). The results indicated that the optimal conditions for Md2 to
degrade acetamiprid were pH 6.8, a temperature of 30 ◦C, and an inoculum size of 0.2 g.
According to the model fit, 55.30% of the acetamiprid degradation rate of 100 mg/L by
Md2 within 7 days was obtained, which closely matches the predicted value of 56.96%,
demonstrating the robustness of the response surface model in fitting the experimental data.
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3.3. Biotoxicity Analysis of Acetamiprid and Its Metabolites
3.3.1. Effects of Toxicity on Cabbage Seeds

This study examines the impact of acetamiprid on the germination and seedling
growth of cabbage to evaluate its toxicity to crops. Similarly, H. Qi et al. explored the
impact of neonicotinoids on the growth of cabbage. This experiment found that acetamiprid
and its metabolites can inhibit the seed germination and germination length of cabbage
(Figure 3), with acetamiprid showing a more significant effect, particularly at a concentra-
tion of 100 mg/L, significantly inhibited seed sprouting. Previous studies have found that
several pesticides, including acetamiprid, alpha-cypermethrin, and pyriproxyfen, inhibit
seed germination in various plants to varying degrees [24]. Such suppression happens
because specific concentrations of acetamiprid and various pesticides hinder seed res-
piration, affecting the germination process and resulting in inhibited seed germination,
thereby causing plant seeds to suffer from phytotoxicity [30]. Compared to the metabolite
group, the seed germination rate in the acetamiprid group was 18.00% to 28.66% lower,
indicating that the biotoxicity of the metabolites is lower than that of acetamiprid. Examin-
ing the germination length within 5 days (Figure 3b,c) indicates that germination length
decreases with increasing concentrations of acetamiprid and its metabolites, while the
seedling length in the group treated with 5 mg/L of metabolites was similar to that of the
control group. These results suggest that pesticides and products of their metabolism can
potentially accumulate and have additive and chronic effects [36,37]. In addition, the results
find that the toxicity of acetamiprid was reduced after biodegradation by the dominant
strain Md2, decreasing environmental residues and providing an eco-friendly solution for
soil remediation.
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3.3.2. Effects of Toxicity on E. coli

The toxicity analysis of Escherichia coli (E. coli) was conducted over a 0–12 h period,
with measurements taken every 2 h to evaluate the physiological impact of acetamiprid on
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bacterial growth. Figure 4 illustrates that introducing 100 mg/L acetamiprid significantly
inhibits the growth rate of E. coli, corroborating findings by Saurabh Bhatti et al. [32].
Furthermore, the metabolite group shows some initial inhibition of E. coli growth within the
first 6 h, followed by a diminishing inhibitory effect, with growth conditions approaching
those of the blank control group after 10 h. These results indicate that acetamiprid decreases
the growth rate and activity of E. coli, significantly suppressing bacterial growth. However,
the metabolites resulting from degradation by the dominant strain Md2 exhibit a transient
inhibitory effect on E. coli growth within a certain timeframe, with their toxicity significantly
lower than that of acetamiprid. This phenomenon may be attributed to the toxic effects
of acetamiprid or inhibitory intermediate metabolites on the growth metabolism of E. coli,
thereby inhibiting its growth. This will provide a theoretical and practical foundation for
future risk assessments of acetamiprid’s impact on biological systems.
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Figure 4. Effects of acetamiprid and its metabolites on Escherichia coli.

3.3.3. Micronucleus Test

Utilizing the micronucleus test, the degree of DNA damage in faba bean root tip cells
was assessed to predict the genetic toxicity caused by acetamiprid and its metabolites, as
demonstrated by MCN‰ and MI (Table 1). The study observed root tip cell micronuclei us-
ing an optical microscope (Nikon YS2 Alphaphot, Tokyo, Japan) at 400 times magnification.
Results from the study indicate that the MCN‰ and MI of faba bean root tip cells increase
with higher concentrations of acetamiprid and its metabolites. Similar findings by Li Wenyi
et al. [33] demonstrated an increase in MCN‰ with increasing exposure time of faba beans
to the same concentration of acetamiprid at 18, 24, and 48 h. These results suggest that
acetamiprid may cause damage to cell chromosomes, resulting in the formation of more
micronuclei during cell division. Conversely, the metabolite group exhibited significantly
lower MCN‰ and MI. The experimental results show that faba bean root tip cells were
hypersensitive to acetamiprid-induced micronuclei. This effect is attributed to the strong
mutagenic effect of acetamiprid on the root tip cells of faba bean seeds, which interferes
with the division of the spindle in mitotic cells in the plant, thus affecting cell division [38].
Furthermore, concentrations exceeding a certain threshold of acetamiprid impair the repair
ability of the cell itself, causing the spindle apparatus to lag and remain in the cytoplasm as
micronuclei. Recent research has established that pesticides not only act as chromosome
breakers but also disrupt spindle apparatus function [39]. Therefore, acetamiprid induces
micronuclei formation in faba bean root tip cells, causing severe damage to chromosome
and gene structures, with greater concentrations resulting in more significant genetic dam-
age. Importantly, the results confirm that the dominant strain Md2 effectively mitigates the
toxicity of acetamiprid.
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Table 1. MCN‰ and MI in faba root tip cells induced by acetamiprid and metabolites.

Concentration (mg/L) MCN‰ of
Acetamiprid Group

MI of Acetamiprid
Group

MCN‰ of Metabolite
Group

MI of Metabolite
Group

0 0.14 ± 0.14 f 0.20 ± 0.12 f 0.20 ± 0.11 f 0.15 ± 0.15 f
5 4.50 ± 0.40 e 4.82 ± 0.58 e 0.94 ± 0.14 e 1.23 ± 0.11 e
10 5.76 ± 0.40 d 8.34 ± 0.43 d 1.64 ± 0.11 d 2.16 ± 0.12 d
20 11.09 ± 0.22 c 10.84 ± 0.51 c 3.03 ± 0.29 c 3.15 ± 0.25 c
50 13.24 ± 0.31 b 13.61 ± 0.73 b 3.85 ± 0.11 b 4.45 ± 0.22 b

100 15.99 ± 0.25 a 16.28 ± 1.05 a 4.68 ± 0.40 a 5.81 ± 0.43 a

The data in the table are the mean ± standard error. The six different letters a, b, c, d, e, and f indicate significant
differences between these six groups in the statistical process.

3.4. Analysis of the Degradation Mechanism of Acetamiprid

Acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine,
C10H11ClN4, AAP) is a neonicotinoid insecticide. Figure 5 shows the possible major
metabolic pathways of acetamidine. In this study, the main metabolic pathway of ac-
etamiprid is the oxidative cleavage of the pharmacophore -N=C-CN of AAP by As-
pergillus versicolor Md2 to produce IM-1-3 (N-[(6-chloropyridin-3-pyridyl)methyl]-N-
methylacetamide). This intermediate undergoes further oxidation steps and ultimately
mineralizes into CO2 and H2O. At the same time, Aspergillus versicolor Md2 demethylates
AAP to produce N-demethylated acetamiprid IM-2-1 (N1-[(6-chloro-3-pyridyl)methyl]-N2-
cyanoacetamidine); the procedure is related to the cytochrome P450 [40]. After demethy-
lation, IM-2-1 is further degraded to IC-0 (6-chloronicotinic acid), which is eventually
mineralized to CO2 and H2O. The main metabolic pathway for the degradation of AAP by
Aspergillus versicolor Md2 is the production of IM-1-3 and IM-2-1, which are one magnitude
less biologically active than AAP [40]. IM-1-3 are almost biologically inactive owing to the
lack of the pharmacophore -N=C-CN [41]. Therefore, the metabolism of AAP by Aspergillus
versicolor Md2 is a process with decreased biotoxicity.
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3.5. Effect of Md2 on the Degradation of Acetamiprid in Soil and Microbial Community Diversity

Pesticides permeate the soil through methods such as spraying, root irrigation, and
seed coating. Although these chemicals are not specifically intended for the soil, the soil
ecosystem quietly endures their repercussions, prompting soil microorganisms to enact
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a range of responses against external interference. These responses include changes in
microbial diversity and community structure, the proliferation of favored populations,
and even the gradual decline of particular microbial communities that are incapable of
withstanding the exposure.

3.5.1. Degradation of Acetamiprid by Dominate Strain Md2

The degradation ability of Md2 towards acetamiprid was further evaluated based on
the residual content of acetamiprid in sterilized and unsterilized soils treated with Md2
(a comparison of average degradation rates is shown in Figure 6). On the third day, the
degradation rate of Md2 was less than 10%, possibly because excessive concentrations of
pesticides may cause toxic effects [42] and decrease degradation capability. However, the
degradation rate of Md2 exhibited a gradual increase with time. This suggests that the
dominant strain Md2 gradually adapted to the soil environment containing acetamiprid.
The unsterilized soil with added Md2 exhibited stronger degradation capability, reaching
the highest degradation rate of 51.27% by the 14th day. This demonstrates that Md2 can
proliferate steadily in soil, a result further corroborated by fungal community composition
analysis. Furthermore, higher degradation of acetamiprid by Md2 was observed in unster-
ilized soil (51.27%) compared to sterilized soil (37.08%), which may be due to the presence
of other types of natural acetamiprid-degrading microorganisms in the soil that metabolize
acetamiprid synergistically, thus aiding in soil remediation [43].
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3.5.2. Alpha Diversity Index Analysis

Alpha diversity was used to evaluate changes in bacterial and fungal diversity in soil
communities (Table 2). Compared to the CK, the alpha diversity index of the soil decreased
considerably under the influence of acetamiprid and its metabolites, demonstrating that
acetamiprid resulted in a reduction in the number, variety, and diversity of bacterial and
fungal species in the community. In the bacterial community (Figure 7a), the Chao1 and
observed species indices notably decreased in the acetamiprid treatment group, indicating
a reduction in bacterial community abundance. In the fungal community (Figure 7b), the
alpha diversity indices decreased with acetamiprid treatment, indicating a reduction in
fungal community abundance and diversity. However, the Shannon and Simpson indices
of the group after being treated with Md2 were restored to levels similar to CK, suggesting
that Md2 may partially degrade acetamiprid, leading to significant microbial diversity
recovery. From the experimental results, it emerges that acetamiprid significantly dimin-
ished the alpha diversity of bacteria and fungi in soil samples. This might be related to
some potentially degrading bacteria in the soil affecting acetamiprid [44]; such bacteria are
capable of utilizing acetamiprid as a substrate, which could induce an increase in their pop-
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ulation size in soils, thereby intensifying competitive selection among microorganisms [45],
resulting in a decrease in alpha diversity indices.

Table 2. Index table of alpha diversity of bacteria and fungi in soil samples supplemented with
acetamiprid and dominant strains.

Group Chao1 Observed-Species Shannon Simpson

Bacteria
CK 6038.21 4978.20 11.28 0.99
D 3626.98 3126.33 8.19 0.98
DJ 3417.11 3884.23 8.44 0.98

Fungi
CK 899.07 891.87 6.8 0.97
D 369.96 365.83 1.7 0.28
DJ 666.96 666.13 7.47 0.98
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3.5.3. Beta Diversity Index Analysis

Beta diversity is represented by principal coordinates analysis (PCoA) to illustrate mi-
crobial community differences among different sample groups. The PCoA results (Figure 8)
show that the three replicate samples of soil samples from the control group (CK) and
two experimental groups (D and DJ) cluster in different quadrants. In bacterial samples
(Figure 8a), the first principal component PCo1 (74.3%) has a greater impact on separation
than the second principal component PCo2 (8.6%). The sampling points of the two experi-
mental groups and the control group are distinctly separated, indicating significant changes
in soil bacterial community composition influenced by acetamiprid and the dominant
strain Md2. In fungal samples (Figure 8b), the first principal component PCo1 (52.3%) has
a greater impact on separation than the second principal component PCo2 (27.8%). The
distance between CK and DJ is significantly smaller than the distance between CK and D,
suggesting that fungal community composition underwent significant changes with the
invasion of acetamiprid and subsequent addition of Md2, which partially degraded the ac-
etamiprid, resulting in a restoration of stability in fungal community composition over time.
These results are further supported by the community composition at the phylum level.
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3.5.4. Effects of Dominant Strains and Acetamiprid on the Composition of
Microbial Communities

At the phylum level, the soil samples from the control group (CK) and experimen-
tal groups (D and DJ) exhibited high similarity in bacterial community composition, as
depicted in Figure 9. The dominant bacterial phyla detected included Actinobacteriota
(34.75~41.51%), Proteobacteria (28.14~29.02%), and Acidobacteria (15.37~17.80%). Treatment
with acetamiprid significantly increased the relative abundance of Firmicutes (10~12%),
Proteobacteria (about 6%), and Bacteroidetes (4~6%). Conversely, acetamiprid markedly
decreased the relative abundance of Acidobacteria (about 15%) and Chloroflexi (about 8%).
Studies suggest that Firmicutes, Proteobacteria, and Bacteroidetes are the main degrading
strains of petroleum, polycyclic aromatic hydrocarbons, and pesticides [46–48]. This sug-
gests that they may be involved in the biodegradation of acetamiprid, with enhanced
metabolic activity and a significant increase in bacterial numbers [49]. The decrease in the
relative abundance of certain phyla indicates that their activity was inhibited by neonicoti-
noid exposure, particularly at high doses. Proteobacteria are considered to be a syntrophic
taxon, while Acidobacteria are regarded as an oligotrophic taxon [50,51], explaining their
inverse relationship.
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In terms of fungi, the predominant phyla detected were Ascomycota (62.72~70.99%)
and Mortierellomycota (4.5~8.38%). The relative abundance of Basidiomycota in soil samples
treated with acetamiprid increased significantly (by about 9%). This may be because Basid-
iomycetes can degrade refractory organic matter [52] and thus increase their abundance. The
relative abundance of Ascomycota (about 32%) and Mortierellomycota (about 6%) decreased.
In soil samples spiked with acetamiprid-dominant degrading bacteria, the relative abun-
dance of Ascomycota reached 91.87%. This is because the dominant degrading bacterium of
acetamiprid is Aspergillus versicolor, which taxonomically belongs to Ascomycota. Results
showed that the addition of Md2 had an ameliorative effect on changing the relative abun-
dance of dominant soil phyla due to acetamiprid application, overcoming competition with
indigenous microorganisms, and colonizing the contaminated soil successfully. Ultimately,
this improves and strengthens the overall fungal community structure of the whole soil [53].
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At the genus level, the differences observed in soil samples treated with acetamiprid
and Md2 were more pronounced than at the phylum level (Figure 10). Acetamiprid
treatment increased the relative abundance of bacteria such as Lysobacter, Acinetobacter,
Flavobacterium, Variovorax, and Sphingomonas while decreasing the relative abundance
of Subgroup_6. Lysobacter and Acinetobacter are bacteria commonly associated with
plant root symbiosis, and acetamiprid application may inhibit certain symbiotic microbes
related to plant roots, allowing Lysobacter and Acinetobacter to gain a competitive ad-
vantage in resource competition. Flavobacterium is known to degrade various pesticides
including acetamiprid [54], Variovorax are key degraders of pesticides and petroleum
pollutants [55–57], and Sphingomonas is a versatile degrader capable of utilizing various
organic compounds for biodegradation [44]. This suggests their potential involvement in
acetamiprid degradation in polluted soil, utilizing pesticides as carbon or energy sources,
thus increasing their relative abundance. Comparing D to DJ, the relative abundance of
Variovorax and Sphingomonas in DJ was higher, likely due to a symbiotic relationship
between Md2 and these bacteria in the soil, synergistically degrading acetamiprid.
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Figure 10. Community composition of soil microorganisms (a) bacteria, (b) fungi supplemented with
acetamiprid and dominant strains at genus taxonomic level.

At the genus level for fungi, Aspergillus, Mortierellomycota, Fusarium, and My-
cosphaerella were detected, as well as other fungi. Mortierellomycota, Fusarium, and
Mycosphaerella decreased in relative abundance in D treatment soil samples, but Fusarium
recovered to a certain level after Md2 addition. Fusarium and Mycosphaerella play crucial
roles in decomposing organic matter in soil, and their functions may be inhibited by ac-
etamiprid use. In DJ treatment soil samples, Aspergillus reached a relative abundance as
high as 84.76%, likely due to Md2 belonging to the Aspergillus genus. This significant shift
in soil fungal community structure following the addition of dominant bacterial strains
in acetamiprid-contaminated soil suggests that with rapid proliferation of certain dom-
inant fungi, eventually the soil community can return to a steady state within a certain
period [49]. These results highlight the important role of dominant strain Md2 in mitigating
the toxic effects of acetamiprid on soil microbial community composition and demonstrate
the restorative effect of Md2 on changing the relative abundance of dominant phyla and
genera affected by acetamiprid.

4. Conclusions

This study provides new insights into the biodegradation of acetamiprid. The As-
pergillus versicolor Md2, isolated from soil, achieved a degradation rate of up to 55.30%
under optimal conditions (pH 6.8, a temperature of 30 ◦C, and an inoculum size of 0.2 g) to
100 mg/L of acetamidine. The toxicological properties of acetamiprid and its metabolites
were investigated. Acetamiprid and its metabolites inhibited the germination and growth
of cabbage seeds, exerted toxic effects on the growth of E. coli, and induced the formation
of more micronuclei during the cell division of fava bean root tip cells. Additionally, the
metabolites of acetamiprid were analyzed, revealing that its primary metabolic pathways
are N-demethylation to form IM-2-1 and oxidative cleavage of the cyanoimino group



Toxics 2024, 12, 572 14 of 16

to form IM-1-3. The toxicity of the metabolites was found to be lower than that of the
parent compound.

Furthermore, the introduction of the acetamiprid-degrading dominant strain increased
the relative abundance of certain phyla (such as Firmicutes, Proteobacteria, Bacteroidetes, and
Basidiomycota) and genera (such as Lysobacter, Acinetobacter, and Flavobacterium) in the soil,
possibly due to their involvement in the biodegradation of acetamiprid as a carbon and
nitrogen source. This introduction also decreased the relative abundance of some other
phyla (such as Acidobacteria, Chloroflexi, and Ascomycota) and genera (such as Subgroup_6,
Mortierellomycota, Fusarium, and Mycosphaerella) in the soil. The dominant strain Md2
can effectively reduce acetamiprid residues in the environment, decrease the toxicity of
the pesticide and its metabolites, and gradually adapt to contaminated soil, successfully
colonizing it, thus contributing to the recovery of dominant phyla and genera in the
soil microbiome.
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