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Abstract: Biochar is crucial for agricultural output and plays a significant role in effectively eliminat-
ing heavy metals (HMs) from the soil, which is essential for maintaining a soil–plant environment.
This work aimed to assess machine learning models to analyze the impact of soil parameters on
the transformation of HMs in biochar–soil–plant environments, considering the intricate non-linear
relationships involved. A total of 211 datasets from pot or field experiments were evaluated. Fourteen
factors were taken into account to assess the efficiency and bioavailability of HM–biochar amendment
immobilization. Four predictive models, namely linear regression (LR), partial least squares (PLS),
support vector regression (SVR), and random forest (RF), were compared to predict the immobiliza-
tion efficiency of biochar-HM. The findings revealed that the RF model was created using 5-fold
cross-validation, which exhibited a more reliable prediction performance. The results indicated that
soil features accounted for 79.7% of the absorption of HM by crops, followed by biochar properties at
17.1% and crop properties at 3.2%. The main elements that influenced the result have been determined
as the characteristics of the soil (including the presence of different HM species and the amount of
clay) and the quantity and attributes of the biochar (such as the temperature at which it was produced
by pyrolysis). Furthermore, the RF model was further developed to predict bioaccumulation factors
(BAF) and variations in crop uptake (CCU). The R2 values were found to be 0.7338 and 0.6997,
respectively. Thus, machine learning (ML) models could be useful in understanding the behavior of
HMs in soil–plant ecosystems by employing biochar additions.

Keywords: biochar; heavy metal; transformation; adsorption; predictive models

1. Introduction

Heavy metal (HM) contamination has become an emerging environmental issue
worldwide [1]. Excessive HMs in soils may pose risks to humans through their presence in
the food chain, which has attracted academic attention and public concerns [2]. A range of
adverse health effects has been reported, such as lung cancer, bone fractures, and kidney
dysfunction [3]. The most effective method for decreasing crop uptake of HMs is the
use of in situ remediation techniques to reduce the bioavailability of HMs in soil–plant
environments [4]. Numerous materials have been evaluated for the immobilization of
HMs [5–7]. In recent years, biochar has been regarded as a promising material that can
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reduce the bioavailability and mobility of HMs in contaminated soils [8]. Biochar is a carbon-
rich product that is heated in a closed container under limited air. It has the advantages
of low cost and enhancement of soil nutrients and crop production [9] and has a great
potential to reduce the transformation of HMs in soils [10,11].

Biochar efficiency is significantly dependent on multiple variables, such as raw materi-
als, pyrolysis conditions, and residence time, which cause different biochar characteristics.
Guo et al. [12] reported that pH and soil organic carbon factors affect the bioavailability
of HMs in soils. Biochar could change soil properties such as pH and organic carbon and
significantly change the soil extractable HMs [13]. In the use of biochar for the remedia-
tion of HM-contaminated soils, it is critical to consider the key factors determining the
effectiveness of the biochar to adjust the right direction for HM reduction in the soil–plant
environment. Biochar has a strong sorptive or interactive capacity due to its highly func-
tionalized surface [14]. Its attractive properties make it a promising material for a multitude
of applications, including species assimilation and spontaneous preliminary concentra-
tion [15]. The process by which biochar exerts its influence on the qualities of soil is an
essential component in determining the extent of its advantages and the compromises
associated with its use [16]. As a method for cleaning up polluted soil, biochar has recently
garnered a significant amount of attention [17]. The farming industries have been able to
expedite the development of biochar implementation on a large scale as an effective tool
for crop production and decontamination [18]. In general, the conventional experimental
method is control-variable; it is not in favor of identifying the relationships between biochar
and HMs transformation. Therefore, the use of biochar modeling in a strategic approach
and the execution of the model’s predictions.

Studies have shown that biochar may enhance soil properties and influence soil redox
reactions. Biochar has the capacity to significantly reduce the movement and accessibility of
HMs in polluted soils, hence decreasing their absorption by crops and ultimately enhancing
plant development [16]. The rhizosphere soil undergoes modification due to the influence
of root exudates, resulting in an attainable zone, whereas the movement of HMs may be
changed. Root exudates excrete H+ ions and organic acids, acidifying the rhizosphere
and increasing plant nutrient absorption [17]. The addition of biochar to polluted soil has
been proposed as a potential technique for immobilizing HMs. Biochar has a higher cation
exchange capacity, more functional groups, more microporosity, and a larger surface area,
all of which contribute to its improved performance [14]. The diversity and characteristics
of biochar and complex soils affect the HM adsorption ratio in the soil. Soil HM immobi-
lization efficacy varies greatly depending on the cation exchange capability and organic
matter content. Due to the significant interactions between soil pH and biochar oxygen
concentration, biochar surface functional molecules may alter the HM adsorption fraction
in soils [15]. Conducting scientific experiments to study the limits of HM immobilization
ratios is a tedious, laborious, and costly approach. It is necessary to devise a novel approach
in order to have a deeper comprehension of these aspects.

The machine learning (ML) method is an emerging tool to elaborate complicated mul-
tivariate relationships, especially with the rapid development of interpretable ML models
and interpretation methods [19–21]. ML is able to learn the relationships between the input
variables and output variables from a training dataset; the relationships can used to predict
the new case. The application of the ML technique has been successfully demonstrated to
have the ability to predict the pollutant’s mobility in soils [22]. ML methods have been
used to predict HMs immobilization in biochar-amended soils [23]. However, machine
learning is limited by the complexity of the relationship between biochar and soil prop-
erties. Different input sets had a significant impact on the results of the feature analysis.
There is a lack of general models to predict the relative contribution of biochar amendment
in the soil–plant environment. Thus, a data-driven methodology is needed to explore the
effectiveness of biochar based on different input variable sets.

The present research investigation employed machine learning methods for predicting
the efficacy of biochar-HMs in immobilizing within the soil–plant environment. In this
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study, four methods, namely linear regression (LR), partial least squares (PLS), support
vector regression (SVR), and random forest (RF), were applied to build a predicting model
for evaluating the effectiveness of biochar in a soil–plant environment. Overall, 211 sets of
experimental data from plant or field investigations were assessed. To forecast the bioavail-
ability and immobilization efficiency of biochar amendments for HMs, 14 influencing
factors were identified. This study aimed to perform the following: (1) evaluate the ML
models for predicting HM immobilization efficiency in biochar-amended soils; (2) compare
the predicting accuracy of ML models with traditional models; and (3) explore the influence
of input variables sets on prediction accuracy and feature analysis.

2. Material and Methods
2.1. Data Collection and Modeling Methods

The experimental data of the biochar application for HM remediation in soil–plant
environments were collected from the previous literature [24–42]. The data were extracted
directly from the tables in the published literature to form graphs using the Web Plot
Digitizer Software (https://apps.automeris.io/wpd/, accessed on 4 July 2024). More details
are given in Supplementary Materials. A total of 211 sets of experimental data from pot or
field experiments were evaluated. To predict immobilization efficiency and bioavailability
of biochar amendments for HMs, the following 14 influencing factors were considered (X):
Pot experiment or filed experiment (X1); type of crops (X2); application rate (X3); feedstock
(X4); pyrolysis temperature (X5); clay content (X6); silt content (X7); sand content (X8); soil
pH (X9); soil organic carbon (X10); crop duration (X11); total HMs in soil (X12); available
HMs in soil (X13); and species of HM in soils (X14). Furthermore, influenced factors were
divided into three segments as follows: (a) soil characteristics (X6, X7, X8, X9, X10, X12, X13,
and X14); (b) biochar characteristics (X3, X4, and X5); and (c) crop characteristics (X1, X2,
and X11).

The Python language was used to call linear regression (LR), partial least squares (PLS),
support vector regression (SVR), and random forest (RF) from the scikit-learn (https://
scikit-learn.org/stable/ (accessed on 4 January 2022)) for modeling. The detailed methods
are given in the supplementary data section.

2.2. Data Analyzing

The immobilization efficiency was used to investigate the impact of biochar on mobility
of HMs and calculated using the following equation [43]:

Immobilization efficency (IE) =
Csoil − Cbiochar+soil

Csoil
× 100% (1)

where Csoil is the available concentration of HMs in soils before the biochar amendments,
and Cbiochar+soil is the available concentration of HMs in soils after biochar amendments.

The change in crop uptake and bioaccumulation factors were used to evaluate the
impact of biochar on HMs bioavailability in the soil–crop systems and calculated by the
following equations [25]:

Change in crop uptake (CCU) =
Ccrop − Cbiochar+crop

Ccrop
× 100% (2)

where Ccrop is the concentration of HMs in crops before the biochar amendment, and
Cbiochar+crop is the concentration of HMs in crops after biochar amendments.

Bioaccumulation factors(BAFs) =
C′

crop

C′
soil

× 100% (3)

where C′
soil is the concentration of HMs in soils, C′

crop is the concentration of HMs in crops.

https://apps.automeris.io/wpd/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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2.3. Linear Regression (LR)

Linear regression is a regression analysis that uses the least square function, and called
the linear regression equation, to model the relationship between one or more independent
and dependent variables [44]. This function is a linear combination of one or more model
parameters called regression coefficients. The condition with only one independent variable
is called simple regression, and the condition with more than one independent variable is
called multiple regression.

2.4. Partial Least Squares (PLS)

The partial least squares method is a multivariate statistical data analysis method.
The PLS method projects the high-dimensional data space of the independent variable and
dependent variable into the corresponding low-dimensional space to obtain the mutually
orthogonal eigenvectors of the independent variable and dependent variable, respectively,
and then establishes the univariate linear regression relationship between the eigenvectors
of the independent variable and dependent variable [45]. Partial least squares regression
analysis focuses on the characteristics of principal component analysis, canonical correlation
analysis, and linear regression analysis.

2.5. Support Vector Regression (SVR)

SVR is an important application branch of SVM (support vector machine), and SVM
itself is proposed for binary classification [46]. SVR is a regression method where the
optimal hyperplane does not seek the “most open” of two or more types of sample points
like SVM; it seeks the minimum total deviation of all sample points from the hyperplane
instead. Support vector regression uses the idea of support vector and Lagrange multiplier
to regression analyze the data when fitting. Compared with the least square method,
SVR has no limitation in that it can only be used for linear regression, and it is also suitable
for nonlinear models. At the same time, the least squares method has a poor regression
effect for variables with multicollinearity; support vector regression does not need to worry
about multicollinearity.

2.6. Random Forest (RF)

Random forest is an algorithm that uses multiple decision trees to train, classify,
and predict samples. It is mainly used in regression and classification scenarios [47].
While classifying the data, RF can also give the importance score of each variable and
evaluate the role of each variable in classification. Random forest is a well-known ensemble
learning method, which belongs to the part of the ensemble learning algorithm where
there is no dependency between weak learners. Because of this advantage, it can run in
parallel. Random Forest Regressor is almost the same as RF classifier. During prediction,
the results of all trees are averaged to obtain the final prediction result value. RF training
can be parallelized and fast. After training, the contribution of each feature to the output
can be given. At the same time, it has scale invariance and does not need feature scaling.
RF is not as easy to overfit as a decision tree, as RF is insensitive to missing values and is
very robust.

2.7. Models’ Predictability and Generalizability

The original data was randomly divided into 10 equal sub-samples. Approximately
7.5 sub-samples (training data) were used to optimize the model using LR, PLS, SVR, and
RF algorithms. However, the remaining 2.5 sub-samples (testing data) were used to test the
evaluation of the model. Additionally, the GridSearchCV method was used for five-fold
cross-validation to select for the optimal results and parameters for the study. Model
accuracy was evaluated using the regression coefficient (R2), mean squared error (MSE),
root mean squared error (RMSE), and mean absolute error (MAE). The following are the
mathematical representations.
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3. Results and Discussion
3.1. Comparison of Biochar, Soil, and Crops in the Pearson Correlation Matrix

Pearson’s correlation matrix is given in the supplementary data (Tables S1–S3) for
biochar, crops, and soil characteristics. Results indicated that the applied biochar content
ranged between 0.22 and 10%, with a slight amount reaching 5%. It has been reported
that a higher rate of biochar application probably has no impact on the immobilization
of HMs [48]. Furthermore, biochar is the most effective remediation agent for HMs when
applied at a rate of below 5%. According to the results, the pyrolysis temperature ranged
between 300 and 750 ◦C, although 500 ◦C was found to be more significant due to obtaining
significant results. HMs were found to be highly susceptible to adsorption on the biochar
that was generated at high temperatures due to its large specific surface and reduction in
functional groups [49]. Furthermore, the results indicated that 92% of biochar was generated
from lignocellulosic biomass, while 8% was derived from animal waste. According to the
results of the assessment of HM content in soils, the average content of the HMs in soils
followed the following order: Pb (996.26 mg/kg) > Zn (684.96 mg/kg) > Cu (347.83 mg/kg)
> Cd (24.05 mg/kg). It was found that most of the HMs exceeded the national threshold
levels [50]. It was found that pH values were observed in the soils, ranging from 4.71 to 8.06,
while 80% were determined to be lower than 7. It has been suggested in several studies
that biochar is usually alkaline and, as a result, could increase soil pH [51]. Adding biochar
to acidic soils can raise the pH of the soil, which results in HM precipitates forming,
more effectively immobilizing HM [52]. According to the results of crop characteristic
experiments, pot experiments accounted for 94% of the results, while field experiments
contributed 6%. Crop species were found with the following sequence: vegetable (66%)
> corn (19%) > wheat (11%) > rice (4%). Additionally, it has been found that the average
crop duration was less than 90 days for the entire crop season. Pearson’s correlation matrix
illustrating all the influence factors before modeling is shown in Figure 1. It was found
that there was a non-significant correlation observed between the two variables, and the
greatest absolute value was less than 0.60. The results showed that all the input parameters
were independent variables in the model.

3.2. Statistical Analysis of the Prediction Models

HM immobilization efficiency was evaluated using four different models (LR, PLS,
SVR, and RF) to determine the effectiveness of biochar in improving HM immobilization.

Linear regression is a statistical technique that utilizes the least squares function,
known as the linear regression equation, to establish a mathematical model representing
the connection between independent and dependent variables. Regression coefficients are
model parameters that are combined linearly. Partial least squares regression analysis
is a technique used in multivariate statistical data analysis. It involves transforming the
high-dimensional data space of the independent and dependent variables into a lower-
dimensional space. This transformation allows us to obtain mutually orthogonal eigenvec-
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tors for both the independent and dependent variables. The text focuses on the attributes of
principal component analysis, canonical correlation analysis, and linear regression analysis.
SVR is a significant subdivision of SVM that is specifically designed for binary classification
tasks. The analysis of data during fitting is conducted using the concepts of support vector
and Lagrange multiplier. SVR, unlike the least square approach, does not have any limits
and is well-suited for nonlinear models. RF is a machine learning technique that uses a
collection of decision trees to train, categorize, and make predictions on data. The method is
fast, parallelized, and scale-invariant. It is not affected by missing values and is persistent.
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Figure 1. Pearson’s correlation matrix of influencing factors. (X1: experiment scale, X2: type of crops,
X3: application rate (%), X4: feedstock, X5: pyrolysis temperature, X6: clay content, X7: silt content,
X8: sand content, X9: soil pH, X10: soil organic carbon, X11: crop duration, X12: total heavy metals in
soil, X13: available heavy metals in soil, X14: type of heavy metals, and Y: immobilization efficiency).

The statistical parameters of the models used to predict the immobilization efficiency
of HMs by biochar amendment are presented in Table 1, including mean error (MSE),
average root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2). Results indicated that the R2 of the RF model for immobilization
efficiency in soils was 0.5924, which was significantly higher than that of the SVR model
(R2 = 0.2421), LR model (R2 = 0.2785), and PLS model (R2 = 0.3007). It shows that the RF
model has a statistically significant advantage over the LR, the PLS, and the SVR models in
terms of statistical parameter evaluations. According to Table 1, MSE, RMSE, and MAE
for the RF were 0.0596, 0.2441, and 0.1556, respectively, which were the lowest values
among the parameters. According to the results, RF models are superior due to their ability
to deal with complex non-linearities. Hu et al. assessed the RF model, gradient-boosted
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machine model (GBM), and generalized linear model (GLM) to predict HM transfer in the
soil–crop system and found that the RF model produced the most accurate prediction of
BAFs [53]. The higher prediction accuracy is due to the fact that the RF model has been
developed directly from the available experimental data in the literature without relying on
the underlying assumptions of the traditional model. Bootstrapping the original training
data was used to form a decision tree by randomly selecting parts of the features.

Table 1. Evaluation of the model performance on the basis of 5-fold cross-validation.

Parameters LR PLS RF SVR

R2 0.2785 0.3007 0.5924 0.2421
MAE 0.2605 0.2587 0.1556 0.2366
MSE 0.1054 0.1022 0.0596 0.0966

RMSE 0.3247 0.3197 0.2441 0.3109

The cross plots of model predictions versus experimental values are presented in
Figure 2 for visual comparison. A comparison of the four models indicates that the pro-
posed model has a superior and more reliable prediction ability, as evidenced by the tighter
cloud of points surrounding the 45◦ line in Figure 2a. The results indicated that RF models
were more effective for predicting the impact of biochar amendments on the immobilization
efficiency of HMs in soil–crop systems. It is observed from Figure S1 that the deviations be-
tween the RF model predictions and the corresponding experimental values are calculated
based on the RF model predictions. The results showed that the RF model had a higher
performance for immobilization efficiency within the range of 5–70%. Several factors may
have contributed to these findings, including the limited datasets available regarding lower
and higher immobilization efficiency in the previous literature.
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3.3. Potential Controls of Soil, Biochar, and Corp Characteristics for HMs Immobilization

The results revealed that the RF model was the most accurate in predicting the HM
immobilization efficiency of biochar, and the relative significance of each variable was
also identified. The mean decrease impurity method was applied to calculate the relative
significance of soil, biochar, and crop characteristics on the HM immobilization efficiency.
The contribution of each influence variable factor in the model is shown in Figure 3.
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Soil characteristics were found to significantly influence immobilization efficiency,
accounting for 79.7% of the total. Previous studies have found that different soil properties,
such as pH, soil organic matter, and clays, influence the mobility and bioavailability
of HMs in soil–crop systems [54]. Results have suggested that the soil properties were
contributed mainly by the available HMs in the soil. Biochar is generally effective for
the immobilization of HMs from soils due to direct mechanisms of interaction between
HMs and biochar, such as adsorption, precipitation, and complexation. The available
HM concentration in soil influences these interactions significantly [53]. Furthermore,
it was also found that the species of HM in soils contributed to the effectiveness of the
immobilization of biochar [55–57]. The biochar exhibited a more vital ability to complex
Cu(II) and Pb(II) than Cd(II), resulting in more specific adsorption of Cu(II) and Pb(II)
by amended soils than Cd(II) [58]. In this study, the species of HMs contributed about
13.3% to soil properties. Additionally, it was noted that soil clay (10.66%) exhibited a
greater effect on immobilization efficacy than soil organic content (6.15%). It has been
suggested that clay can increase the micropore area in biochar, resulting in a greater ability
to eliminate HMs [59]. Similarly, Ramola et al. [60] reported significant Pb removal from
water using a biochar-clay composite in comparison with the use of BC alone. Meanwhile,
Jing Y et al. [61] demonstrated a 35% improvement in biochar–clay composites compared
with BC alone for the removal of Cd.

A comprehensive analysis of the 211 published data sets on the immobilization process
revealed that biochar characteristics accounted for 17.1% of the immobilization process’
efficiency. It was determined that 67.25% of the contribution could be attributed to the
rate at which biochar was applied, suggesting that the application rate of biochar had a
positive correlation with biochar amendment. Previous studies have found that the higher
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the biochar dosage, the greater the increase in soil organic carbon [44]. HMs have changed
solid-solution partitioning with the increasing biochar dosage; therefore, their leaching
potential in soils has changed. Zhang et al. [62] compared the effects of two levels of biochar
on soil Cd reduction and found that the immobilization efficiency for 15 t ha−1 of biochar
was 34.5%. Studies have also shown that the efficiency of immobilization has not changed
significantly as the dosage of biochar has increased to 30 t ha−1. In this context, it appears
that the dosage of biochar and immobilization efficiency are not linearly related. Based on
the results of the RF model, it was determined that biochar dosage was an influential
factor in the biochar amendment process. Biochar amendment was also influenced by the
pyrolysis temperature, as shown in Figure 3. It contributed to approximately 25.73% of
the characteristics of biochar. Rafique et al. [63] reported that the biochar pyrolyzed at
700 ◦C had greater efficacy in immobilizing HMs than pyrolyzed at 300 ◦C. The results
of previous studies have indicated that increasing the pyrolysis temperature increased
specific surface area, porosity, pH, carbon, and ash content, as well as the immobilization
efficiency of HMs [64]. However, changing the CEC and volatile matter content altered the
immobilization efficiency [65]. Additionally, crop characteristics only accounted for 3.1%
of the efficiency of immobilization. It was found that the type of crops and the days from
planting to harvesting did not affect HM immobilization efficiency.

3.4. RF Model Development for Predicting HMs Bioavailability with Biochar Application

Biochar has been found to be an effective way to reduce plant uptake of pollutants due
to its ability to decrease HMs in the soil and reduce HM uptake by crops [4]. HM bioavail-
ability was predicted in two stages (Scheme 1) as follows: (a) (i) First, the immobilization
efficiency of soil and crops was predicted using an RF model, and (b) HM concentrations
were calculated based on predicted immobilization efficiency to estimate crop uptake
(CCU) and bioaccumulation factors (BAFs) after biochar immobilization. As shown in
Figure 4, the accuracy of predicting CCU and BAFs by the developed RF model can be
illustrated from the prediction set. It was determined that the R2 value for the RF model for
CCU was 0.7338, which was higher than the R2 value for the BAF model (0.6997). The RF
model was found to be effective in predicting the CCU and BAFs in the soil–crop systems
containing biochar amendment. It has been established that RF exhibits the most reliable
performance for predicting BAFs in soil–crop systems for all HMs, such as Cd, Pb, Cu, and
Zn, with R2 values ranging from 0.17 to 0.84 [66]. Moreover, Zhu et al. [14] found that the
RF model showed extremely high accuracy in predicting adsorption efficiency (R2 = 0.973).
Comparing HM bioavailability in soil–crop systems with HM adsorption efficiency in water,
there was a lack of accuracy in predicting HM bioavailability. Several factors affected the
effectiveness of biochar as a soil amendment in soil–crop systems. For instance, the mixing
depth of biochar had a significant influence on the uptake of HMs by crops; increasing the
amount of fertilizer used (N, P, K dosages) adversely affected biochar’s effectiveness in
soil–crop systems. Limited by the economic and labor costs, some factors such as biochar
physical and chemical properties (pH and CEC), fertilization, and agricultural management
policy were not recorded in most of the previous fields or pot experiments.

The results showed that biochar effectively reduced the movement of HMs in the
soil–crop systems. The content of HMs in the soil varies widely. Biochar used in soil
elevates the pH and efficiently binds HMs. The research used four models to assess the
efficiency of HM immobilization—LR, PLS, SVR, and RF. According to the data, the RF
model had greater accuracy and relevance. The soil parameters have a considerable impact
on immobilizing HMs with biochar. The study found that the efficacy of immobilization
methods is dependent on the properties of biochar and the rate at which it is applied. In fact,
the levels of soil organic carbon are directly proportional to the concentrations. Biochar
reduces plant absorption of soil humus and HMs, which hinders pollutant assimilation.
The RF model demonstrated superior performance compared to other models in predicting
BAFs for all HMs in the soil–crop systems. Therefore, further research is needed to consider
more related factors and improve model performance. Nonetheless, our study indicated
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that ML models can help us understand HM’s fate in soil–crop systems after biochar
amendments and identify the key variables affecting immobilization efficiency.
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Scheme 1. A two-stage approach to predict bioavailability (a) random forest model was used to
predict the immobilization efficiency. (b) The predicted available HM concentrations are used as
inputs for a developed random forest model to predict changes in crop uptake and bioaccumulation
factors. (X1 is experiment size; X2 is type of crops; X3 is application rate (%); X4 is feedstock; X5 is
pyrolysis temperature; X6 is clay content; X7 is silt content; X8 is sand content; X9 is soil pH; X10 is
soil organic carbon; X11 is days from planting to sowing; X12 is total heavy metals in soil; X13 initial
heavy metals in soils; X14 type of heavy metals).
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4. Conclusions

This research employed four distinct models (linear regression, partial least squares,
support vector regression, and random forest) to predict the absorption of HMs in biochar-
amended soils by plants. The study utilized existing data from the previously published
literature. The findings demonstrated that the RF model had more reliability in predicting
performance in comparison to other models. The findings indicated that the RF approach
can predict the crop absorption of HMs, providing an R2 value of 0.5924. The characteristic
analysis revealed that the concentration of HM available was the most crucial factor impact-
ing the variables. The established RF model achieved a prediction accuracy of 0.7338 for
CCU and 0.6997 for BAFs, as measured by the R2 values. The primary factors that had an
impact were determined to be soil properties (including the presence of HMs, the type
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of HMs, and the amount of clay) and the dose and properties of biochar (such as the
temperature at which it was produced by pyrolysis). Although the accuracy of predict-
ing the availability of HMs in soil–crop systems was lower compared to their efficiency
in being absorbed by water, our study indicates that machine learning models could be
valuable in comprehending the fate of HMs in soil–crop systems when biochar is used as an
amendment. Additionally, these models can help identify the key variables that influence
the effectiveness of biochar as a soil amendment. Establishing predictive models is crucial
for accurately predicting the effects of biochar on the transformation of HMs in polluted
soils, with the aim of ensuring the long-term stability of both humans and the environment.
Hence, it is essential to do additional research in the future to optimize the information
related to many factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12080575/s1, Figure S1: Deviation of the predicted and
experimental change of crop uptake (CCU). Data points are sorted in ascending order by values at the
x-axis; Table S1: Summary information for quantitative covariates; Table S2: Parts of tissues number:
Table S3: Crop sample number for different plant.
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