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Abstract: We examined whether mixtures of urinary concentrations of bisphenol A (BPA), parabens
and phthalate metabolites were associated with serum lipid levels among 175 pregnant women
who enrolled in the Environment and Reproductive Health (EARTH) Study (2005–2017), including
triglycerides, total cholesterol, high-density lipoprotein (HDL), non-HDL, and low-density lipoprotein
(LDL). We applied Bayesian Kernel Machine Regression (BKMR) and quantile g-computation while
adjusting for confounders. In the BKMR models, we found no associations between chemical mixture
and lipid levels, e.g., total cholesterol [mean difference (95% CRI, credible interval) = 0.02 (−0.31,
0.34)] and LDL [mean difference (95% CRI) = 0.10 (−0.22, 0.43)], when comparing concentrations at
the 75th to the 25th percentile. When stratified by BMI, we found suggestive positive relationships
between urinary propylparaben and total cholesterol and LDL among women with high BMI [mean
difference (95% CRI) = 0.25 (−0.26, 0.75) and 0.35 (−0.25, 0.95)], but not with low BMI [mean
difference (95% CRI) = 0.00 (−0.06, 0.07) and 0.00 (−0.07, 0.07)]. No association was found by quantile
g-computation. This exploratory study suggests mixtures of phenol and phthalate metabolites
were not associated with serum lipid levels during pregnancy, while there were some suggestive
associations for certain BMI subgroups. Larger longitudinal studies with multiple assessments of
both exposure and outcome are needed to corroborate these novel findings.
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1. Introduction

Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that can interfere
with hormone action, and some are widely used in household products [1]. Specifically,
di(2-ethylhexyl) phthalate (DEHP) is widely used in plasticizers, making plastics softer and
more flexible, and can be found in many household items and medical devices, such as wall
and floor coverings, food packaging, and medical tubing. DEHP is further metabolized into
mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),
mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono(2-ethyl-5-carboxypentyl) ph-
thalate (MECPP) in humans. Other low-molecular-weight phthalate metabolites such as
monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP) and monobenzyl phthalate
(MBzP) are mainly found in people after exposure to personal care products (such as lotions
and deodorants) and other consumer products [2,3]. Bisphenol A (BPA) is commonly
used in polycarbonate plastics, epoxy resin in canned food liners, certain dental sealants
and thermal receipts [4]. Parabens are used as preservatives in cosmetics, personal care
products, pharmaceuticals, and food [5]. These EDCs can be detected and quantified in
urine samples collected from almost all individuals in the industrialized world [6,7].

The adverse effects of maternal EDC exposure during pregnancy on the offspring are
well-studied [8–13]. Pregnancy is a potentially sensitive period in relation to EDC exposure,
with increased susceptibility to dyslipidemia and cardiovascular disease (CVD) [14]. During
pregnancy, the body undergoes rapid cardiovascular and metabolic changes to adapt to the
energy needs of the mother and the fetus [15]. Dyslipidemia is a well-known CVD risk factor
characterized by high levels of triglycerides, total cholesterol and low-density lipoprotein
(LDL), as well as lower levels of high-density lipoprotein (HDL), in the circulation [16].
Dyslipidemia during pregnancy has been associated with adverse fetal development [17,18],
short- and long-term CVD risk [19–21] and higher BMI in the offspring [22]. It was reported
in mice that high cholesterol levels during pregnancy impaired long-term vascular function
in the mother [23], which supports the hypothesis that gestational dyslipidemia contributes
to cardiovascular disorders later in life. Therefore, it is important to study the impact
of EDCs during pregnancy, and the biomarkers and predictors of pregnancy-related and
long-term cardiovascular health.

Some phthalates, parabens and BPA have been identified as metabolic disruptors [24,25],
which contribute to metabolic disorders such as type 2 diabetes, fatty liver disease and
metabolic syndrome. Some have been considered obesogens [26], which are defined as
xenobiotic chemicals that can disrupt adipogenesis and energy balance [27]. Previously,
in single-chemical analyses, we have found associations between lipid profiles during
pregnancy and urinary phthalate metabolites [28], as well as parabens and phenols [29]. In
real life, we are exposed to a mixture of EDCs, which may be associated with cholesterol and
increase susceptibility to CVD. Interactions between these EDCs are biologically plausible,
because previous experimental studies have demonstrated that exposure to parabens,
phthalates and BPA can affect adipogenesis, as these chemicals can bind to peroxisome
proliferator-activated receptors (PPARs) [30], which are present in adipose tissue and are
key regulators of lipid metabolism [31,32]. When studying exposure to EDCs during
pregnancy and its health effects, modern statistical tools are now available to evaluate their
effects as a mixture [33].

Based on the metabolic-disrupting and obesogenic effects of phenols and phthalates,
and our previous single-pollutant results, we hypothesized that among these pregnant
women, mixtures of phenols and phthalate metabolite biomarkers would be related to
serum lipid levels reflecting dyslipidemia. We also hypothesized that the associations
would be stronger among women with overweight or obesity based on the presence of
PPAR-γ in adipose tissues. Given the limited evidence related to EDC mixture and lipid
profiles in pregnant women [34], we examined whether pregnancy mixtures of urinary
concentrations of BPA, parabens and phthalate metabolites were associated with serum
cholesterol levels among women who participated in the Environment and Reproductive
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Health (EARTH) Study. We further analyzed two subpopulations stratified by body mass
index (BMI) to examine these associations.

2. Materials and Methods
2.1. Study Population

This study evaluated a subset of women enrolled in the Environment and Reproduc-
tive Health (EARTH) Study, a prospective cohort at the Massachusetts General Hospital
(MGH) Fertility Center established to assess environmental and dietary determinants of fer-
tility [35]. Women using their own gametes for fertility treatment between 18 and 45 years
old were eligible to participate and approximately 60% of those contacted by the research
staff were enrolled. This exploratory study includes 175 women enrolled from 2005 to
2017 who have data on both urinary concentrations of phenol and phthalate metabolite
biomarkers as well as serum lipid biomarker measurements during pregnancy. The urine
samples and blood samples were collected on the same day. Participants’ date of birth was
collected at enrollment and their weight and height were measured by experienced study
staff. Sociodemographic, lifestyle, and medical history questionnaires were administered
to participants at the same entry visit. Study participants completed a comprehensive
questionnaire on medical, family and reproductive history, use of consumer products,
physical activity and smoking history. Infertility diagnosis under the Society of Assisted
Reproductive Technology definitions (SART) was assigned by physicians [36]. Pregnancy-
related covariates were abstracted from electronic medical records by trained study staff.
The study obtained approvals from the Human Subject Committees of the Harvard T.H.
Chan School of Public Health, MGH, and the Centers for Disease Control and Prevention
(CDC). Informed consent was signed by participants after the study procedures had been
explained, and all questions were answered in detail by trained staff.

2.2. Exposure Assessment

Enrolled women provided urine samples at the clinic during pregnancy. For this
study, we included the urine sample that was collected on the same day the blood sample
was collected at the clinic visit during pregnancy. The specific gravity of the urine was
measured by a handheld refractometer (National Instrument Company, Inc., Baltimore,
MD, USA) at room temperature, calibrated with deionized water before each measure-
ment. We included specific gravity as a covariate in the statistical models as previously
described [37,38]. Urine samples were stored at −80 ◦C after collection and then shipped
frozen to the CDC for analysis overnight. As previously described [39,40], we applied
strict quality controls and used online solid-phase extraction along with isotope dilution–
high-performance liquid chromatography–tandem mass spectrometry to quantify the
concentrations of phenol and phthalate biomarkers in the urine samples collected. The
measured chemicals included four phenols (BPA, methylparaben, propylparaben and
butylparaben) four phthalate metabolites [mono-n-butyl phthalate (MBP), mono-isobutyl
phthalate (MiBP), monoethyl phthalate (MEP) and monobenzyl phthalate (MBzP)] and
four DEHP phthalate metabolites [mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-
hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and
mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)]. The above twelve biomarkers have
been examined as a mixture in this study. Limits of detection (LODs) ranged from 0.2 to
1.2 µg/L, depending on the chemical biomarkers (Supplemental Table S1). Quality control
was performed as previously described using statistical probability rules [41].

2.3. Outcome Assessment

We included one non-fasting blood sample per participant collected on the same day
as the urine sample. If the participant provided several samples from different timepoints
during pregnancy, we randomly selected one sample at one timepoint. Blood samples
were prepared as previously described [29] and transferred to the Clinical and Epidemio-
logic Laboratory (CERLab) at Boston Children’s Hospital (Boston, MA, USA), which was
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certified by the Centers for Disease Control and Prevention/National Heart, Lung, and
Blood Institute Lipid Standardization Program. Total cholesterol, triglycerides and HDL
cholesterol levels (mg/dL) were measured in the serum sample with the Roche Cobas 6000
system, and reagents and calibrators were provided by Roche Diagnostics (Indianapolis, IN,
USA), which were approved by the Food and Drug Administration (FDA) for clinical use.

Triglycerides were measured enzymatically with correction for endogenous glycerol,
as previously described [42]. Cholesterol levels were also measured enzymatically [43].
The concentrations of HDL-C were measured by a direct enzymatic colorimetric assay,
which meets the rigid requirements established by the Lipid Standardization Program [44].
Triglyceride concentrations were determined with an intra- and inter- day-to-day repro-
ducibility of 1.8% and 1.7%, respectively, and the corresponding figures for HDL-C levels
were 3.3% and 1.7%. The coefficients of variation (CVs) for total cholesterol concentrations
were 1.7% and 1.6%. Non-HDL levels were calculated as the difference between total and
HDL cholesterol concentrations. LDL cholesterol was estimated using the Friedewald
formula [45].

2.4. Statistical Analysis

The demographic, reproductive characteristics of the study population and serum lipid
biomarker levels were described as median ± inter-quartile ranges (IQRs) for continuous
variables and count (percentage) for discrete variables. The serum lipid biomarker levels
were not log-transformed because they appeared to be normally distributed [28] based on
Kolmogorov–Smirnov tests for normality. Distributions of urinary concentrations of chem-
ical biomarkers were reported using percentiles, geometric mean and mean ± standard
deviations (SDs). Detection frequencies of the urinary chemical biomarkers were reported.
Given that the samples were analyzed in multiple batches over the years, some biomarkers
had different LODs at various time points; for those biomarkers, we reported the maximum
LOD (Supplemental Table S1). Concentrations below the LODs were imputed using R
package multiLODmice (version 0.1.0), which extended the multiple imputation method to
allow different LODs for different observations [46]. Correlations between urinary chemical
biomarkers were estimated using Spearman correlation coefficients. All urinary chemical
biomarkers were log-transformed by a natural logarithm before including them in the
statistical models.

Covariates were selected based on prior knowledge regarding their impact on ex-
posures and outcomes. Primary models were adjusted for urine specific gravity, age
(years), pre-pregnancy BMI (kg/m2) at sample collection, race (white/Caucasian and other,
combined given the relatively low proportion of women of color included in this study),
education level (graduate degree attainment), infertility diagnosis by physician (female
factor; male factor; unexplained cause), mode of conception [without treatment; use of
in vitro fertilization (IVF)/intrauterine insemination (IUI)], multiple gestations (singleton;
twins/triplets) and trimester at sample collection (1st; 2nd; 3rd). In stratified models,
the pre-pregnancy BMI was not adjusted. Mixture effect analyses were performed using
two modern approaches: Bayesian Kernel Machine Regression (BKMR) [47] and quantile
g-computation [48]. The BKMR method aims to model the complex relationship between a
number of variables and the outcome (dependent variable) using the flexible non-linear or
additive function h(·). The general modeling framework considered is:

g(µi) ∼ h(zi1, · · · , ziM) + βxi, i = 1, · · · , n

where g is the monotonic link function, µi = E(Yi), h is the flexible function of predictors
(exposure variables zi1, · · · , ziM), x is a vector of covariates considered to have linear
relationships with the outcome, and β is the corresponding coefficients for each sample i in
a total of n samples [47].

In the BKMR analysis, to account for the collinearity of biomarker concentrations,
hierarchical variable selection was applied, which means biomarker concentrations were
categorized into non-overlapping groups, and variable selection was performed first at the
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group level and then within groups [47]. We grouped the chemical biomarkers based on
prior knowledge of their sources, their correlations, and previous findings in the same co-
hort: (1) BPA and DEHP metabolites (MEHP, MEHHP, MEOHP and MECPP); (2) parabens
(methylparaben, propylparaben, butylparaben); (3) other phthalate metabolites (MBP,
MiBP, MEP, MBzP). In each analysis, the number of iterations was 20,000. We reported
group-specific posterior inclusion probabilities (PIPs) and conditional posterior inclusion
probabilities, which represent the group contribution and the chemical biomarker’s indi-
vidual contribution to the non-null association between exposure and the outcome.

In secondary analyses, we also evaluated stratification by BMI (above and below
25 kg/m2), which is the threshold for overweight and obesity [49], and studied chemi-
cals individually and as the molar sums of the chemicals within each group (only when
applying BKMR). We illustrated graphically for each chemical: (1) exposure–response rela-
tionships, while holding all other biomarkers at median concentrations, and (2) the mean
difference between the 75th and 25th percentiles (estimates and 95% credible intervals)
when concentrations of all other biomarker were held at the 25th, 50th, and 75th.

In the quantile g-computation models, we reported the mixture effect by the mean
differences and 95% confidence intervals for each outcome. All analyses were performed in
R environment (version 4.0.5). BKMR analyses were conducted using the R package bkmr
(version 0.2.2) and quantile g-computation analyses were conducted using the R package
qgcomp (version 2.15.2).

3. Results

The 175 women included in this exploratory study had a median (IQR) age of 35 (32,
38) years at sample collection during pregnancy and a pre-pregnancy BMI of 22.9 (21.2,
25.6) kg/m2 (Table 1). Thirty percent of the participants (N = 53) had overweight or obesity.
The majority of the cohort were white (88%) and highly educated (60% possessed a graduate
degree), and few were current or past smokers (29%). Of the women included in this study,
83% became pregnant after medical intervention, with 57% using IVF and 26% using IUI.
Most women had singleton pregnancies (82%). Compared to women with no exposure and
outcome assessment, the included women were more likely to undergo IVF treatments and
diagnosed female-factor-caused infertility [22,23]. The median (IQR) serum concentrations
of total triglycerides, total cholesterol, HDL, non-HDL and LDL cholesterol were 181 (112,
251), 229 (190, 279), 68 (58, 79), 161 (122, 204) and 120 (92, 158) mg/dL, respectively.

Table 1. Demographics, reproductive characteristics and serum lipid profiles among 175 pregnant
women enrolled in the Environment and Reproductive Health (EARTH) Study.

Demographic Characteristics

Age at pregnancy, years, median (IQR) 35 (32, 38)
Race, N (%)

White 154 (88)
Black 5 (2)
Asian 8 (5)
Other 8 (5)

Pre-pregnancy body mass index, kg/m2 22.9 (21.2, 25.6)
< 25, N (%) 122 (70)
≥ 25, N (%) 53 (30)

Ever smoked, N (%) 50 (29)
Graduate degree attainment, N (%) 105 (60)
Primary infertility diagnosis, N (%)

Male factor 58 (33)
Female factor 59 (33)
Unexplained 58 (33)

Mode of conception, N (%)
IUI 45 (26)
IVF 101 (57)
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Table 1. Cont.

Demographic Characteristics

Natural 29 (17)
Number of babies, N (%)

Singleton 144 (82)
Twins and triplets 31 (18)

Trimester of sample collection, N (%)
1st 61 (35)
2nd 47 (27)
3rd 67 (38)

Serum lipid level, mg/dL, median (IQR)
Total triglycerides 181 (112, 251)
Total cholesterol 229 (190, 279)
HDL cholesterol 68.0 (58.0, 79.0)
Non-HDL cholesterol 161 (122, 204)
LDL cholesterol 120 (92.0, 158)

N: Number of participants. IUI: intrauterine insemination. IVF: in vitro fertilization. HDL: high-density lipopro-
tein. LDL: low-density lipoprotein.

The detection frequencies for BPA (87%), butylparaben (58%) and MEHP (69%) were
lower than for other chemical biomarkers (≥93%) (Supplemental Table S1). Compared
to adult females participating in the National Health and Nutrition Examination Survey
(NHANES) [6], women in this study had similar urinary chemical biomarker concentrations,
except for lower concentrations of MBzP and higher concentrations of propylparaben.
Urinary concentrations of the four DEHP metabolites (MEOHP, MEHHP, MECPP, MEHP)
were highly correlated (Spearman r range from 0.76 to 0.98, Supplemental Figure S1). DEHP
metabolites were moderately correlated with BPA (Spearman r range from 0.37 to 0.47).
In addition, concentrations of methylparaben and propylparaben were highly correlated
(Spearman r = 0.86). Butylparaben was weakly correlated with other chemicals (Spearman
r ≤ 0.31).

The primary BKMR models showed no significant overall mixture or single-pollutant
effects when comparing mixed-exposure biomarker concentrations at the 75th to the
25th percentile on total triglycerides (mean difference = −0.03, 95% CRI = −0.29, 0.23), total
cholesterol (mean difference = 0.02, 95% CRI = −0.31, 0.34), HDL (mean difference = 0.00,
95% CRI = −0.27, 0.26), non-HDL (mean difference = 0.04, 95% CRI = −0.27, 0.35), or LDL
(mean difference = 0.10, 95% CRI = −0.22, 0.43) cholesterol (Figure 1), although PIPs were
greater than 50% in some models (Supplemental Table S2). In addition, no significant inter-
actions between chemical biomarkers were observed (Figure 1). In addition, no associations
were found between a quartile increase in the chemical biomarker mixture and total triglyc-
erides using quantile g-computation (mean difference = −0.11, 95% CRI = −0.32, 0.09), total
cholesterol (mean difference = 0.04, 95% CRI = −0.17, 0.26), HDL (mean difference = 0.05,
95% CRI = −0.24, 0.34), non-HDL (mean difference = 0.03, 95% CRI = −0.18, 0.25) or LDL
(mean difference = 0.09, 95% CRI = −0.17, 0.34) (Supplemental Table S3).

We then examined the associations between chemical biomarker mixtures and lipid
profiles, stratifying by BMI. We observed suggestive positive relationships of urinary propy-
lparaben with total cholesterol and LDL among women with high BMI [mean difference
(95% CRI) = 0.25 (−0.26, 0.75) and 0.35 (−0.25, 0.95), conditional PIPs = 79.0% and 83.2%,
Figure 2 and Supplemental Table S4] when comparing concentrations at the 75th to the 25th
percentile, fixing other chemicals at their medians. The corresponding figures of urinary
propylparaben with total cholesterol and LDL were 0.00 (−0.06, 0.06) and 0.00 (−0.07,
0.07), with conditional PIPs of 24.8% and 25.5% among women with low BMI. While we
observed different estimates for women with high and low BMI, the differences were not
statistically significant. The associations between mixtures of these EDCs and lipid profiles
did not differ between high- and low-BMI groups when applying quantile g-computation
(Supplemental Table S5).
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Figure 1. Bayesian Kernel Machine Regression (BKMR) mixture associations of phenol and phthalate
metabolites and lipid biomarkers. (A–E) Mixture associations with total triglycerides, total cholesterol,
HDL, non-HDL and LDL cholesterol in BKMR. Upper half: exposure–response relationships for
each biomarker while holding all other biomarkers at their medians. Lower half: mean difference
between the 75th and 25th percentiles of exposure (estimates and 95% credible intervals) when other
biomarker concentrations were fixed at the 25th, 50th, and 75th percentiles. BKMR models were
adjusted for age, education level, race, infertility diagnosis, mode of conception, number of fetuses,
trimester and specific gravity. HDL: high-density lipoprotein. LDL: low-density lipoprotein. MEHP:
mono(2-ethylhexyl) phthalate. MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate. MEOHP: mono(2-
ethyl-5-oxohexyl) phthalate. MECPP: mono(2-ethyl-5-carboxypentyl). MBP: mono-n-butyl phthalate.
MiBP: mono-isobutyl phthalate. MEP: monoethyl phthalate. MBzP: monobenzyl phthalate.
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Figure 2. Bayesian Kernel Machine Regression (BKMR) mixture associations of phenol and phthalate
metabolites and lipid biomarkers when stratified by BMI. (A–E) Mixture associations with total
triglycerides, total cholesterol, HDL, non-HDL and LDL cholesterol in BKMR. Upper half: exposure–
response relationships for each biomarker while holding all other biomarkers at their median. Lower
half: mean difference between the 75th and 25th percentile of exposure (estimates and 95% credible
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intervals) when other biomarker concentrations were fixed at the 25th, 50th, and 75th percentiles.
BKMR models were adjusted for age, education level, race, infertility diagnosis, mode of conception,
number of fetuses, trimester and specific gravity. HDL: high-density lipoprotein. LDL: low-density
lipoprotein. MEHP: mono(2-ethylhexyl) phthalate. MEHHP: mono(2-ethyl-5-hydroxyhexyl) ph-
thalate. MEOHP: mono(2-ethyl-5-oxohexyl) phthalate. MECPP: mono(2-ethyl-5-carboxypentyl).
MBP: mono-n-butyl phthalate. MiBP: mono-isobutyl phthalate. MEP: monoethyl phthalate. MBzP:
monobenzyl phthalate.

4. Discussion

In this exploratory study, we examined whether mixtures of urinary concentrations
of four phenol and eight phthalate metabolites were associated with serum lipid levels
during pregnancy, including total triglycerides, total cholesterol, HDL, non-HDL and LDL
cholesterol, among pregnant women in the EARTH Study cohort. The mixture models were
evaluated using BKMR modeling and quantile g-computation. We observed no overall
associations of urinary phenol and phthalate metabolite biomarker mixtures with lipid
biomarkers in both models. Nevertheless, when stratified by BMI, we found suggestive
positive relationships between propylparaben, total cholesterol and LDL among women
with high BMI. It is important to note that these relationships were not statistically signifi-
cant, possibly due to the moderate sample size included in the study, which limited our
study power. No difference in mixture effect was observed using quantile q-computation
models among women with high and low BMI.

To the best of our knowledge, only one cohort study examined the mixture effect
of EDCs on circulating lipid levels in pregnant women [34]. The authors evaluated BPA,
phthalates, polybrominated diphenyl ethers (PBDEs), and per- and polyfluoroalkyl sub-
stances (PFAS), but not parabens. No overall mixture associations with the examined lipids
were reported, either. However, they identified urinary MBzP, measured at 16 weeks of
pregnancy, as an important contributor to triglycerides levels. Other individual phthalate
biomarkers and BPA were weak contributors to the association with total lipid, cholesterol
and triglycerides levels, which is consistent with our results. In our study, we found no
associations between the urinary concentration of MBzP and triglyceride levels. This may
be partially explained by the fact that the pregnant women in our study had considerably
lower urinary MBzP concentrations compared to women in the HOME Study (75th quantile:
5.75 µg/L vs. 24.5 µg/L). Another reason may be related to the strategy used when analyz-
ing chemical biomarker exposure mixtures, as our primary analyses applied hierarchical
variable selection in BKMR and included the exposure biomarkers as groups based on their
correlation and previous publications in EARTH. Given the scarce literature on the topic in
relation to pregnant women, additional studies are warranted.

Previously, in single-pollutant analyses among the same women in the EARTH Study,
it was found that urinary propylparaben concentrations were positively associated with
total cholesterol, as well as non-HDL and LDL cholesterol, levels when comparing concen-
trations in the highest tertile to concentrations in the lowest [29]. They also found several
associations between urinary MBP, BPA and several DEHP metabolites and lipid levels
when comparing the concentrations in the highest group versus the lowest group [28]. In
single-biomarker analyses, urinary propylparaben was associated with total, non-HDL and
LDL cholesterol. In the previous study, urinary concentrations of pollutants were evaluated
as categorical variables, and statistical testing was performed against the lowest quantiles,
whereas in this mixture manuscript, urinary biomarker concentrations were examined as
continuous variables within a determined group. Some of the previously observed positive
associations may also be neutralized by the negative effects of other EDC biomarkers. For
example, there is a decreasing trend in the association between MiBP and total cholesterol,
non-HDL and LDL (Figure 1). The moderate sample size included in the study also lim-
ited our study’s ability to find significant associations by BKMR. This may explain the
discrepancy between single and mixture model results for the other examined biomarkers.
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We observed suggestive positive relationships of propylparaben with total choles-
terol and LDL among women with high BMI scores. Some parabens were identified as
obesogens [26]. Wen and colleagues found positive associations between urinary paraben
concentrations, including propylparaben and mixtures of parabens, and gestational weight
gain among pregnant women in Wuhan, China [50]. They also observed that these associa-
tions were stronger among women with overweight or obesity compared to women with
normal- and underweight.

Exposure to parabens might result in elevated circulating lipid levels by activating
the peroxisome proliferator-activated receptor (PPAR)-γ [30], which is presented mainly in
adipose tissue and key regulators in the lipid metabolism [31,51]. In addition, parabens
were found in adipose tissue [52]. Thus, women with overweight and obesity might be more
sensitive to paraben exposure than others. Particularly, urinary propylparaben showed a
suggestive positive relationship with total cholesterol and LDL among women with high
BMI, and was the main contributor. Women in our study had higher concentrations of
parabens compared to the Wuhan cohort, and higher concentrations of propylparaben
compared to adult females participating in NHANES, while they had similar concentrations
of other parabens [6]. This fact may explain why we observed a stronger relationship with
propylparaben in single-pollutant analyses in BKMR, but not with the other parabens
among women with higher BMI. However, additional studies on both animal models and
humans are required to further understand the relationship between BMI, parabens and
circulating lipid profile.

There are some limitations to this study that should be noted. First, the generalizability
of the results may be limited as this study includes subfertile women seeking treatment in
fertility clinics. However, these women are also at higher risk of CVD compared to women
in the general population [53]. Second, we cannot confirm that all serum samples were
collected after fasting, and this may affect the results. Third, lipid levels physiologically
rise during pregnancy, and adjusting for trimester may not fully account for this change.
Fourth, the sample sizes after stratification by high (N = 53) and low BMI (N = 122) were
relatively low, which may limit our ability to detect significant associations. Fifth, exposure
misclassification is possible considering the biomarkers’ short biological half-lives [3]
and the episodic nature of exposures [54], especially since we used one urine sample per
study participant. However, in the context of EARTH, we have previously reported the
moderate to high correlations of chemical biomarkers measured across multiple urine
samples in women demonstrating low variability [55]. Lastly, as a cross-sectional analysis,
reverse causation is also possible. Residual confounding by other exposures, lifestyle and
nutritional factors is possible.

Despite the above limitations, our study has several strengths. Our study is one
of the first studies to evaluate mixtures of BPA, parabens and phthalate metabolites si-
multaneously in pregnant women. A major strength of this study is that we applied
two sophisticated statistical methods to estimate associations of phenol and phthalate
biomarkers with outcomes of interest as a mixture: BKMR and quantile g-computation.
Quantile g-computation assumes linearity and additivity on the quantile scale of the chemi-
cal biomarkers’ concentrations, and estimates the association between a quantile increase
in all exposed chemical biomarkers simultaneously and the outcome [48]. The study is
interpretable and efficient, in line with the conventional mode of comparison among quan-
tiles. BKMR, on the other hand, allows for non-additive interactions between chemical
biomarkers and complex non-linear exposure–response relationships [47]. This modeling
method is flexible and powerful, yet not that interpretable or efficient compared to quantile
g-computation. Furthermore, hierarchical variable selection was applied when taking
highly correlated pollutants and pollutants with the same sources, such as DEHP metabo-
lites, into account. This grouping method utilized existing knowledge of co-exposure and
observed correlations, enabling the more precise evaluation of individual relevance. Previ-
ously, approaches modeling EDC exposures as a mixture have been successfully applied in
reproductive epidemiology [56–59], and provided valuable insights for their joint effects
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on glucose metabolism during pregnancy, ovarian reserves, lipid profiles in adult women,
and risk of infertility. Applying such sophisticated statistical methods will help us better
understand the effects of mixtures of EDCs on human health. Other strengths include the
comprehensive adjustments for other reproductive and demographical confounders, as
well as the evaluation of effects on lipid profiles in a well-established sub-fertile cohort
with higher CVD risk, who may be particularly vulnerable to the impacts of EDCs as
metabolic disruptors.

5. Conclusions

In summary, we observed overall no association between a mixture of BPA, parabens
and phthalate metabolites and circulating lipid levels, including total triglycerides, to-
tal cholesterol, and HDL, non-HDL and LDL cholesterol, among 175 pregnant women.
However, we found suggestive positive associations between urinary propylparaben, total
cholesterol and LDL among women with high BMI. This study suggests there is no asso-
ciation between the mixture of phenols and phthalate metabolites and serum lipid levels
among pregnant women, while there are some suggestive associations for certain BMI
subgroups. Larger longitudinal studies with multiple assessments of both exposure and
outcome are needed to corroborate these novel findings. These results, if confirmed, add to
our knowledge of the effects of exposure to multiple EDCs and pregnancy health.

Note: The findings and conclusions in this report are those of the authors and do not
necessarily represent the official position of the Centers for Disease Control and Preven-
tion (CDC). Use of trade names is for identification purposes only and does not imply
endorsement by the CDC, the Public Health Service, or the U.S. Department of Health and
Human Services.
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