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Abstract: The strong appeal to reduce animal testing calls for the development and validation of
in vitro, in chemico and in silico models that would replace the need for in vivo testing and ex
vivo materials. A category that requires such new approach methods is the assessment of immuno-
suppression that can be induced by chemicals including environmental pollutants. To assess the
immunosuppressive action on monocytes and lymphocytes, we mimicked the whole-blood cytokine-
release assay by preparing an in vitro coculture of THP-1 and Jurkat cell lines. We optimised its
activation and investigated the effects of known immunosuppressive drugs with different mecha-
nisms of action on the release of proinflammatory cytokines. Decreased secretion of IL-8 was achieved
by several immunosuppressive mechanisms and was therefore selected as an appropriate marker
of immunosuppression. A set of environmentally occurring bisphenols, BPA, BPAP, BPP, BPZ, BPE,
TCBPA and BPS-MAE, were then applied to the model and BPP and BPZ were found to act as potent
immunosuppressants at micromolar concentrations.
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1. Introduction

The immune system is a complex and highly specialised network of organs, cells and
functional proteins that protect the body from pathogenic bacteria, viruses and malignant
cells. The elimination of pathogenic, toxic and allergenic particles by the immune system is
enabled by its ability to differentiate between endogenous and exogenous antigens [1]. Any
failure to recognise (non-)self-antigens, as well as unbalanced activation or regulation of
immune pathways during pathogen surveillance or clearance, results in an inappropriate
immune response [2]. When self-tolerance fails, inappropriate immune stimulation may
lead to autoimmune diseases, while increased tolerance to foreign particles may result in
inadequate clearance of pathogens, causing an atypical and severe immune response in
immunocompromised individuals.

Immunosuppressive drugs are indispensable in modern medicine, being used for the
treatment of inflammatory and autoimmune diseases, as well as to suppress the rejection
of transplanted organs. By their structural properties, they can be divided into small
molecules that suppress the immune system by inhibiting the cell cycle or cytokine release,
and biological agents (e.g., monoclonal or polyclonal antibodies) that deplete target cell
populations or their function [3,4]. In addition, various environmental pollutants, such as
heavy metals and pesticides, have been shown to suppress the immune system [5,6]. In this
case, immunosuppression is undesirable and results in the immune system malfunction.

Traditionally, immunosuppression can be assessed using T cell-dependent antibody
response assays on rodents [7], but there are tendencies to reduce the number of animal
tests [8]. A three-tier approach is now proposed for the in vitro assessment of immuno-
suppression [2,8]. First, myelotoxicity is tested, and if the compound is myelotoxic, it is
considered immunotoxic. In the second tier the lymphotoxicity is examined, and in the
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third tier different tests can be performed, such as assays of proliferation, T cell activation,
cytokine release or testing natural killer cell activity. Although this stepwise approach is
widely recognised, there is a lack of validated methods that can be used to assess immuno-
suppression. In 2023, a new Organisation for Economic Co-operation and Development
(OECD) test guideline TG444a was published. In this guideline, luciferase signalling of
IL-2 promoter is measured in 2H4-derived Jurkat cells and its decrease is attributed to
immunosuppression [9,10]. Several other attempts to provide reliable in vitro models have
been reported, e.g., the Multi-ImmunoTox Assay (MITA), which measures IL-2, IFNγ and
IL-8-driven luciferase reporter signalling in Jurkat or THP-1-derived cells [11], the expres-
sion of the surface molecule CD86, gene marker HMOX1 and reactive oxygen species (ROS)
production in THP-1 cells [12], the activation of PBMC and consequent measurement of a
wide range of markers allowing the identification of chemical effects on specific immune
cell subtypes [13] and many other processes [14–17].

One of the approaches for assessing immunosuppression is the whole-blood cytokine-
release assay (WBCRA), in which the whole blood is activated by lipopolysaccharides (LPS)
or Staphylococcal enterotoxin B (SEB) and the released cytokines from monocytes and
lymphocytes are then measured [18]. Although this method has been widely recognised
and used [19,20], it suffers specific drawbacks, such as the need for ex vivo material,
interindividual variability between blood donors, unstandardised monocyte/leukocyte
counts, discrepancies of protocols between laboratories and reporting of results as well as
unfeasibility for high-throughput applications [8,21,22].

Cell lines are commercially available and allow assays to be performed at low cost [8],
but it must be considered that they are subjected to genotypic and phenotypic changes and
therefore may not adequately represent the primary cells [23]. Consequently, the choice
of readout marker must be carefully selected and it should resemble the in vivo situation.
Typically, in vitro tests require the activation of cell lines that activate specific signalling
pathways, the results of which are then measured. The use of different activators leads to
the activation of different signalling pathways, and the underlying mechanisms need to be
considered when interpreting the results. Furthermore, the validated cell line-based model
is expected to provide robust and reliable results and avoid the intra-individual variability
when using ex vivo models.

In this study, we prepared a coculture of THP-1 (monocytes) and Jurkat (lymphocytes)
cell lines in order to mimic the WBCRA in vitro, allowing us to observe the sum of the
immunosuppressive effects on two distinct cell types. The viability and activation of the
coculture were assessed and after the application of known immunosuppressive drugs, the
reduction in IL-8 secretion was selected as a biomarker of immunosuppression. Finally, a
series of environmental pollutants was applied to the coculture in order to investigate their
immunosuppressive potential.

2. Materials and Methods
2.1. Chemicals

Doramapimod (99.62%; CAS 285983-48-4), tacrolimus monohydrate (98.88; CAS
109581-93-3), dapsone (99.22%; CAS 80-08-0) and rapamycin (99.52%; CAS 53123-88-9)
were obtained by MedChemExpress LLC, New Jersey, NJ, USA as 10 mM stocks in DMSO.
Hydrocortisone (≥98%; CAS 50-23-7) was obtained from Sigma Aldrich (St. Louis, MO,
USA) and prepared as 10 mM stock in DMSO (ACS grade, ≥99.9%, Sigma Aldrich). Bisphe-
nols BPA (99.9%; CAS 80-05-7), BPE (99.9%; CAS 2081-05-5), BPAP (99.9%; CAS 1571-75-1),
BPP (99.9%; CAS 2167-51-3), BPZ (99.9%; CAS 843-55-0), TCBPA (99.8%; CAS 79-95-8)
and BPS-MAE (99.9%; CAS 97042-18-7) were obtained from Chiron AS, Norway and pre-
pared as 10 mM stocks in DMSO. D-mannitol (≥98.0%; CAS 69-65-8) was obtained from
MedChemExpress LLC and prepared as 10 mM stock in PBS (Sigma Aldrich, St. Louis,
MO, USA).
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2.2. Cell Lines and Cell Culture

THP-1 and Jurkat (Clone E6-1) cell lines were obtained from ATCC [24,25]. Cells were
cultured in RPMI 1640 medium (Sigma Aldrich) supplemented with 10% foetal bovine
serum (Gibco, ThermoFisher Scientific, Waltham, MA, USA), 2 mM L-glutamine (Sigma-
Aldrich) and 1 mM sodium pyruvate (Sigma) in a humidified 5% CO2 atmosphere at 37 ◦C.
For all experiments, THP-1 cells were used with a concentration of 0.6 × 105 cell/mL and
Jurkat cells were used with a concentration of 3 × 105 cell/mL.

2.3. Metabolic Activity Assay

To evaluate the metabolic activity of each cell line or coculture, 100 µL of cells/well
were seeded in black 96-well plates and incubated for 24 h. An amount of 10 µL of 400 µM
resazurin (Sigma Aldrich) dissolved in PBS was added to the cells and further incubated
for 3 h. Resorufin fluorescence was measured at λex/λem = 530/590 nm using an automated
plate reader (Synergy 4 Hybrid; BioTek, Winooski, VT, USA). Two independent experiments
were performed in technical duplicates.

The effect of immunosuppressive drugs on the metabolic activity of cocultures was
also investigated. An amount of 100 µL of the coculture/well was seeded into black 96-well
plates. On a separate plate, the bisphenols were first appropriately diluted in DMSO, then
diluted in the medium and added to the cells. Concentrations between 1 nM and 50 µM
were tested. As control samples, the cells were exposed to a vehicle control (0.5% DMSO).
After 24 h of incubation, 10 µL of 400 µM resazurin was added and resorufin fluorescence
was recorded after 3 h as described above. Three independent experiments were performed
with technical duplicates.

2.4. Cell Stimulations and Cytokine Measurements

For the evaluation of immunosuppression, 500 µL of cells was seeded in 24-well plates.
Pre-treatment with compounds or vehicle control was performed for 2 h, followed by 24 h of
stimulation with 1 µM ionomycin (Sigma Aldrich), 50 nM phorbol 12-myristate 13-acetate
(PMA, Sigma-Aldrich) and 10 ng/mL lipopolysaccharides from Escherichia coli O111:B4
(LPS, Sigma Aldrich). The supernatants were collected by centrifugation and stored at
−80 ◦C until analysis. IL-8 (and screening experiments) was measured using the Human
Inflammatory Cytokine Cytometric Bead Array (CBA)-I kit (BD Biosciences, San Diego CA,
USA) according to the manufacturer’s instructions [26]. IL-2 and TNFα were measured
by ELISA (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. At least three independent experiments were performed. Results are presented
as arithmetic means with standard deviations of fold inductions compared with the vehicle
control. For statistical analysis, Dunnett’s test for multiple comparisons was performed
using GraphPad Prism 10.1.2. (San Diego, California, CA, USA).

3. Results
3.1. Cell Culture Viability and Activation

The coculture was prepared from THP-1 and Jurkat cells with a ratio of 1:5, which
corresponds to the ratio of monocytes to lymphocytes in the blood of healthy people [27–33].
With the use of a resazurin-based metabolic test, we assessed the viability of THP-1 cells,
Jurkat cells and their coculture after 24 h of incubation. We assumed that a fully viable
coculture would have a resorufin signal equal to the sum of the resorufin signals of THP-1
and Jurkat cells. Compared with the sum of the resorufin signals of THP-1 and Jurkat cells,
the coculture produced 86 ± 1% of the calculated signal (Figure 1). We concluded that the
prepared coculture was viable enough to perform further experiments.

The immunosuppressants were applied to the cocultures to assess their cytotoxic-
ity. Based on the metabolic test, all compounds met the viability criterion of >80% at
concentrations up to 10 µM (Figure S1).
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Figure 1. Resorufin fluorescence signals from THP-1 and Jurkat cells, their coculture and expected
sum of separate cells.

Several activators were tested to activate the coculture. The Staphylococcal entero-
toxins A, B and E were tested at concentrations of up to 2.5 µg/mL, but did not stimulate
the secretion of the measured cytokines. The mixture of 10 ng/mL LPS, 1 µM ionomycin
and 50 nM PMA as activators resulted in the release of IL-2, IL-8 and TNFα from the
coculture, with THP-1 cells secreting only IL-8 and Jurkat cells secreting all three cytokines
(Figures S2 and S3). LPS contributed to the IL-8 release from THP-1 cells (Figure S4).

3.2. Effect of Immunosuppressive Drugs on Cytokine Release

A series of five known immunosuppressants with different mechanisms of action
(hydrocortisone, doramapimod, dapsone, tacrolimus and rapamycin) were selected for
method validation and their effects on IL-2, IL-8 and TNFα secretion on THP-1, Jurkat cells
and their coculture were evaluated. We arbitrarily set an immunosuppressive threshold at
a 30% decrease in cytokine release and considered compounds that caused a reduction in
cytokine release of more than 30% as immunosuppressants.

3.2.1. IL-2

As shown in Figure 2, all compounds decreased IL-2 secretion from Jurkat cells.
Hydrocortisone (HC) was the only compound for which no dose adjustment was observed,
and its modest decrease in Jurkat cells was lost in the coculture. Doramapimod only
achieved statistically significant IL-2 decrease at 10 µM, while dapsone, rapamycin and
tacrolimus were also effective at 100 nM. Their effects in Jurkat cells were retained in
the coculture.
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Figure 2. Effects of known immunosuppressants on IL-2 released from (A) Jurkat cells and (B) co-
culture. L—low concentration (100 nM), H—high concentration (10 µM). * p < 0.05; *** p = 0.0001;
**** p < 0.0001.

3.2.2. TNFα

Figure 3 shows the secretion of TNFα from Jurkat cells and the coculture. While
doramapimod, dapsone, tacrolimus and rapamycin showed a dose-dependent inhibition of
TNFα, HC significantly increased the release. Doramapimod and dapsone showed modest
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effects at 100 nM, but they were more effective at 10 µM concentrations. Rapamycin and
tacrolimus already caused significant TNFα inhibition at 100 nM. The effects from Jurkat
cells were retained in the coculture.
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3.2.3. IL-8

As shown in Figure 4, THP-1 cells were easily subjected to IL-8 inhibition by all selected
immunosuppressants. Interestingly, only 10 µM rapamycin failed to reduce IL-8 secretion
and appeared to be a more potent inhibitor at a concentration of 100 nM. IL-8 secretion from
Jurkat cells was relatively unaffected by HC and doramapimod, and dapsone was only
active at 10 µM. Tacrolimus and rapamycin significantly inhibited IL-8 secretion from Jurkat
cells, even at the tested concentration of 100 nM. In coculture, all immunosuppressants
except for doramapimod caused a reduction in IL-8 secretion, which was dose-dependent,
with the exception of HC.
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3.3. Evaluation of Immunosuppressive Action from Environmentally Occurring Bisphenols

The coculture was exposed to bisphenol A (BPA), bisphenol E (BPE), bisphenol AP
(BPAP), bisphenol P (BPP), bisphenol Z (BPZ), tectrachloro bisphenol A (TCBPA) or bisphe-
nol S-monoallyl ether (BPS-MAE), found in a variety of plastic products, cans and thermal
paper, as well as in the environment (Figure 5) [34–36]. At 100 nM, none of the bisphenols
inhibited IL-8 secretion, while BPE even increased it significantly. At 10 µM, all compounds
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except BPE and TCBPA significantly decreased IL-8 secretion, where BPP and BPZ exceeded
the immunosuppressive threshold of >30% inhibition.
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4. Discussion

With the aim of reducing animal testing, regulators emphasise the importance of in
silico, in chemico and in vitro approaches to reliably assess the hazards posed by chem-
icals [37,38]. In the field of immunotoxicology, new approach methods (NAMs) should
therefore replace current assays, such as the T-cell-dependent antibody response assay on
rodents and the WBCRA, which requires ex vivo material from human donors. NAMs are
not necessarily newly established methods, but are implications of conventional methods
that have been used and validated to assess chemical hazard [39].

In this study, we investigated whether the coculture of Jurkat and THP-1 cells can be
used to reliably measure the immunosuppressive effects of chemicals. First, we investigated
the viability of coculture. Although this coculture is commonly used [40,41], there is
evidence of THP-1 and Jurkat incompatibility [42,43]. In our hands, the coculture prepared
at a ratio equivalent to in vivo conditions exhibited more than 86% of the expected metabolic
activity (Figure 1) and the cells released comparable amounts of cytokines when tested
alone or in coculture (Figure S3). We therefore concluded that the coculture was viable
enough to be suitable for use in further experiments.

In the WBCRA, the blood can be activated by various stimulants, such as LPS or SEB,
and the measured cytokines are mainly released from lymphocytes and monocytes [18].
Our coculture was non-responsive to any Staphylococcal enterotoxin tested (Figure S2).
Activation was then achieved by the combination of ionomycin, PMA and LPS. PMA is
the activator of protein kinase C, while ionomycin acts as a calcium ionophore. Together,
they activate the cells by bypassing the T-cell membrane receptor [44]. LPS activates the
cells by binding to Toll-like receptor 4 (TLR4), which leads to the activation of various
signalling pathways [45,46]. Each of the mentioned activators has been reported to be
used in WBCRA [44]. In our hands, the activated coculture secreted IL-8 from THP-1 cells
and IL-8, IL-2 and TNFα from Jurkat cells (Figure S3). LPS contributed importantly to
the release of IL-8 from THP-1, while Jurkat cells were only activated by ionomycin and
PMA (Figures S3 and S4). These cytokines have also been reported to be measured in the
WBCRA [21,47,48].

To test the suitability of the coculture for the assessment of the immunosuppressive
effect, we applied known immunosuppressants to the coculture and measured the released
cytokines. We arbitrarily applied a >30% decrease in secreted cytokines as a positive
threshold for immunosuppression. The compounds were tested at 10 µM to confirm that
immunosuppression could indeed be assessed using this model, and at 100 nM to determine
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if effects were seen at concentrations approaching those in vivo in blood (therapeutical
concentrations for HC up to 70 nM [49], dapsone up to 68 nM [50], tacrolimus up to
54 nM [10] and rapamycin up to 16 nM [10,51]). The immunosuppressants used in this
study have different mechanisms of action—HC is a glucocorticoid steroid, doramapimod
is a p38 MAPK inhibitor, dapsone is a myeloperoxidase (MPO) inhibitor, tacrolimus is an
inhibitor of calcineurin phosphatase and rapamycin is an mTOR inhibitor.

In the presence of tacrolimus, ionomycin-induced intracellular Ca2+ cannot bind
to calcineurin and consequently activate NFAT, which regulates IL-2 [52], IL-8 [53] and
TNFα [54]. Not surprisingly, all cytokines were completely inhibited in Jurkat cells, while
some IL-8 was still released from THP-1 cells, indicating the different underlying activation
mechanisms in the cell types. While Jurkat cells are primarily activated by ionomycin
and PMA, LPS acts on multiple signalling pathways in THP-1, including NFκB, AP-1 and
MAPK, all of which can regulate IL-8 [55–57].

p38 MAPK can be induced by LPS [55] or ionomycin and PMA [58] and its downstream
pathways include the activation of transcription factors such as NFκB, AP-1 and NFAT that
regulate the transcription of various cytokines. Doramapimod inhibited IL-2 and TNFα by
more than 30% at 10 µM, and its modest effects were also observed at lower concentrations.
Interestingly, even at 100 nM, it reduced IL-8 from THP-1 monocytes below the threshold
of immunosuppression, while it showed no effect on IL-8 released from Jurkat cells and
coculture. The decrease in IL-2 and TNFα from Jurkat cells supports its binding to the
target p38 MAPK, and the decrease in IL-8 from THP-1 cells confirms the involvement of
p38 MAPK in IL-8 regulation. The nature of insensitive IL-8 in Jurkat cells and coculture
remains speculative and requires further investigation.

Inhibitors of mTOR, such as rapamycin, are used to block cellular proliferation through
the inhibition of activation proteins, such as kinase S6 [59]. In THP-1 cells, IL-8 was only
slightly reduced by rapamycin, which is less than expected compared with previously
published results [60]. On the other hand, the inhibition of the PI3K/Akt/mTOR signalling
pathway by rapamycin was observed in Jurkat cells and in the coculture, where rapamycin
significantly reduced IL-2, TNFα and IL-8 below the limit of immunosuppression at both
concentrations tested.

Dapsone is an MPO inhibitor that downregulates the intracellular ROS of neutrophils
and thus inhibits their action. It has also been shown to reduce the release of proinflamma-
tory cytokines, such as IL-8 from keratinocytes and bronchial epithelial cells [61,62], as well
as TNFα in various models, where it acts by downregulating TLR4 and dephosphorylating
NFκB [63,64]. In our hands, it affected IL-2, TNFα and IL-8 in all cell models and was able
to exceed the immunosuppression threshold at 10 µM.

HC is an interesting compound that slightly inhibited IL-2 secretion from Jurkat cells
without dose dependence, but it was completely inactive in coculture. Kimura et al. [10]
observed that the glucocorticoid dexamethasone downregulated IL-2 expression in their
in vitro model, but was unable to pass the immunosuppression threshold at doses below
therapeutical concentrations (0.088 µg/mL). In T cells, IL-2 expression is subjected to
regulation by the glucocorticoid receptor and AP-1 [65], but Jurkat cells have been reported
to have a mutation in the GR and we speculate that this mutation might be the reason
for Jurkat insensitivity [66,67]. A similar behaviour in Jurkat cells was also observed for
IL-8, while a greater decrease was observed in THP-1 cells and likely consequently in
the coculture. Interestingly, TNFα was increased by HC. The underlying mechanisms of
glucocorticoid-mediated proinflammatory response could be attributed to the increase in
nitric oxide [68] or enhanced ATP-dependent secretion of TNFα [69].

Understanding the mechanisms leading to changes in cytokine secretion in each
cell line is critical for assessing whether the cell model is suitable for measurements of
immunosuppression. We have shown that both cell lines respond to a variety of immuno-
suppressants, with THP-1 cells responding moderately to mTOR inhibitors and Jurkats to
glucocorticoids and p38 MAPK inhibitors. As IL-8 is the only cytokine released by both
cell types in coculture, we selected IL-8 as a marker of immunosuppression for our model
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and set a positive threshold of 30% of its inhibition. IL-8 is a chemotactic agent that is
mainly released by monocytes, macrophages, epithelial cells and also CD4+ lymphocytes. It
attracts neutrophils and T cells to the site of infection [70,71], induces exocytosis of granules
and histamine as well as a respiratory burst in the target cells [72]. Its overexpression
is associated with inflammatory diseases and IL-8 neutralising antibodies are being in-
vestigated for their treatment [70,73]. In in vitro tests, the IL-8 Luc assay in combination
with MITA [22] has shown promise as a tool for detecting immunosuppression, as has the
measurement of IL-8 in WBCRA [18,47,48]. Therefore, its reduced secretion is a suitable
marker for the detection of immunosuppression.

The established coculture model is able to recognise a range of immunosuppressants
(HC, dapsone, tacrolimus and rapamycin) with different mechanisms of action, while
it is not able to recognise p38 MAPK inhibitors. Whether it can also recognise other
inhibitors of the MAPK family, such as ERK and JNK inhibitors, will be further investigated
in our laboratory. It must be noted that the arbitrarily set threshold for the positive
detection of immunosuppression was generally reached in the micromolar range, exceeding
therapeutical concentrations by 100 to 1000 times. Nevertheless, it avoids the need for
in vivo and ex vivo testing, and is standardised, robust and easy to use in laboratories.

As evidence accumulates that BPA has toxic effects, its use is increasingly restricted
by law [74,75]. Recently, due to the fact that BPA affects Th17 cells in rodents, which can
lead to inappropriate immune stimulation, the EFSA has reduced its tolerable daily intake
from 4 µg/kg to 0.2 ng/kg body weight in 2023 [76]. To overcome the legal obstacles,
several BPA analogues are now appearing in consumer products, but without a full toxi-
cological assessment of whether they are actually safer than BPA [77–79]. In addition to
the well-known endocrine effects of bisphenols, several studies to date have shown that
they also modulate the immune system [80] and their effects are likely cell type dependent.
Macrophages are primarily exposed to the proinflammatory effects of bisphenols (e.g., BPA,
bisphenol S and bisphenol F) as they promote M1 polarisation, while their effect on proin-
flammatory cytokines release depends on the concentration tested [80,81]—for example,
BPA was found to upregulate several cytokines at 100 nM and 10 µM, but to downregulate
them at 1 µM and 100 µM [81]. On the other hand, BPA and bisphenol S suppress IL-8
secretion by neutrophil granulocytes (at 1 nM) and THP-1 monocytes (at 10 µM), thereby
exerting immunosuppressive potential [82,83], while IL-2 secretion from Jurkat cells is not
affected by BPA (in nano- and micromolar concentrations) [84].

Therefore, we applied a set of seven bisphenols to our coculture model to observe
their effects on IL-8 release. In 2021, the European Chemicals Agency (ECHA) added
BPE, BPAP, BPP, BPZ and BPS-MAE to the list of compounds, for which hazard cannot be
clarified due to the lack of available data [78]. Indeed, data on how these chemicals affect
the immune system are scarce, but the existing evidence from studies on mice suggests that
BPA analogues promote inflammatory responses. Exposure to BPP leads to inflammation
in the intestines with increased expression of proinflammatory IL-1β, IL-6 and TNFα [85].
Early life exposure to BPAP was found to increase the proportion of macrophages and
activation of dendritic cells [86]. On the other hand, in TCBPA-exposed mice, the decrease
ratio of CD3+ T cells to regulatory T cells was observed, indicating the immunosuppressive
effects. However, the serum levels of both pro- and anti-inflammatory cytokines were
elevated [87].

As shown in Figure 5, none of the bisphenols tested in our model had an immuno-
suppressive effect at 100 nM, while BPE even increased IL-8 at this concentration. BPA
significantly decreased IL-8 at 10 µM, although the mean of the replicates did not exceed
30% inhibition. This finding aligns with existing data about BPA’s effect on THP-1 and neu-
trophil granulocytes [82,83]. BPS-MAE showed comparable immunosuppressive potential
to BPA, while BPP and BPZ were more potent and reduced IL-8 secretion by more than
30% when tested at 10 µM. Their efficacy at this concentration was comparable to that of
dapsone, while they were more effective than HC or rapamycin (4). On the other hand,
BPAP, BPE and TCBPA did not show immunosuppressive mechanisms in our model.
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The endocrine effects of bisphenols in in vitro studies were observed in the nano- to
low micromolar range. Specifically, the EC50 values for estrogenic activities are 0.86 µM
for BPA [88] and 0.124 µM for BPZ [89], while antiestrogenic potency of BPP is observed at
IC50 = 1.9 µM [89]. The fact that, in our in vitro model, immunosuppressive effects were
observed at 10 µM (but not at 100 nM), which exceeds the determined estrogenic parameters,
suggests that immunosuppression might be a consequence of endocrine disruption, as well
as other intracellular effects.

In comparison with previously published studies, our observations that BPP has a
strong anti-inflammatory effect and that BPAP and TCBPA do not modulate the release
of IL-8 from the coculture highlight the pleiotropic nature of bisphenols and their cell
type-dependent mechanisms, as well as the importance of a judiciously chosen in vitro
model for the determination of immunomodulation by these compounds. Based on our
observations that BPP and BPZ are even more effective than BPA in reducing IL-8 release;
we strongly recommend using these substitutes with caution.

5. Conclusions

In this study, we investigated the suitability of the coculture model of THP-1 and Jurkat
cells as a NAM for the in vitro assessment of immunosuppressive mechanisms caused by
chemicals. After verifying the viability of the coculture and optimising its activation, we
exposed it to a set of immunosuppressive drugs and investigated their effects on cytokine
release. We selected IL-8 as a marker for immunosuppression and with this setup, we were
able to detect immunosuppressants with different mechanisms of action, except for p38
MAPK inhibitors. Furthermore, by applying a set of environmentally occurring bisphenols
to the model, we showed that BPS-MAE had comparable immunosuppressive potential
to BPA, while BPP and BPZ were even more potent. Our model avoids the need for ex
vivo materials, is standardised in execution and is easily applicable in other laboratories.
To increase the usefulness of this model, it is worth exploring further whether it is able to
recognise a broader range of immunosuppressants with different mechanisms of action
and make it suitable for high-throughput applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12080607/s1, Figure S1: Viability of the coculture upon application
of immunosuppressive drugs for 24 h.; Figure S2: Release of cytokines from the coculture after 24 h
of stimulation with different activators; Figure S3: Release of cytokines from THP-1 cells, Jurkat cells
and coculture; Figure S4: Effect of LPS on the release of IL-8.
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