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Abstract: As a typical sulfonylurea herbicide, nicosulfuron is mainly used to control grass weeds
and some broadleaf weeds in corn fields. However, as the amount of use continues to increase, it
accumulates in the environment and eventually becomes harmful to the ecosystem. In the present
study, a new metallic nanomaterial, δ-MnO2, was prepared, which not only has a similar catalytic
mechanism as laccase but also has a significant effect on pesticide degradation. Therefore, the bicat-
alytic property of MnO2 can be utilized to improve the remediation of nicosulfuron contamination.
Firstly, MnO2 nanomaterials were prepared by controlling the hydrothermal reaction conditions,
and immobilized laccase was prepared by the adsorption method. Next, we investigate the effects
of different influencing factors on the effect of immobilized laccase, MnO2, and free laccase on the
degradation of nicosulfuron in water and soil. In addition, we also analyze the metabolic pathway
of nicosulfuron degradation in immobilized laccase and the bicatalytic mechanism of MnO2. The
results demonstrated that the degradation rate of nicosulfuron in water by immobilized laccase was
88.7%, and the optimal conditions were 50 mg/L, 25 h, 50 ◦C, and pH 5. For nicosulfuron in soil, the
optimal conditions for the degradation by immobilized laccase were found to be 151.1 mg/kg, 46 ◦C,
and pH 5.9; under these conditions, a degradation rate of 90.1% was attained. The findings of this
study provide a theoretical reference for the immobilized laccase treatment of sulfonylurea herbicide
contamination in water and soil.

Keywords: immobilized laccase; nicosulfuron degradation; MnO2 nanomaterials

1. Introduction

Sulfonylurea herbicides are one of the mainstream herbicides in the world today, with
a broad spectrum of herbicidal properties, and their main structures include aromatic
rings, heterocycles, and sulfonylurea bridges [1]. It is considered a “new type of pesticide”
because of its high efficiency, low toxicity, and high selectivity, and is widely used for weed
control in maize, soybean, rice, wheat, rapeseed, and other crops [2–4]. In recent years,
the production and application of sulfonylurea herbicides have developed more rapidly.
Sales account for more than 11% of the global herbicide market [5]. Nicosulfuron, (2-[(4,6-
dimethoxypyrimidin-2-ylcarbamoyl)sulfamoyl]-N,N-dimethylnicotinamide), one of the
sulfonylurea herbicides, is the main herbicide used in the global maize cultivation process
with its low usage, high herbicidal activity, and good crop selectivity [6–8]. Some studies
have shown that nicosulfuron is commonly found in soil and groundwater, with residues of
up to 2.3 g–4.7 g/acre in the soil and up to 3.29 µg/L in the groundwater [9,10]. In addition,
its residual time in soil is strongly influenced by pH. In acidic soils, nicosulfuron is mostly
susceptible to hydrolysis and photolysis, with a half-life of about 15–20 days, while in
alkaline soils, the half-life can reach 190–250 days [11]. Nicosulfuron inhibits plant growth
by inhibiting the activity of acetolactate synthase (ALS) [12]. Of the herbicides commonly
used in maize fields, nicosulfuron has been reported to be the most likely to affect the
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growth of later crops [13]. Zhao et al. [8] found that beta vulgaris, as a back-crop of maize,
had an inhibitory effect on the growth of beta vulgaris when nicosulfuron residues reached
0.3 µg/kg. Xu et al. [14] found that nicosulfuron significantly inhibited the growth of
nicosulfuron-sensitive lines of maize. Environmental residues of nicosulfuron are not only
toxic to a wide range of aquatic plants and disruptive to crop rotations, but they also have
an impact on microbial populations in the soil [15]. Recent studies have confirmed that
nicosulfuron also induces hypoglycemia in humans, increasing the risk of cardiovascular
disease [11]. Therefore, research on how to remove residual nicosulfuron from water and
soil has become an urgent global problem.

Biological methods have gradually become the main focus of herbicide degradation
research due to their advantages of high efficiency, safety, and low cost. Many experiments
have been conducted to successfully degrade nicosulfuron by biological methods [16–18].
Laccase has shown potential application value in degrading herbicides. However, free
laccase has the disadvantages of poor stability, high pH and temperature requirements, and
non-reusability [19]. Studies have shown that immobilized laccase effectively ameliorates
the problems present with free laccase. Al-sareji et al. [20] immobilized laccase with date
stone and found that the storage, pH, and thermal stability of immobilized laccase were
improved. Sun et al. [21] immobilized laccase with mesoporous ZIF-8; they found that the
stability and reusability of the immobilized laccase were significantly improved, and the
removal of bisphenol A by the immobilized laccase was up to 90.28% even under adverse
conditions.

Currently, few scholars have conducted dual studies on the metabolic pathway of
nicosulfuron and the principle of action of immobilized laccase technology simultaneously.
Therefore, in this paper, immobilized laccase (MnO2@Lac) was used to degrade nicosul-
furon in water and soil samples. Based on a single-factor experiment, the degradation
effects of immobilized laccase, nano-MnO2, and free laccase on soil nicosulfuron were
investigated by response surface methodology (RSM), and the degradation conditions were
optimized. The synergistic mechanism of nanometer MnO2 and laccase was also explored,
and the degradation pathways of nicosulfuron were analyzed, opening up a new way for
the remediation of herbicides.

2. Materials and Methods
2.1. Materials

Laccase (EC 1.10.3.2) was purchased from Novozymes (China) Biotechnology Co., Ltd
(Tianjin, China). Nicosulfuron(2-((4,6-dimethoxypyrimidin-2-ylcarbamoyl)sulfamoyl)-N,N-
dimethylnicotinamide, purity > 97%) was purchased from Guangzhou Puxin Biotechnology
Co., Ltd (Guangzhou, China).

2.2. Preparation and Characterization of Immobilized Laccase with MnO2 Nanoparticles

δ-MnO2 materials were prepared by the hydrothermal method [22]. MnSO4 was
used as the manganese source and KMnO4 as the oxidizer. The mass ratio m(MnSO4):
m(KMnO4) = 3:8 was added to deionized water and stirred. The homogeneously dispersed
precursor solution was then transferred to a 200 mL reactor and kept at 100 ◦C for 3 h. After
cooling to room temperature, the precipitate was filtered and rinsed until the filtrate was
neutral. The δ-MnO2 was obtained by drying at 80 ◦C for 12 h.

Preparation of immobilized laccase: 10 mg of laccase (1.0 mg/mL) and 10 mg of
δ-MnO2 nanomaterials were added to 10 mL of acetic acid-sodium acetate buffer, pH 5.
The immobilized laccase was obtained by shaking at 30 ◦C for 4 h in a 150 rpm constant-
temperature shaker and then dried by filtration. Scanning electron microscopy (SEM, Carl
Zeiss AG, Oberkochen, BW, Germany) was used for microscopic morphology analysis of
the δ-MnO2 nanomaterials, and immobilized laccase. Then, it was characterized by Fourier
transform infrared spectroscopy (FT-IR, Thermo Nicolet Corporation, Madison, WI, USA).
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2.3. Extraction Method and Determination of Degradation Rate of Nicosulfuron

The reaction substrate in this experiment was nicosulfuron, and the concentration of
nicosulfuron was determined using an Agilent 1260 high-performance liquid chromato-
graph (Agilent Technologies Inc., Shanghai, China) during the analysis. The mobile phase
consisted of 0.1% aqueous acetic acid and acetonitrile, and the column temperature was
set to 30 ◦C; the detection wavelength was 241 nm; the flow rate was 1.0 mL/min; and the
injection volume was 20 µL.

Three types of samples were prepared: a standard sample, a sample in water, and
an experimental sample in soil. Nicosulfuron acetonitrile solution (200 mL) consisted of
2 mg of nicosulfuron and 10 mL of acetonitrile, which was used as a standard sample
to be tested. A total of 2 mg of nicosulfuron, 10 mL of acetonitrile, 10 mL of MnO2@Lac
solution and 100 µL of 0.1% acetic acid were mixed and shaken on a shaker at 220 r/min
25 ◦C for 30 min. For the experimental samples in soil, 2 mg of nicosulfuron was added to
10.75 mL of acetonitrile, which was sprayed uniformly in 5 g of autoclaved soil. Subsequent
experimental procedures were the same as for the samples in water. All the above samples
to be tested were taken in 1 mL, passed through a 0.22 µm filter membrane, and left to
be tested. The recoveries of nicosulfuron in water and soil were calculated to be 78.65%
and 72.65%, respectively, which proved that the extraction technique could meet the
experimental requirements.

2.4. Optimization of Degradation Conditions for Nicosulfuron in Water

The degradation was carried out on aqueous solutions of nicosulfuron at medium to
high concentrations. The degradation effects of immobilized laccase, MnO2, and free laccase
on nicosulfuron were determined separately, and the experiments are described below
1 mg MnO2@Lac, 1 mg MnO2, and 1 mg free laccase were added to 50 mg/L nicosulfuron
solution at pH 5, respectively, and the content of nicosulfuron was detected after reacting
for a certain time at 30 ◦C on a shaker at 160 r/min. To determine the effects of temperature,
pH, initial nicosulfuron concentration, and reaction time on the degradation of nicosulfuron,
the temperatures were set at 20, 30, 40, 50, 60, and 70 ◦C; pH = 3, 4, 5, 6, 7, and 8; the initial
nicosulfuron concentrations were 10, 30, 50, 80, 100, 150, and 200 mg/L; and the reaction
times were 5, 10, 15, 20, 25, 30, 35, 40, and a single-factor experiment was conducted to
further optimize the degradation conditions of nicosulfuron.

2.5. Optimization of Degradation Conditions for Nicosulfuron in Soil

RSM was used to optimize the degradation conditions of immobilized laccase for nico-
sulfuron in soil. Three factors were selected that had a significant effect on the degradation
rate of nicosulfuron: pH (A), temperature (B), and initial nicosulfuron concentration (C).
The response values included the degradation rates of immobilized laccase, MnO2, and
free laccase on nicosulfuron (Table 1).

Table 1. Variables and levels in central composite design.

Factor
Level

−1 0 1

A-pH 4 6 8
B-Temperature (◦C) 30 45 60

C-Initial pesticide concentration (mg/L) 100 150 200

2.6. Data Analysis

All experimental treatments were repeated three times. Charts were generated using
Origin 2019b (Origin Lab Co., Northampton, MA, USA) and regression model analysis
of variance with Design-Expert 12 (Stat-Ease Inc., Minneapolis, MN, USA). All data were
presented as mean values, with the standard deviation represented by error bars.
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3. Results and Discussion
3.1. Preparation and Morphological Characterization of MnO2 Nanomaterials and
Immobilized Laccase

Hydrothermal methods are widely used in the manufacture of new materials with
unique structures and shapes due to their high purity, good crystallinity, and multiple
morphologies. In the process of hydrothermal material synthesis, the regulation of key
parameters is crucial. The process of hydrothermal synthesis of materials involves several
core parameters, which include the type and addition ratio of reactants, the time and
temperature of the reaction, as well as the acidity and alkalinity, which enable the synthesis
of MnO2 with various morphologies. KMnO4 and (NH4)2S2O8 are strong oxidizing agents,
and MnSO4·H2O acts as a reducing agent, and a typical redox reaction occurs when
preparing the samples as follows:

3MnSO4 + KMnO4 + 2H2O → 5MnO2 + K2SO4 + 2H2SO4 (1)

MnSO4 + (NH4)2S2O8 → MnO2 + (NH4)2SO4 + MnxOy (2)

The reaction Equation (1) contains two half-reactions, and the equation is shown
below:

Mn2+ + 2H2O → MnO2 + 4H+ + 2e− (E0 = 1.23 eV) (3)

MnO4
− + 4H+ + 3e− → MnO2 + 2H2O (E0 = 1.23 eV) (4)

Based on the value of E0, the Gibbs free energy ∆G0 of the reaction in Equation (1)
can be estimated to be −269.2 kJ/mol, indicating a strong tendency for the comple-
tion of the reaction. In addition, the temperature plays an important role in the poten-
tials of MnO4

−/MnO2 and MnO2/Mn2+. Therefore, the reaction rate of hydrothermal
synthesis can be varied, resulting in the formation of MnO2 with different sizes and
morphologies [23].

SEM scans of δ-MnO2 material and MnO2@Lac are shown in Figure 1. Figure 1a shows
the SEM image of δ-MnO2. It consists of nanosheets with a thickness of about 20 nm. These
nanosheets grow vertically from the center and gradually form flower-like nanorods with a
diameter of about 4 µm. Figure 1b shows that the MnO2@Lac surface can be seen in the
form of flower ball-like MnO2 as well as spherical laccase attached to the surface of MnO2.
The increase in the specific surface area caused by the wrinkles on the surface of MnO2
facilitates the attachment of laccase, and the morphology of MnO2 did not change before or
after the immobilization.
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Figure 1. SEM images of δ-MnO2 (a) and MnO2@Lac (b).

Figure 2 shows the FT-IR of free laccase, MnO2@Lac and MnO2. Two peaks were
observed at 887 cm−1 and 1010 cm−1, corresponding to the C-N bond stretching vibration
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and C-O bond stretching vibration of laccase, respectively. The characteristic peak at
2939 cm−1 is attributed to the antisymmetric vibration of the methylene group [24–26]. The
spectral lines of MnO2 and MnO2@Lac show characteristic peaks at 550 cm−1 and 418 cm−1.
They correspond to the stretching vibrations of Mn-O bond (550 cm−1) and Mn-O-Mn bond
(418 cm−1), respectively [27]. Thus, it is shown that laccase has been immobilized into the
material. However, the characteristic peaks at 3400 cm−1 and 1645 cm−1 are attributed to
the O-H stretching vibration and the H-O-H bending vibration of water, respectively [28].
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Figure 2. FT-IR images of free laccase, MnO2, and MnO2@Lac.

3.2. Degradation of Nicosulfuron in Water by Immobilized Laccase

The effects of different reaction times (5–40 h), pH (3–8), initial pesticide concentrations
(10–200 mg/L), and temperatures (20–70 ◦C) on the degradation rate of nicosulfuron
were investigated using a single-factor experiment. As can be seen in Figure 3a, the
degradation of nicosulfuron by laccase after immobilization was significantly enhanced.
The degradation rate of nicosulfuron by MnO2@Lac reached the highest 89.0% at 25 h.
Overall trend in nicosulfuron degradation: MnO2@Lac > MnO2 > free laccase. This may
be due to the ability of MnO2 to mimic the catalytic oxidation of laccase, and laccase
synergistic degradation of nicosulfuron. In addition to the large number of hydroxyl
groups in MnO2, nicosulfuron has a certain degree of adsorption and oxidation removal
effect [29]. For the effect of pH on the degradation rate of nicosulfuron (Figure 3b), the
optimum pH for MnO2@Lac was 5, which resulted in a degradation rate of 84.2%. At pH3,
the degradation rate of nicosulfuron by free laccase and MnO2 was almost zero, while
the MnO2@Lac still had a degradation rate of 13.6%. This demonstrates that immobilized
laccase has a wider pH application range than free laccase and MnO2. Figure 3c shows
that the effect of initial pesticide concentration on the degradation rate shows an overall
trend of increasing and then decreasing. When the initial concentration of nicosulfuron
was 50 mg/L, the maximum degradation rate was 84.2%, and then the degradation rate
began to decrease. When the concentration of nicosulfuron exceeded 50 mg/L, the toxicity
of the high concentration of pollutants gradually appeared, resulting in the inactivation of
some laccase enzymes and a decrease in degradation efficiency [26]. Temperature has two
main effects on enzyme-catalyzed reactions: first, as the temperature rises, the diffusion
of reactants and substrates becomes faster, which helps to improve the efficiency of the
enzyme-catalyzed reaction; second, laccase is a class of polyphenol oxidases whose activity
is susceptible to changes in temperature and which may be rendered inactive once the
temperature is too high [30,31]. As shown in Figure 3d, the optimum temperature of
MnO2@Lac is 50 ◦C, when the degradation rate is 88.7%. The optimum temperatures of free
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laccase and MnO2 were 30 ◦C and 40 ◦C, respectively, and the maximum degradation rates
were 70.8% and 83.8%, respectively. The degradation rate of nicosulfuron by MnO2@Lac
was minimally affected by temperature compared with free laccase and MnO2 and was
higher than 50.0% in the temperature range of 20 ◦C~70 ◦C. In conclusion, the optimal
degradation conditions for the degradation of nicosulfuron in water by MnO2@Lac were
the reaction time of 25 h, pH 5, the initial pesticide concentration of 50 mg/L, and the
temperature of 50 ◦C.
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3.3. Reusability and Enzymatic Degradation Kinetics of Nicosulfuron Degradation by Immobilized
Laccase Enzymes

To test the reusability of immobilized laccase for the degradation of nicosulfuron,
MnO2@Lac was recovered and reused for the degradation of nicosulfuron, and the ex-
perimental procedure was repeated eight times. After 5 cycles, the degradation rate of
nicosulfuron by MnO2@Lac slightly decreased from 84.2% to below 70.0% (Figure 4a). This
may be due to the gradual depletion of MnO2@Lac with the increase in the number of
cycles, which affected the overall oxidizing performance. Secondly, this may be due to
the shedding of laccase during multiple rinsing processes [32]. However, after 8 cycles,
the degradation rate of nicosulfuron could still be maintained at 65.0% or higher, which
demonstrated the high reusability of the immobilized laccase and reduced the cost of
the enzyme while ensuring a higher degradation rate, which provided the possibility
of high-volume use of the immobilized laccase. Meanwhile, the enzymatic degradation
kinetics of nicosulfuron was determined in this paper (Figure 4b). The half-life of 50 mg/L
nicosulfuron was 1.46 h in the first-level kinetic model fitting.
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3.4. Studies on the Degradation of Nicosulfuron in Soil by Immobilized Laccase

According to the results in Section 3.2, the highest degradation rate of nicosulfuron
in the water body could reach 84.2%, and the temperature, pH, and initial concentration
of pesticide had a large effect on the degradation rate of nicosulfuron. To improve the
experimental efficiency and shorten the optimization time, the RSM was used to analyze
the optimum conditions for the degradation of nicosulfuron in soil by MnO2@Lac, MnO2,
and free laccase.

3.4.1. Regression Modeling Analysis of RSM

Three factors (pH (A), temperature (B), and initial concentration of nicosulfuron (C))
were analyzed by regression fitting and regression modeling. The quadratic multiple
regression equation obtained is as follows.

Y1 = −178.38125 + 39.23163 A + 3.18955 B + 1.05619 C − 3.26581 A2 − 0.034214 B2 − 0.003204 C2

Y2 = −69.43250 + 21.30625 A + 3.19292 + 0.166425 C − 1.68 A2 − 0.039122 B2 − 0.000521 C2

Y3 = −134.48000 + 33.80350 A + 2.84463 B + 0.721740 C − 2.82612 A2 − 0.029931 B2 − 0.002156 C2

The statistical analysis and model fitting data are shown in Table 2. For all three
factors, only the quadratic term of the 2FI model presents significance as their p-values are
less than 0.05. The lack-of-fit p-value is used as an additional indicator to assess the quality
of the model. A higher lack of fit p-values indicates a strong fit. The model is considered to
have a good fit when the loss-of-fit p-value exceeds 0.1 [33]. They all have p-values greater
than 0.1 in the quadratic model and are therefore considered to have a good fit. R2 is the
percentage change in the independent variable and its interacting response variable [34].
In addition, the difference between the adjusted R2 and the predicted R2 should remain
within 0.2. This indicates that it does not contain a large number of statistically insignificant
factors and that the model is reliable. Therefore, the quadratic model was chosen as the
model for implementation.
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Table 2. Statistical analysis and model fitting for RSM.

Statistical Test Response Source Sum of Squares df Mean Square F-Value p-Value Remark

Sequential model fitting MnO2@Lac Mean vs. Total 99,629.06 1 99,629.06
Linear vs. Mean 52.48 3 17.49 0.1619 0.9201

2FI vs. Linear 5.79 3 1.93 0.0138 0.9976
Quadratic vs. 2FI 1371.12 3 457.04 116.92 <0.0001 Suggested

Cubic vs. Quadratic 5.36 3 1.79 0.3247 0.8088 Aliased
Residual 22.00 4 5.50

Laccase Mean vs. Total 89,189.58 1 89,189.58
Linear vs. Mean 31.80 3 10.60 0.2379 0.8683

2FI vs. Linear 5.96 3 1.99 0.0346 0.9908
Quadratic vs. 2FI 563.96 3 187.99 140.59 <0.0001 Suggested

Cubic vs. Quadratic 1.32 3 0.4408 0.2194 0.8785 Aliased
Residual 8.04 4 2.01

MnO2 Mean vs. Total 92,185.50 1 92,185.50
Linear vs. Mean 56.74 3 18.91 0.2496 0.8602

2FI vs. Linear 3.44 3 1.15 0.0117 0.9982
Quadratic vs. 2FI 937.92 3 312.64 50.06 <0.0001 Suggested

Cubic vs. Quadratic 15.31 3 5.10 0.7184 0.5909 Aliased
Residual 28.41 4 7.10

Lack of Fit test MnO2@Lac Linear 1382.27 9 153.59 27.92 0.0029
2FI 1376.48 6 229.41 41.70 0.0015

Quadratic 5.36 3 1.79 0.3247 0.8088 Suggested
Cubic 0.0000 0 Aliased

Pure Error 22.00 4 5.50
Laccase Linear 571.24 9 63.47 31.59 0.0023

2FI 565.29 6 94.21 46.89 0.0012
Quadratic 1.32 3 0.4408 0.2194 0.8785 Suggested

Cubic 0.0000 0 Aliased
Pure Error 8.04 4 2.01

MnO2 Linear 956.67 9 106.30 14.97 0.0096
2FI 953.23 6 158.87 22.37 0.0048

Quadratic 15.31 3 5.10 0.7184 0.5909 Suggested
Cubic 0.0000 0 Aliased

Pure Error 28.41 4 7.10
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Table 2. Cont.

Statistical Test Response Source Sum of Squares df Mean Square F-Value p-Value Remark

Model summary statistics Response Source Std. dev. R2 Adj. R2 Pred. R2 Press Remark
MnO2@Lac Linear 10.39 0.0360 −0.1864 −0.3965 2034.32

2FI 11.83 0.0400 −0.5360 −1.3492 3422.18
Quadratic 1.98 0.9812 0.9571 0.9175 120.11 Suggested

Cubic 2.35 0.9849 0.9396 * Aliased
Laccase Linear 6.68 0.0520 −0.1667 −0.4770 902.56

2FI 7.57 0.0618 −0.5011 −1.7113 1656.82
Quadratic 1.16 0.9847 0.9650 0.9448 33.72 Suggested

Cubic 1.42 0.9868 0.9474 * Aliased
MnO2 Linear 8.70 0.0545 −0.1637 −0.3904 1448.51

2FI 9.91 0.0578 −0.5076 −1.3930 2493.05
Quadratic 2.50 0.9580 0.9041 0.7223 289.28 Suggested

Cubic 2.66 0.9727 0.8909 * Aliased
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The results of the analysis of variance using the Box–Behnken design of experimental
protocol are shown in Table 3. For immobilized laccase, p < 0.0001, and for the lack of fit
p = 0.8088 > 0.1. This indicates that the regression model fits well with actual experiments
and is suitable for analyzing and predicting the conditions of MnO2@Lac degradation
of nicosulfuron. The p-values of the three factors were pH (p = 0.0239), temperature
(p = 0.0613), and initial concentration of nicosulfuron (p = 0.6610), where the p-value of pH
was <0.05, which indicated that the effect of this factor was significant. Thus, it can be
inferred that the degree of influence of the three factors on the rate of pesticide degradation
was A > B > C. Similarly, for free laccase, p < 0.0001 for the overall model indicates that
the regression model fits well with the actual experiment and is suitable for analyzing
and predicting the conditions of nicosulfuron degradation by laccase. The p-values of
the three factors were pH (p = 0.0042), temperature (p = 0.0470), and initial concentration
of nicosulfuron (p = 0.4817). It can be inferred that the extent of their influence on the
degradation rate: A > B > C. As can be seen from Table 3, the regression model for MnO2 is
similar to the two models mentioned above, with the same analytical results, and pH is
still the most significantly affected factor.

Table 3. Analysis of variance of regression model for response surface design.

Response Source Sum of
Squares

Degree of
Freedom

Mean
Square F Value p-Value

MnO2@Lac Model 1429.39 9 158.82 40.63 <0.0001
Residual 27.36 7 3.91 - -

Lack of fit 5.36 3 1.79 0.32 0.8088
Pure Error 22.00 4 5.50 - -
Cor Total 1456.75 16 - - -

Laccase Model 601.73 9 66.86 50.00 <0.0001
Residual 9.36 7 1.34 - -

Lack of fit 1.32 3 0.44 0.22 0.8785
Pure Error 8.04 4 2.01 - -
Cor Total 611.09 16 - - -

MnO2 Model 998.10 9 110.90 17.76 0.0005
Residual 43.71 7 6.24 - -

Lack of fit 15.31 3 5.10 0.72 0.5909
Pure Error 28.41 4 7.10 - -
Cor Total 1041.82 16 - - -

3.4.2. Response Surface and Contour Analysis

To represent the interactions between the influencing factors more intuitively, response
surface and contour maps of the interaction of the factors were plotted. In a response surface
plot, the response value has a maximum if the opening of the surface is facing down. The
more curved the curve and the faster the color change, the more significant the effect of the
factors on the results [35,36]. In contour plots, if the contours are elliptical, the interaction
between the factors has a significant effect on the response values. Figure 5 shows that
the openings of the response surface plots are all downward, and the degradation rate
shows a trend of increasing and then decreasing, indicating that there is a maximum in the
response value. The steeper surface along the A-axis of the degradation rate relative to C in
Figure 5a. This indicates that the effect of A on the degradation rate is more significant. This
is consistent with the results obtained from the model developed in this paper. The contour
plots in Figure 5a,b show an elliptical shape, indicating that the interaction terms AB and
AC interact with each other to have a significant effect on the response values. In contrast,
the contour graphs in Figure 5c appear nearly circular, indicating that the interaction of BC
has a weak effect on the response values.
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Figure 6 shows the effect of three factors on the degradation rate of free laccase
degradation of nicosulfuron. The response surface plots are all open downward, proving
that there is a maximum in the degradation rate for all three sets of interaction experiments.
Figure 6a shows that the degradation rate increases significantly with increasing A, but the
degradation rate starts to decrease when A reaches about six. This is because the optimal
pH of free laccase is around 4~5. As the pH increases, the enzyme activity gradually
decreases or even inactivates, resulting in a lower degradation rate [37,38]. The steeper
surface along the B-axis of the degradation rate relative to C in Figure 6c indicates that
factor B has a more significant effect on the degradation rate. In the contour plots, the
graphs in Figures 5a and 6b are oval in shape and change color more rapidly, indicating
that the interaction between AC and BC has a more significant effect on the response values.
The graph in Figure 5b is rounded, indicating that there is no interaction between A and B.
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The effects of the three factors on the degradation rate of nicosulfuron degradation
by MnO2 are shown in Figure 7. The surface along the A-axis is steeper (Figure 7a,b),
indicating that the effect of factor A on the degradation rate is more significant. Observation
of their contour plots reveals that the graphs in Figure 7a,c are elliptical with faster color
change. Therefore, it indicates that the interaction of AC and BC has a greater effect on the
degradation rate of MnO2 degradation of nicosulfuron.
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3.4.3. Optimization and Analysis of Results

Numerical optimization was performed using Design Expert software. In this opti-
mization process, the aim is to maximize the degradation rate. The optimization results
of the software are shown in Table 4. The degradation of nicosulfuron fell within the
95% confidence interval. Therefore, these models are valid and accurately describe the
interactions between the variables.

Table 4. The proposed optimum conditions by RSM and experimental results.

Response
Optimum Conditions Predicted Mean

(%)
Experimental

Results (%)pH Temperature (◦C) Concentration (mg/kg)

MnO2@Lac 5.9 46.5 151.1 90.3 90.1
Laccase 6.2 44.3 153.3 80.5 79.8
MnO2 5.8 46.8 150.7 84.9 84.2

It is clear from Table 4 that MnO2@Lac degraded 90.1% of nicosulfuron in soil. Accord-
ing to previous reports, Zhou et al. [16] utilized the strain Oceanisphaera psychrotolerans
LAM-WHM-ZC to degrade nicosulfuron in soil with a maximum degradation rate of 78.6%.
Kang et al. [39] treated nicosulfuron using a nicosulfuron degrading enzyme produced in
Bacillus subtilis strain YB1 and obtained a maximum degradation rate of 66%. In contrast,
MnO2@Lac showed a greater degradation rate of nicosulfuron in soil.

3.5. Synergistic Mechanism of MnO2 Nanoparticles

Based on the results obtained in Section 3.4, comparing the degradation rates of
MnO2@Lac, Lac, and MnO2 on nicosulfuron in soil, it can be concluded that the degradation
effect is MnO2@Lac > MnO2 > free laccase. The reason for this phenomenon is that, on the
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one hand, the laccase molecules in the immobilized laccase are protected by the carrier.
They can maintain higher enzyme activity in a wider temperature and pH range [20,37,40],
and improve the degradation rate of pesticides. On the other hand, the synergistic catalytic
effect of MnO2 materials.

MnO2 has the same substrate of action as laccase, 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS). ABTS is a special substrate for laccase and one of the most widely
used mediators. As a mediator, ABTS plays the role of electron transfer between laccase
and substrate (Figure 8b), which ultimately leads to substrate degradation [41]. Figure 8a
shows the mechanism of substrate conversion by MnO2 and laccase. Certain manganese
oxides (MnOx) can oxidize substrates by single electron transfer, and in turn, the reduced
manganese oxides MnOx

red can be reoxidized to MnOx by dissolved oxygen and reduced
to water under certain conditions [42,43]. Wu et al. [44]. prepared and validated that
two-dimensional ultrathin MnO2 nanofilm (Mn-uNF) can be used as a laccase mimic to
degrade pollutants, and Mn-uNF possesses better stability than free laccase. In conclu-
sion, MnO2 was able to synergize with laccase to degrade the target pollutants due to its
laccase-like catalytic activity. Thus, the degradation rate of nicosulfuron by MnO2@Lac was
significantly enhanced.
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3.6. Analysis of Nicosulfuron Degradation Pathway

Sulfonylureas are weakly acidic herbicides, with pKa values generally ranging from
3 to 5. In aqueous solutions, herbicides exist mainly in the neutral state at pH values
below pKa, while at pH values above pKa, they appear mainly in the anionic form. The
main reason for the production of nicosulfuron degradation products is the breakage
of the C-N, C-S, and S-N bonds in the sulfonylurea bridge [18]. Cleavage of the C-S
bond of the sulfonylurea bridge produces 2-(1-(4,6-dimethoxy-pyrimidin-2-)-ureido)-N,
N-dimethyl-nicotinamide (A). Breakage of the C-N bond of the sulfonylurea bridge pro-
duced 2-aminosulfonyl-N, N-dimethylnicotinamide (B), which was further deaminated by
intermediate C to produce N, N-dimethyl-2-aminosulfonyl-isonicotinamide (D). Product
C (N-(4,6-dimethoxypyrimidin-2-ylcarbamoyl)-1-(methylimino)methanesulfonamide) is
generated due to the ring opening of the pyridine ring, which is followed by a condensation
reaction, deamidation, and partial oxidation of the methoxy group to produce product E
(2-ylamine-4,6-dimethoxypyrimidinyl) [45–47]. Summarizing the metabolite speculations,
the metabolic pathway of nicosulfuron in soil degraded by MnO2@Lac is shown in Figure 9.
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4. Conclusions

In this paper, the degradation of nicosulfuron in water and soil by MnO2@Lac, nano-
MnO2, and free laccase was investigated by RSM, and the degradation conditions were
optimized. The optimal degradation conditions of nicosulfuron in water by MnO2@Lac
were 50 mg/L, 25 h, 50 ◦C, and pH 5. Under these conditions, the degradation of nicosul-
furon in water reached 88.7% with a half-life of 1.46 h. The optimum conditions for the
degradation of nicosulfuron in soil by immobilized laccase were 151.1 mg/kg, 46.5 ◦C, and
pH 5.9. The degradation rate of nicosulfuron could reach 90.1%. We also used δ-MnO2
as a carrier to immobilize laccase. The laccase-like catalytic effect of nano-MnO2 was
utilized to enable laccase and δ-MnO2 to synergistically degrade nicosulfuron, which led to
the remarkable effect of MnO2@Lac in degrading residual nicosulfuron in water and soil
samples. Thus, immobilized laccase can be applied in the remediation of soil contaminated
with sulfonylurea herbicides and can be further experimented with in other types of herbi-
cides. At the same time, this study provides a theoretical basis for the application of the
removal of pesticide contaminants using mimetic enzyme nanomaterials in combination
with bio-enzymatic methods.
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