Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, M.; Chen, W. Epidemiology of lung cancer in China. Thorac Cancer 2019, 10, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung Cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- The World Health Organization. International Agency for Research on Cancer. Global Cancer. Observatory: Cancer Today; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Martin-Sanchez, J.C.; Lunet, N.; Gonzalez-Marron, A.; Lidon-Moyano, C.; Matilla-Santander, N.; Cleries, R.; Malvezzi, M.; Negri, E.; Morais, S.; Costa, A.R.; et al. Projections in Breast and Lung Cancer Mortality among Women: A Bayesian Analysis of 52 Countries Worldwide. Cancer Res. 2018, 78, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, L.; Zhou, C. Lung cancer in China: Current and prospect. Curr. Opin. Oncol. 2021, 33, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Krist, A.H.; Davidson, K.W.; Mangione, C.M.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Kubik, M.; et al. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA-J. Am. Med. Assoc. 2021, 325, 962–970. [Google Scholar]
- Gharibvand, L.; Shavlik, D.; Ghamsary, M.; Beeson, W.L.; Soret, S.; Knutsen, R.; Knutsen, S.F. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study. Environ. Health Perspect. 2017, 125, 378–384. [Google Scholar] [CrossRef]
- Milosevic, N.; Milanovic, M.; Sazdanic Velikic, D.; Sudji, J.; Jovicic-Bata, J.; Spanovic, M.; Sevo, M.; Lukic Sarkanovic, M.; Torovic, L.; Bijelovic, S.; et al. Biomonitoring Study of Toxic Metal(loid)s: Levels in Lung Adenocarcinoma Patients. Toxics 2024, 12, 490. [Google Scholar] [CrossRef]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Mao, W.; Qu, J.; Zhong, S.; Wu, X.; Mao, K.; Liao, K.; Jin, H. Associations between urinary parabens and lung cancer. Environ. Sci. Pollut. Res. Int. 2023, 30, 66186–66194. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Mao, W.; Liao, K.; Zhang, Y.; Jin, H. Association between urinary bisphenol analogue concentrations and lung cancer in adults: A case-control study. Environ. Pollut. 2022, 315, 120323. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Y.; Wei, X.; Dai, J. Temporal Trends in Prenatal Exposure (1998–2018) to Emerging and Legacy Per- and Polyfluoroalkyl Substances (PFASs) in Cord Plasma from the Beijing Cord Blood Bank, China. Environ. Sci. Technol. 2020, 54, 12850–12859. [Google Scholar] [CrossRef]
- Shi, Y.; Vestergren, R.; Xu, L.; Zhou, Z.; Li, C.; Liang, Y.; Cai, Y. Human Exposure and Elimination Kinetics of Chlorinated Polyfluoroalkyl Ether Sulfonic Acids (Cl-PFESAs). Environ. Sci. Technol. 2016, 50, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- European Union Environment Programme. Chemicals Listed in Annex A. 2019. Available online: http://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/tabid/5837/Default.aspx (accessed on 17 August 2023).
- Dai, C.; Peng, L.; Li, Y.; Li, Z.; Chen, D.; Wang, F.; Lin, N. Distribution of per- and polyfluoroalkyl substances in blood, serum, and urine of patients with liver cancer and associations with liver function biomarkers. J. Environ. Sci. 2024, 139, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Cui, Q.; Wang, J.; Sheng, N.; Jing, J.; Yao, B.; Dai, J. Profiles of Emerging and Legacy Per-/Polyfluoroalkyl Substances in Matched Serum and Semen Samples: New Implications for Human Semen Quality. Environ. Health Perspect. 2019, 127, 127005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, W.; Qu, J.; Hu, S.; Zhang, L.; Zhao, M.; Wu, P.; Xue, J.; Hangbiao, J. Per-/polyfluoroalkyl substance concentrations in human serum and their associations with immune markers of rheumatoid arthritis. Chemosphere 2022, 298, 134338. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Fang, Q.-L.; Cui, X.-X.; Dong, P.-X.; Qian, Z.; McMillin, S.E.; Howard, S.W.; Ou, Y.-Q.; Li, Q.-Q.; Wu, L.-Y. Non-monotonic association between chlorinated polyfluorinated ether sulfonic acids exposure and the risk of overweight/obesity status in adults. Expo. Health 2023, 15, 539–549. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Liang, L.-X.; Zhou, Y.; Mohammed, Z.; Qian, Z.M.; McMillin, S.E.; Tabet, M.; Chu, C.; Fan, Y.-Y.; Zhou, J.-X. Chlorinated Polyfluoroalkyl Ether Sulfonic Acids (Cl-PFESAs) Are Associated with Eye Diseases in Humans and Eye Toxicity in Zebrafish. Environ. Health 2024, 2, 390–400. [Google Scholar] [CrossRef]
- Lin, N.; Zhang, Y.; Su, S.; Feng, Y.; Wang, B.; Li, Z. Exposure characteristics of legacy and novel per- and polyfluoroalkyl substances in blood and association with hypertension among low-exposure population. J. Hazard. Mater. 2023, 459, 132185. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Wan, B.; Yu, B.; Fan, Y.; Chen, D.; Guo, L.H. Chlorinated Polyfluoroalkylether Sulfonic Acids Exhibit Stronger Estrogenic Effects than Perfluorooctane Sulfonate by Activating Nuclear Estrogen Receptor Pathways. Environ. Sci. Technol. 2020, 54, 3455–3464. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.P.; Siegfried, J.M. Estrogen receptor pathways in lung cancer. Curr. Oncol. Rep. 2004, 6, 259–267. [Google Scholar] [CrossRef]
- Li, C.H.; Ren, X.M.; Ruan, T.; Cao, L.Y.; Xin, Y.; Guo, L.H.; Jiang, G. Chlorinated Polyfluorinated Ether Sulfonates Exhibit Higher Activity toward Peroxisome Proliferator-Activated Receptors Signaling Pathways than Perfluorooctanesulfonate. Environ. Sci. Technol. 2018, 52, 3232–3239. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, R.; Ren, F.; Jiang, S.; Jin, H. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment. Sci. Total Environ. 2024, 914, 170046. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, R.; Jiang, S.; Wu, P.; Jin, H. Occurrence of p-phenylenediamine antioxidants (PPDs) and PPDs-derived quinones in indoor dust. Sci. Total Environ. 2024, 912, 169325. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Lim, W.Y.; Eng, P.; Leong, S.S.; Lim, T.K.; Ng, A.W.; Tee, A.; Seow, A. Lung cancer in Chinese women: Evidence for an interaction between tobacco smoking and exposure to inhalants in the indoor environment. Environ. Health Perspect. 2010, 118, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Ma, J.; Shi, Y.; Chen, C.; Wang, Y.; Zhao, E.; Cai, Y.; Qu, G. Biomonitoring of chlorinated polyfluoroalkyl ether sulfonic acid in the general population in central and eastern China: Occurrence and associations with age/sex. Environ. Int. 2020, 144, 106043. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, H.; Cui, Q.; Sheng, N.; Yeung, L.W.Y.; Guo, Y.; Sun, Y.; Dai, J. First Report on the Occurrence and Bioaccumulation of Hexafluoropropylene Oxide Trimer Acid: An Emerging Concern. Environ. Sci. Technol. 2017, 51, 9553–9560. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zheng, Z.; Shi, Y.; Cai, Y. Chlorinated polyfluoroalkyl ether sulfonic acids in fish, dust, drinking water and human serum: From external exposure to internal doses. Environ. Int. 2021, 157, 106820. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Y.; Jin, S.; Li, Y.; Zhao, L.; Sun, X.; Cui, Q.; Zhang, B.; Zheng, T.; Xia, W.; et al. Associations of per-/polyfluoroalkyl substances with glucocorticoids and progestogens in newborns. Environ. Int. 2020, 140, 105636. [Google Scholar] [CrossRef]
- Zhan, W.; Qiu, W.; Ao, Y.; Zhou, W.; Sun, Y.; Zhao, H.; Zhang, J. Environmental Exposure to Emerging Alternatives of Per- and Polyfluoroalkyl Substances and Polycystic Ovarian Syndrome in Women Diagnosed with Infertility: A Mixture Analysis. Environ. Health Perspect. 2023, 131, 57001. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, R.R.; Gao, Y.; Qu, J.L.; Wang, Z.Z.; Zhao, M.R.; Bai, X.X.; Jin, H.B. Human serum poly- and perfluoroalkyl substance concentrations and their associations with gestational diabetes mellitus. Environ. Pollut. 2023, 317, 9. [Google Scholar] [CrossRef]
- Zhao, N.; Kong, Y.; Yuan, Q.; Wei, Z.; Gu, J.; Ji, C.; Jin, H.; Zhao, M. The toxic mechanism of 6:2 Cl-PFESA in adolescent male rats: Endocrine disorders and liver inflammation regulated by the gut microbiota-gut-testis/liver axis. J. Hazard. Mater. 2023, 459, 132155. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.M.; Evans, H.J. Cigarette smoke-induced DNA damage and lung cancer risks. Nature 1980, 283, 388–390. [Google Scholar] [CrossRef]
- Pirie, K.; Peto, R.; Reeves, G.K.; Green, J.; Beral, V.; Million Women Study, C. The 21st century hazards of smoking and benefits of stopping: A prospective study of one million women in the UK. Lancet 2013, 381, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, C.A.; Raaschou-Nielsen, O.; Loft, S.; Moller, P.; Vermeulen, R.; Palli, D.; Chadeau-Hyam, M.; Xun, W.W.; Vineis, P. Biomarkers of ambient air pollution and lung cancer: A systematic review. Occup. Environ. Med. 2012, 69, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Kashima, S. Air pollution: Another cause of lung cancer. Lancet Oncol. 2013, 14, 788–789. [Google Scholar] [CrossRef]
Characteristics | Control (n = 604) | Case (n = 302) | p-Value a | ||||||
---|---|---|---|---|---|---|---|---|---|
Number (%) | Mean | Median | Range | Number (%) | Mean | Median | Range | ||
Gender | N/A | ||||||||
Male | 356 (58.9) | 4.0 | 2.9 | <LOD-26 | 178 (58.9) | 4.6 | 3.3 | <LOD-25 | |
Female | 248 (41.1) | 4.0 | 2.9 | <LOD-25 | 124 (41.1) | 3.7 | 3.1 | <LOD-13 | |
Age (years) | N/A | ||||||||
<51 | 110 (18.2) | 3.7 | 2.8 | <LOD-26 | 55 (18.2) | 4.8 | 3.6 | <LOD-25 | |
51–60 | 120 (19.9) | 4.2 | 3.0 | 0.031–21 | 60 (19.9) | 4.4 | 3.4 | 0.11–12 | |
61–70 | 200 (33.1) | 4.3 | 2.9 | <LOD-25 | 100 (33.1) | 3.9 | 3.2 | 0.10–15 | |
>70 | 174 (28.8) | 3.7 | 2.9 | <LOD-20 | 87 (28.8) | 4.1 | 3.1 | <LOD-20 | |
Body mass index (kg/m2) | 0.842 | ||||||||
<18.5 | 38 (6.3) | 3.5 | 2.8 | 0.033–20 | 22 (7.3) | 3.6 | 3.1 | <LOD-13 | |
18.5–24.9 | 375 (62.1) | 4.0 | 2.9 | <LOD-26 | 187 (61.9) | 4.4 | 3.3 | <LOD-20 | |
>24.9 | 191 (31.6) | 4.0 | 2.8 | <LOD-25 | 93 (30.8) | 4.0 | 3.2 | <LOD-25 | |
Educational level | 0.681 | ||||||||
≤9 | 494 (81.8) | 4.1 | 2.9 | <LOD-25 | 242 (80.1) | 4.2 | 3.2 | <LOD-22 | |
>9 | 108 (17.9) | 3.8 | 2.8 | <LOD-26 | 57 (18.9) | 4.1 | 3.4 | <LOD-25 | |
Annual household income (CNY) | 0.626 | ||||||||
<50,000 | 216 (35.8) | 3.8 | 2.8 | <LOD-25 | 113 (37.4) | 4.1 | 3.2 | <LOD-15 | |
50,000–100,000 | 248 (41.0) | 4.1 | 2.9 | <LOD-26 | 114 (37.8) | 4.5 | 3.2 | <LOD-25 | |
>100,000 | 140 (23.2) | 4.2 | 3.1 | <LOD-23 | 75 (24.8) | 4.0 | 3.6 | <LOD-22 | |
Occupational status | 0.330 | ||||||||
Employed | 213 (35.3) | 4.1 | 2.9 | <LOD-23 | 97 (32.1) | 4.9 | 3.3 | 0.10–25 | |
Unemployed | 389 (64.4) | 4.0 | 2.9 | <LOD-26 | 205 (67.9) | 3.9 | 3.2 | <LOD-14 | |
Marital status | 0.542 | ||||||||
Married | 498 (82.5) | 4.0 | 2.8 | <LOD-25 | 244 (80.8) | 4.2 | 3.3 | <LOD-25 | |
Divorced and widowed | 106 (17.5) | 3.9 | 3.1 | <LOD-26 | 58 (19.2) | 4.0 | 3.1 | <LOD-22 | |
Dietary habit | 0.909 | ||||||||
Spicy food | 474 (78.5) | 4.2 | 2.9 | <LOD-26 | 236 (78.1) | 4.2 | 3.2 | <LOD-25 | |
Non-spicy food | 130 (21.5) | 3.4 | 2.9 | <LOD-20 | 66 (21.9) | 4.2 | 3.7 | 0.10–14 | |
Residence | 0.957 | ||||||||
Urban | 455 (75.3) | 3.9 | 2.8 | <LOD-26 | 228 (75.5) | 4.2 | 3.2 | <LOD-25 | |
Rural | 149 (24.7) | 4.3 | 3.1 | <LOD-23 | 74 (24.5) | 4.1 | 3.2 | 0.10–22 | |
Smoking habit | 0.565 | ||||||||
Nonsmoker | 368 (61.0) | 4.0 | 2.9 | <LOD-25 | 178 (58.9) | 4.0 | 3.1 | <LOD-25 | |
Current smoker | 236 (39.0) | 4.1 | 2.8 | <LOD-26 | 124 (41.1) | 4.6 | 3.4 | <LOD-20 | |
Alcohol consumption habit | 0.304 | ||||||||
Nondrinker | 418 (69.2) | 3.9 | 2.9 | <LOD-25 | 219 (72.5) | 4.1 | 3.2 | <LOD-22 | |
Current drinker | 186 (30.8) | 4.2 | 2.9 | <LOD-26 | 83 (27.5) | 4.6 | 3.2 | <LOD-25 | |
Family history of lung cancer | 0.004 | ||||||||
No | 583 (96.5) | 4.0 | 2.9 | <LOD-26 | 279 (92.4) | 4.3 | 3.2 | <LOD-25 | |
Yes | 16 (2.7) | 3.7 | 2.5 | 0.29–10 | 20 (6.6) | 3.9 | 4.1 | 0.54–8.6 | |
History of any lung disease b | 0.003 | ||||||||
No | 580 (96.0) | 4.0 | 2.9 | <LOD-26 | 275 (91.1) | 4.3 | 3.3 | <LOD-25 | |
Yes | 23 (3.9) | 3.1 | 2.3 | <LOD-13 | 26 (8.6) | 3.3 | 2.8 | 0.11–10 | |
Histologic type | N/A | ||||||||
Non-small cell carcinoma | N/A | N/A | N/A | N/A | 168 (55.6) | 4.3 | 3.2 | <LOD-20 | |
Small cell carcinoma | N/A | N/A | N/A | N/A | 71 (23.5) | 3.9 | 3.5 | 0.11–11 | |
Squamous cell carcinoma | N/A | N/A | N/A | N/A | 63 (20.9) | 4.1 | 2.9 | <LOD-25 |
Cases/Controls (n) | Crude | Adjusted a | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | ||
Total participants (n = 906) | |||
Q1 (<1.3) | 56/151 | Ref. | Ref. |
Q2 (1.3–2.9) | 68/151 | 1.21 (0.79, 1.84) | 1.20 (0.79, 1.85) |
Q3 (2.9–6.0) | 87/151 | 1.55 (1.03, 2.32) | 1.51 (1.00, 2.28) |
Q4 (>6.0) | 91/151 | 1.62 (1.08, 2.42) | 1.59 (1.06, 2.39) |
p for trend * | 0.018 | 0.026 | |
Excluding participants who have a family history of lung cancer (n = 774) | |||
Q1 (<1.3) | 46/129 | Ref. | Ref. |
Q2 (1.3–2.8) | 58/129 | 1.26 (0.79, 1.99) | 1.23 (0.77, 1.96) |
Q3 (2.8–5.7) | 77/129 | 1.67 (1.07, 2.59) | 1.60 (1.02, 2.50) |
Q4 (>5.7) | 77/129 | 1.67 (1.07, 2.59) | 1.63 (1.04, 2.55) |
p for trend * | 0.027 | 0.036 | |
Excluding participants who were diagnosed with any lung disease (n = 753) | |||
Q1 (<1.3) | 46/126 | Ref. | Ref. |
Q2 (1.3–2.9) | 58/125 | 1.27 (0.80, 2.01) | 1.20 (0.75, 1.95) |
Q3 (2.9–6.0) | 71/126 | 1.54 (0.98, 2.41) | 1.42 (0.89, 2.25) |
Q4 (>6.0) | 76/125 | 1.66 (1.07, 2.59) | 1.62 (1.02, 2.55) |
p for trend * | 0.028 | 0.037 | |
Excluding urban participants (n = 223) | |||
Q1 (<1.6) | 14/37 | Ref. | Ref. |
Q2 (1.6–3.1) | 19/38 | 1.32 (0.57, 3.01) | 1.35 (0.55, 3.31) |
Q3 (3.1–5.3) | 20/37 | 1.42 (0.63, 3.20) | 1.38 (0.57, 3.32) |
Q4 (>5.3) | 21/37 | 1.51 (0.66, 3.44) | 1.55 (0.63, 3.77) |
p for trend * | 0.392 | 0.375 |
Cases/Controls (n) | Crude | Adjusted a | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | ||
Subjects’ gender | |||
Male (n = 534) | |||
Q1 (<1.3) | 30/89 | Ref. | Ref. |
Q2 (1.3–2.9) | 38/89 | 1.26 (0.72, 2.22) | 1.27 (0.71, 2.27) |
Q3 (2.9–5.9) | 49/89 | 1.63 (0.95, 2.80) | 1.64 (0.94, 2.87) |
Q4 (>5.9) | 61/89 | 2.03 (1.20, 3.44) | 2.04 (1.19, 3.51) |
p for trend * | 0.005 | 0.006 | |
Female (n = 372) | |||
Q1 (<1.4) | 28/62 | Ref. | Ref. |
Q2 (1.4–2.9) | 28/62 | 1.00 (0.53, 1.88) | 0.99 (0.50, 1.94) |
Q3 (2.9–6.1) | 41/62 | 1.46 (0.80, 2.65) | 1.43 (0.75, 2.72) |
Q4 (>6.1) | 27/62 | 0.96 (0.51, 1.82) | 1.04 (0.53, 2.03) |
p for trend * | 0.970 | 0.840 | |
p for interaction | 0.239 | 0.232 | |
Smoking habit | |||
Smoker (n = 360) | |||
Q1 (<1.3) | 21/59 | Ref. | Ref. |
Q2 (1.3–2.8) | 22/59 | 1.04 (0.52, 2.10) | 1.10 (0.51, 2.34) |
Q3 (2.8–5.7) | 36/59 | 1.71 (0.89, 3.27) | 1.86 (0.92, 3.75) |
Q4 (>5.7) | 45/59 | 2.14 (1.14, 4.02) | 2.48 (1.25, 4.89) |
p for trend * | 0.007 | 0.003 | |
Nonsmoker (n = 546) | |||
Q1 (<1.4) | 36/92 | Ref. | Ref. |
Q2 (1.4–2.9) | 47/92 | 1.30 (0.77, 2.19) | 1.32 (0.77, 2.25) |
Q3 (2.9–6.1) | 51/92 | 1.41 (0.84, 2.37) | 1.38 (0.81, 2.35) |
Q4 (>6.1) | 44/92 | 1.22 (0.72, 2.07) | 1.22 (0.71, 2.09) |
p for trend * | 0.641 | 0.662 | |
p for interaction | 0.244 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, W.; Qu, J.; Guo, R.; Chen, Y.; Jin, H.; Xu, J. Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer. Toxics 2024, 12, 603. https://doi.org/10.3390/toxics12080603
Mao W, Qu J, Guo R, Chen Y, Jin H, Xu J. Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer. Toxics. 2024; 12(8):603. https://doi.org/10.3390/toxics12080603
Chicago/Turabian StyleMao, Weili, Jianli Qu, Ruyue Guo, Yuanchen Chen, Hangbiao Jin, and Jingyan Xu. 2024. "Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer" Toxics 12, no. 8: 603. https://doi.org/10.3390/toxics12080603
APA StyleMao, W., Qu, J., Guo, R., Chen, Y., Jin, H., & Xu, J. (2024). Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer. Toxics, 12(8), 603. https://doi.org/10.3390/toxics12080603