Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Measurement
2.3. Outcomes Ascertainment
2.4. Sex Hormones’ Measurement
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Study Subjects
3.2. Associations between Urinary Glyphosate and Glycemic Outcomes
3.3. Effect of Low Circulating SHBG on Association of Urinary Glyphosate with Glycemic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrante, M.; Rapisarda, P.; Grasso, A.; Favara, C.; Oliveri Conti, G. Glyphosate and environmental toxicity with “One Health” approach, a review. Environ. Res. 2023, 235, 116678. [Google Scholar] [CrossRef]
- Novotny, E. Glyphosate, Roundup and the Failures of Regulatory Assessment. Toxics 2022, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- de Castilhos Ghisi, N.; Zuanazzi, N.R.; Fabrin, T.M.C.; Oliveira, E.C. Glyphosate and its toxicology: A scientometric review. Sci. Total Environ. 2020, 733, 139359. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Siehl, D.L. History and Outlook for Glyphosate-Resistant Crops. Rev. Environ. Contam. Toxicol. 2021, 255, 67–91. [Google Scholar]
- Maggi, F.; la Cecilia, D.; Tang, F.H.M.; McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 2020, 717, 137167. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.P.; Silva-Pavez, E.; Carrillo-Beltrán, D.; Calaf, G.M. Occurrence and exposure assessment of glyphosate in the environment and its impact on human beings. Environ. Res. 2023, 231, 116201. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; Kurrasch, D.M. Glyphosate Toxicity: In Vivo, In Vitro, and Epidemiological Evidence. Toxicol. Sci. 2023, 1, kfad018. [Google Scholar]
- Mills, P.J.; Kania-Korwel, I.; Fagan, J.; McEvoy, L.K.; Laughlin, G.A.; Barrett-Connor, E. Excretion of the Herbicide Glyphosate in Older Adults Between 1993 and 2016. JAMA 2017, 318, 1610–1611. [Google Scholar] [CrossRef] [PubMed]
- Buekers, J.; Remy, S.; Bessems, J.; Govarts, E.; Rambaud, L.; Riou, M.; Tratnik, J.S.; Stajnko, A.; Katsonouri, A.; Makris, K.C.; et al. Glyphosate and AMPA in Human Urine of HBM4EU Aligned Studies: Part A Children. Toxics 2022, 10, 470. [Google Scholar] [CrossRef]
- Makris, K.C.; Efthymiou, N.; Konstantinou, C.; Anastasi, E.; Schoeters, G.; Kolossa-Gehring, M.; Katsonouri, A. Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. Environ. Res. 2022, 212, 113316. [Google Scholar] [CrossRef]
- Ospina, M.; Schütze, A.; Morales-Agudelo, P.; Vidal, M.; Wong, L.Y.; Calafat, A.M. Exposure to glyphosate in the United States: Data from the 2013-2014 National Health and Nutrition Examination Survey. Environ. Int. 2022, 170, 107620. [Google Scholar] [CrossRef]
- Helander, M.; Saloniemi, I.; Saikkonen, K. Glyphosate in northern ecosystems. Trends Plant Sci. 2012, 17, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Antoniou, M.N. Facts and Fallacies in the Debate on Glyphosate Toxicity. Front. Public Health 2017, 5, 316. [Google Scholar] [CrossRef] [PubMed]
- Agostini, L.P.; Dettogni, R.S.; Dos Reis, R.S.; Stur, E.; Dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, L.G.; Zordan, D.F.; Celzard, A.; Fierro, V. Glyphosate uses, adverse effects and alternatives: Focus on the current scenario in Brazil. Environ. Geochem. Health 2023, 45, 9559–9582. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.C.; McAuliff, K.E.; Heller, C.G.; Fiori, K.; Hollingsworth, N. Toward Understanding Social Needs Among Primary Care Patients With Uncontrolled Diabetes. J. Prim. Care Community Health 2021, 12, 2150132720985044. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Gatasheh, M.K.; Alshuniaber, M.A.; Krishnamoorthy, R.; Rajagopal, P.; Krishnamoorthy, K.; Periyasamy, V.; Veeraraghavan, V.P.; Jayaraman, S. Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants 2022, 11, 2436. [Google Scholar] [CrossRef]
- Kale, O.E.; Vongdip, M.; Ogundare, T.F.; Osilesi, O. The use of combined high-fructose diet and glyphosate to model rats type 2 diabetes symptomatology. Toxicol. Mech. Methods 2021, 31, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Hassan, S.; Hegde, T.A.; Thacharodi, D.D.; Brindhadevi, K.; Pugazhendhi, A. Water a major source of endocrine-disrupting chemicals: An overview on the occurrence, implications on human health and bioremediation strategies. Environ. Res. 2023, 231, 116097. [Google Scholar] [CrossRef] [PubMed]
- Timokhina, E.P.; Yaglov, V.V.; Nazimova, S.V. Dichlorodiphenyltrichloroethane and the Adrenal Gland: From Toxicity to Endocrine Disruption. Toxics 2021, 9, 243. [Google Scholar] [CrossRef]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef]
- Wang, L.; Ma, C.; Wei, D.; Wang, M.; Xu, Q.; Wang, J.; Song, Y.; Huo, W.; Jing, T.; Wang, C.; et al. Health risks of neonicotinoids chronic exposure and its association with glucose metabolism: A case-control study in rural China. Environ. Pollut. 2023, 334, 122213. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wei, D.; Ma, C.; Geng, J.; Zhao, M.; Hou, J.; Huo, W.; Jing, T.; Wang, C.; Mao, Z. Combined effects of organochlorine pesticides on type 2 diabetes mellitus: Insights from endocrine disrupting effects of hormones. Environ. Pollut. 2024, 341, 122867. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Yan, Y.; Liang, J.; Liang, Q.; Lu, Y.; Zhao, L.; Li, H. Preventative effects of resveratrol and estradiol on streptozotocin-induced diabetes in ovariectomized mice and the related mechanisms. PLoS ONE 2018, 13, e0204499. [Google Scholar] [CrossRef] [PubMed]
- Simons, P.; Valkenburg, O.; Stehouwer, C.D.A.; Brouwers, M. Sex hormone-binding globulin: Biomarker and hepatokine? Trends Endocrinol. Metab. 2021, 32, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Le, T.N.; Nestler, J.E.; Strauss, J.F.; Wickham, E.P. Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2012, 23, 32–40. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Huang, X.; Yang, D.; Wu, C.; Liu, H.; Zhang, L. Associations of glyphosate exposure and serum sex steroid hormones among 6-19-year-old children and adolescents. Ecotoxicol. Environ. Saf. 2024, 275, 116266. [Google Scholar] [CrossRef]
- Liang, R.; Feng, X.; Shi, D.; Wang, B.; Zhang, Y.; Liu, W.; Yu, L.; Ye, Z.; Zhou, M.; Chen, W. Obesity modifies the association of environmental pyrethroid exposure with glucose homeostasis in the US general adults. Environ. Pollut. 2023, 328, 121671. [Google Scholar] [CrossRef]
- Melero-Ollonarte, J.L.; Lidón-Moyano, C.; Perez-Ortuño, R.; Fu, M.; Ballbè, M.; Martín-Sánchez, J.C.; González-Marrón, A.; Cartanyà-Hueso, À.; Pascual, J.A.; Fernández, E.; et al. Specific biomarker comparison in current smokers, e-cigarette users, and non-smokers. Addict. Behav. 2023, 140, 107616. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Huang, Y.; Wang, F.; Guo, J. Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013-2016. Environ. Pollut. 2020, 260, 114003. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Fan, Y.; Niu, R.; Li, Z.; Qian, H.; Yu, H.; Xu, Q.; Xu, Q.; Lu, C. Urinary polycyclic aromatic hydrocarbons and sex hormones in children and adolescents: Evidence from NHANES. Ecotoxicol. Environ. Saf. 2021, 216, 112215. [Google Scholar] [CrossRef] [PubMed]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Asaduzzaman, M.; Parven, A.; Megharaj, M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environ. Pollut. 2020, 263, 114372. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Gunier, R.B.; Rauch, S.; Kogut, K.; Perito, E.R.; Mendez, X.; Limbach, C.; Holland, N.; Bradman, A.; Harley, K.G.; et al. Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environ. Health Perspect. 2023, 131, 37001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Liu, X.; Gao, M.; Li, X.; Wang, Y.; Chang, Y.; Zhang, X.; Huo, Z.; Zhang, L.; et al. Human serum lipidomics analysis revealed glyphosate may lead to lipid metabolism disorders and health risks. Environ. Int. 2023, 171, 107682. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Parks, C.G.; Goldner, W.S.; Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Koutros, S.; Hofmann, J.N.; Beane Freeman, L.E.; et al. Pesticide Use and Incident Hypothyroidism in Pesticide Applicators in the Agricultural Health Study. Environ. Health Perspect. 2018, 126, 97008. [Google Scholar] [CrossRef] [PubMed]
- Otaru, S.; Jones, L.E.; Carpenter, D.O. Associations between urine glyphosate levels and metabolic health risks: Insights from a large cross-sectional population-based study. Environ. Health 2024, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Huang, Q.; Chen, X.; Qiu, L.; Wang, S.; Ouyang, K.; Chen, Y. Associations between urinary glyphosate and diabetes mellitus in the US general adult: A cross-sectional study from NHANES 2013–2016. Environ. Sci. Pollut. Res. Int. 2023, 30, 124195–124203. [Google Scholar] [CrossRef]
- Tang, P.; Wang, Y.; Liao, Q.; Zhou, Y.; Huang, H.; Liang, J.; Zeng, X.; Qiu, X. Relationship of urinary glyphosate concentrations with glycosylated hemoglobin and diabetes in US adults: A cross-sectional study. BMC Public Health 2024, 24, 1644. [Google Scholar] [CrossRef]
- Jayaraman, S.; Krishnamoorthy, K.; Prasad, M.; Veeraraghavan, V.P.; Krishnamoorthy, R.; Alshuniaber, M.A.; Gatasheh, M.K.; Elrobh, M.; Gunassekaran. Glyphosate potentiates insulin resistance in skeletal muscle through the modulation of IRS-1/PI3K/Akt mediated mechanisms: An in vivo and in silico analysis. Int. J. Biol. Macromol. 2023, 242, 124917. [Google Scholar] [CrossRef] [PubMed]
- Soriguer, F.; Rubio-Martín, E.; Fernández, D.; Valdés, S.; García-Escobar, E.; Martín-Núñez, G.M.; Esteva, I.; Almaraz, M.C.; Rojo-Martínez, G. Testosterone, SHBG and risk of type 2 diabetes in the second evaluation of the Pizarra cohort study. Eur. J. Clin. Investig. 2012, 42, 79–85. [Google Scholar] [CrossRef]
- Hedderson, M.M.; Capra, A.; Lee, C.; Habel, L.A.; Lee, J.; Gold, E.B.; Badon, S.E.; Mitro, S.D.; El Khoudary, S.R. Longitudinal Changes in Sex Hormone Binding Globulin (SHBG) and Risk of Incident Diabetes: The Study of Women’s Health Across the Nation (SWAN). Diabetes Care 2024, 47, 676–682. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Jin, Z. Effect of placental sex hormone-binding globulin single nucleotide polymorphism rs6259 on protein and function in gestational diabetes mellitus. Int. J. Mol. Med. 2018, 41, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.; Weedon, M.N.; Langenberg, C.; Jackson, A.U.; Lyssenko, V.; Sparsø, T.; Thorleifsson, G.; Grallert, H.; Ferrucci, L.; Maggio, M.; et al. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum. Mol. Genet. 2010, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Kornicka-Garbowska, K.; Bourebaba, L.; Röcken, M.; Marycz, K. Sex Hormone Binding Globulin (SHBG) Mitigates ER Stress in Hepatocytes In Vitro and Ex Vivo. Cells 2021, 10, 755. [Google Scholar] [CrossRef]
- Rosolen, A.P.F.; Ribeiro, R.A.; Teleken, J.L.; de Oliveira Chaves, J.; Padilha, S.C.; Goes, M.E.; Morari, J.; Boschero, A.C.; Balbo, S.L.; Bonfleur, M.L. Pubertal glyphosate-based herbicide exposure aggravates high-fat diet-induced obesity in female mice. Environ. Sci. Pollut. Res. 2024, 31, 15872–15884. [Google Scholar] [CrossRef]
- Yan, K. Recent advances in the effect of adipose tissue inflammation on insulin resistance. Cell Signal 2024, 120, 111229. [Google Scholar] [CrossRef] [PubMed]
- Bourebaba, L.; Zyzak, M.; Sikora, M.; Serwotka-Suszczak, A.; Mularczyk, M.; Al Naem, M.; Marycz, K. Sex Hormone-Binding Globulin (SHBG) Maintains Proper Equine Adipose-Derived Stromal Cells (ASCs)’ Metabolic Functions and Negatively Regulates their Basal Adipogenic Potential. Stem Cell Rev. Rep. 2023, 19, 2251–2273. [Google Scholar] [CrossRef]
- Yamazaki, H.; Kushiyama, A.; Sakoda, H.; Fujishiro, M.; Yamamotoya, T.; Nakatsu, Y.; Kikuchi, T.; Kaneko, S.; Tanaka, H.; Asano, T. Protective Effect of Sex Hormone-Binding Globulin against Metabolic Syndrome: In Vitro Evidence Showing Anti-Inflammatory and Lipolytic Effects on Adipocytes and Macrophages. Mediat. Inflamm. 2018, 2018, 3062319. [Google Scholar] [CrossRef]
Glucose Homeostasis | ||||
---|---|---|---|---|
Demographic Characteristics | HOMA Parameters | FINS | HbA1c | FPG |
n | 1400 | 1403 | 2995 | 1428 |
HOMA-IR, mean (SD) | 4.4 (8.5) | |||
HOMA-IS, mean (SD) | 0.6 (0.5) | |||
HOMA-beta, mean (SD) | 117.7 (138.2) | |||
FINS, mean (SD) | 85.0 (119.9) | |||
HbA1c, mean (SD), % | 5.8 (1.2) | |||
FPG, mean (SD), mmol/L | 6.2 (2.1) | |||
Age, mean (SD), years | 50.19 (17.5) | 50.2 (17.5) | 49.4 (17.4) | 50.2 (17.5) |
Gender, n (%) | ||||
Female | 741 (52.9) | 742 (52.9) | 1558 (52.0) | 759 (53.2) |
Male | 659 (47.1) | 661 (47.1) | 1437 (48.0) | 669 (46.8) |
Urinary creatinine, mean (SD), mg/dL | 122.55 (76.69) | 122.69 (76.70) | 120.55 (78.33) | 122.95 (77.18) |
Glyphosate, mean (SD), ng/mL | 0.489 (0.553) | 0.489 (0.553) | 0.527 (0.588) | 0.492 (0.565) |
Glyphosate, detection rate, % | 71.89 | 71.96 | 73.08 | 71.70 |
Glyphosate, LLOD, ng/mL | 0.200 | 0.200 | 0.200 | 0.200 |
TT, mean (SD), ng/dL | 225.08 (252.08) | 225.15 (251.94) | 211.96 (235.79) | 224.34 (251.91) |
TT, detection rate, % | 100.00 | 100.00 | 99.96 | 100.00 |
TT, LLOD, ng/mL | 0.75 | 0.75 | 0.75 | 0.75 |
E2, mean (SD), pg/mL | 64.17 (456.93) | 64.06 (456.43) | 58.09 (418.66) | 64.20 (454.71) |
E2, detection rate, % | 94.83 | 94.84 | 94.28 | 94.80 |
E2, LLOD, pg/mL | 2.99 | 2.99 | 2.99 | 2.99 |
SHBG, mean (SD), nmol/L | 63.78 (58.74) | 63.68 (58.71) | 62.07 (52.60) | 64.06 (58.91) |
SHBG, detection rate, % | 100.00 | 100.00 | 100.00 | 100.00 |
SHBG, LLOD, nmol/L | 0.80 | 0.80 | 0.80 | 0.80 |
Ethnic, n (%) | ||||
Mexican American | 206 (14.7) | 206 (14.7) | 461 (15.4) | 206 (14.4) |
Non-Hispanic Black | 256 (18.3) | 257 (18.3) | 583 (19.5) | 264 (18.5) |
Non-Hispanic White | 595 (42.5) | 597 (42.6) | 1199 (40.0) | 607 (42.5) |
Other Hispanic | 160 (11.4) | 160 (11.4) | 329 (11.0) | 164 (11.5) |
Other race—including multi-racial | 183 (13.1) | 183 (13.0) | 423 (14.1) | 187 (13.1) |
PIR, n (%) | ||||
No | 1007 (78.2) | 1010 (78.3) | 2163 (78.6) | 1027 (78.2) |
Yes | 280 (21.8) | 280 (21.7) | 588 (21.4) | 286 (21.8) |
Educational level, n (%) | ||||
Less than 9th grade | 130 (9.3) | 130 (9.3) | 254 (8.5) | 131 (9.2) |
9–11th grade (includes 12th grade with no diploma) | 185 (13.2) | 185 (13.2) | 378 (12.6) | 190 (13.3) |
High-school graduate/GED or equivalent | 284 (20.3) | 284 (20.3) | 662 (22.1) | 290 (20.3) |
Some college or AA degree | 450 (32.2) | 451 (32.2) | 960 (32.1) | 458 (32.1) |
College graduate or above | 349 (25.0) | 351 (25.1) | 737 (24.6) | 357 (25.0) |
BMI, n (%) | ||||
<25 | 386 (27.7) | 387 (27.7) | 843 (28.3) | 392 (27.6) |
25–30 | 449 (32.2) | 450 (32.2) | 944 (31.7) | 457 (32.1) |
≥30 | 559 (40.1) | 560 (40.1) | 1190 (40.0) | 573 (40.3) |
Alcohol use, n (%) | ||||
No | 375 (28.5) | 376 (28.5) | 828 (29.6) | 381 (28.4) |
Yes | 939 (71.5) | 941 (71.5) | 1970 (70.4) | 960 (71.6) |
Physical activity, n (%) | ||||
No | 841 (60.1) | 842 (60.0) | 1772 (59.2) | 859 (60.2) |
Moderate | 281 (20.1) | 282 (20.1) | 602 (20.1) | 286 (20.0) |
Vigorous | 278 (19.9) | 279 (19.9) | 621 (20.7) | 283 (19.8) |
Cigarette exposure, n (%) | ||||
<LLOD | 473 (33.8) | 474 (33.8) | 984 (33.0) | 481 (33.8) |
≥LLOD | 927 (66.2) | 929 (66.2) | 1996 (67.0) | 941 (66.2) |
Cardiovascular disease, n (%) | ||||
No | 1244 (88.9) | 1247 (88.9) | 2663 (88.9) | 1267 (88.7) |
Yes | 156 (11.1) | 156 (11.1) | 332 (11.1) | 161 (11.3) |
Stroke, n (%) | ||||
No | 1350 (96.5) | 1353 (96.5) | 2898 (96.9) | 1378 (96.6) |
Yes | 49 (3.5) | 49 (3.5) | 94 (3.1) | 49 (3.4) |
HOMA-IR | HOMA-IS | HOMA-Beta | FINS | HbA1c | FPG | |
---|---|---|---|---|---|---|
Glyphosate | −0.04 | 0.04 | −0.09 | −0.06 | 0.01 | 0.02 |
(−0.12, 0.04) | (−0.04, 0.12) | (−0.17, −0.01) | (−0.13, 0.01) | (0.01, 0.02) | (−0.00, 0.05) | |
p = 0.349 | p = 0.349 | p = 0.024 | p = 0.102 | p = 0.001 | p = 0.059 | |
PFDR = 0.374 | PFDR = 0.374 | PFDR = 0.042 | PFDR = 0.147 | PFDR = 0.042 | PFDR = 0.077 | |
SHBG | −0.24 | 0.24 | −0.07 | −0.19 | −0.04 | −0.05 |
(−0.34, −0.14) | (0.14, 0.34) | (−0.15, 0.02) | (−0.28, −0.10) | (−0.05, −0.03) | (−0.08, −0.03) | |
p < 0.001 | p < 0.001 | p = 0.142 | p < 0.001 | p < 0.001 | p < 0.001 | |
PFDR < 0.001 | PFDR < 0.001 | PFDR = 0.142 | PFDR < 0.001 | PFDR < 0.001 | PFDR < 0.001 | |
Interaction | 0.16 | −0.16 | 0.09 | 0.13 | 0 | 0.03 |
(0.02, 0.29) | (−0.29, −0.02) | (−0.04, 0.22) | (0.02, 0.24) | (−0.01, 0.02) | (−0.03, 0.08) | |
p = 0.023 | p = 0.023 | p = 0.162 | p = 0.024 | p = 0.624 | p = 0.308 | |
PFDR = 0.051 | PFDR = 0.051 | PFDR = 0.227 | PFDR = 0.051 | PFDR = 0.624 | PFDR = 0.359 |
Outcome | Subgroup | β (95%CI) | p-Values | PFDR | P for Interaction | PFDR for Interaction |
---|---|---|---|---|---|---|
HOMA-IR | SHBG | 0.023 | 0.051 | |||
High | −0.13 (−0.25, −0.02) | 0.024 | 0.056 | |||
Low | 0.07 (−0.05, 0.19) | 0.231 | 0.323 | |||
HOMA-IS | SHBG | 0.023 | 0.051 | |||
High | 0.13 (0.02, 0.25) | 0.024 | 0.056 | |||
Low | −0.07 (−0.19, 0.05) | 0.231 | 0.323 | |||
FINS | SHBG | 0.024 | 0.051 | |||
High | −0.14 (−0.24, −0.03) | 0.013 | 0.056 | |||
Low | 0.02 (−0.07, 0.11) | 0.608 | 0.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Li, Y.; Ma, L.; Shu, S.; Ren, J.; Yu, X.; Luo, D.; Duan, Z.; Yu, Y. Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones. Toxics 2024, 12, 600. https://doi.org/10.3390/toxics12080600
Dong Y, Li Y, Ma L, Shu S, Ren J, Yu X, Luo D, Duan Z, Yu Y. Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones. Toxics. 2024; 12(8):600. https://doi.org/10.3390/toxics12080600
Chicago/Turabian StyleDong, Yu, Yuan Li, Liwen Ma, Shuge Shu, Jiawen Ren, Xiangyu Yu, Dan Luo, Zhizhou Duan, and Yongquan Yu. 2024. "Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones" Toxics 12, no. 8: 600. https://doi.org/10.3390/toxics12080600
APA StyleDong, Y., Li, Y., Ma, L., Shu, S., Ren, J., Yu, X., Luo, D., Duan, Z., & Yu, Y. (2024). Associations between Glyphosate Exposure and Glycemic Disorders: A Focus on the Modifying Effect of Sex Hormones. Toxics, 12(8), 600. https://doi.org/10.3390/toxics12080600