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Abstract: Toxicological assessments of skin sensitizers have progressed towards a higher reliance on
non-animal methods. Current technological trends aim to extend the utility of non-animal methods to
accurately characterize skin-sensitizing potency. The GARDskin Dose–Response assay has previously
been described; it was shown that its main readout, cDV0 concentration, is associated with skin-
sensitizing potency. The ability to predict potency from cDV0 in the form of NESILs derived from
LLNAs or human NOELs was evaluated. The assessment of a dataset of 30 chemicals showed that
the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL
values (ρ = 0.645–0.787 [p < 1 × 10−3]). A composite potency value that combined LLNA and human
potency data was defined, which aided the performance of the proposed model for the prediction of
NESILs. The potency model accurately predicted sensitizing potency, with cross-validation errors
of 2.75 and 3.22 fold changes compared with NESILs from LLNAs and humans, respectively. In
conclusion, the results suggest that the GARDskin Dose–Response assay may be used to derive an
accurate quantitative continuous potency estimate of skin sensitizers.

Keywords: NAM; GARDskin Dose–Response; sensitizing potency; quantitative risk assessment;
point of departure

1. Introduction

Chemicals possess a wide range of physiochemical properties. While many are benefi-
cial, making them ubiquitous in industries and society, some can induce hazardous effects
in humans. Therefore, it is essential to investigate the potential of chemicals to induce
adverse effects. One type of hazard that is routinely screened for is the capacity to induce
skin sensitization [1,2]. Skin sensitization is a hypersensitivity reaction that follows a topical
exposure to an inducing chemical, leading to the establishment of a specific immunological
memory [3,4]. The underlying mechanisms of this reaction have been extensively studied
and explained, and the major key events (KEs) are recognized and have been summarized
in an Adverse Outcome Pathway (AOP) [5]. As the sensitization reaction results in an
immunological memory, a sensitized individual will suffer from adverse effects upon
repeated exposure to that specific chemical, making the initial avoidance of hazardous
exposure levels imperative.

The induction of skin sensitization is a dose-dependent event, and the likelihood that
sensitization occurs typically increases with dose [6]. However, chemicals’ efficiencies
to induce sensitization vary greatly [7]. For example, a strong skin sensitizer may cause
sensitization from a few micrograms of topical exposure, while weak sensitizers would
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require milligrams to reach a similar probability of sensitization on the same surface
area. Therefore, it is not only relevant to evaluate the ability of a chemical to induce skin
sensitization, but also to characterize an identified skin sensitizer’s potency, i.e., to derive
an estimate of an exposure level that is not expected to induce skin sensitization in the
general population.

Traditionally, the assessment of skin sensitizers has relied on information from in vivo
assays. Guinea pig models were among the earliest standardized methods, which included
the Buehler assay [8–10] and the Guinea Pig Maximization Test (GPMT) [11]. These were
largely superseded by the more recent murine Local Lymph Node Assay (LLNA) [12–14],
which brought several improvements over the guinea pig assays. These include aspects
of animal welfare and an improved scientific rationale, as the assay provides an objective
and quantitative readout [15]. Further, while potency information could be gathered from
the guinea pig models [6], the LLNA incorporates dose–response measurements, and the
derived effective concentration for a stimulation index of 3 (EC3) serves as an immediate
indicator of sensitizing potency, which has been shown to correspond well with human-
derived potency data [16–19]. Human potency data are often described in terms of No
Observed Effect Levels (NOELs) or Lowest Observed Effect Levels (LOELs) from Human
Repeat Insult Patch Tests (HRIPTs). However, testing on humans is problematic [20], especially
given the potential severity and enduring effects of skin sensitization, and is typically avoided
unless used in confirmatory scenarios where a lack of response has been demonstrated [21].
Nevertheless, when available, data from both humans and LLNAs may be used as information
sources to derive No Expected Sensitization Induction Levels (NESILs), which may be used
as a Point of Departure (PoD) in risk assessment strategies [22,23].

More recent advancements in the field of skin-sensitization assessment, however, are
being made toward the development of non-animal methods, or New Approach Method-
ologies (NAMs), aiming to replace animal tests, not only for hazard identification but also
for hazard characterization and potency evaluation. An initial milestone, which has to a
significant degree already been realized, is the establishment of NAMs capable of accurately
and reliably identifying skin-sensitizing hazards. Today, many different NAMs can be used
to generate such hazard information, and validated and regulatory approved methods
are described in various OECD test guidelines [24–26], each of which is associated with a
specific KE of the AOP. However, none of the methods described in the TGs have so far
been approved for stand-alone use. Therefore, endeavors have also been made to integrate
results across NAMs to increase confidence in their joint classification outcomes, using
so-called Defined Approaches for Skin Sensitization (DASS) [27–29]. In addition to these
NAMs, skin-sensitizing hazard data can also be obtained using in silico methods [30–33],
which may contribute to weight-of-evidence assessments.

A second milestone in the replacement of animal tests is the development of methods
capable of informing about chemicals’ skin-sensitizing potencies. Indeed, some potency
information may already be derived in a discrete manner, as described in the current OECD
test guideline 497, where integrated testing strategies incorporating multiple information
sources (including in chemico, in vitro, and in silico) are used to predict sensitizing potency
per the globally harmonized system for classification and labelling (UN GHS) [29]. How-
ever, the apogee of NAM development for the purpose of potency assessment is, neverthe-
less, likely a readout provided as a quantitative continuous potency value. Some progress
has already been made towards this objective. For example, probabilistic approaches based
on Bayesian or Artificial Neuronal Network (ANN) frameworks that incorporate multiple
information sources, including several NAMs, have been described for the prediction
of PoDs [34–37]. Similarly, several alternative regression models based on the output of
established NAMs have been proposed for the prediction of LLNA EC3 values [38]. Besides
methods incorporating data from individual NAMs, novel test methods have also been
proposed for directly generating potency information [24,39].

While the development of NAMs for the assessment of skin sensitizers progresses,
frameworks for interpreting their results and managing risks are also being established. For
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example, Next-Generation Risk Assessment (NGRA) strategies that incorporate information
from several NAMs have recently been proposed [40,41].

We have previously described an extended protocol of the GARDskin assay that in-
corporates dose–response measurements to derive a concentration estimate that correlates
strongly and significantly with both LLNA EC3 and human NOELs [42]. The classical
GARDskin assay is an OECD-approved assay described in test guideline 442E [26], together
with other methods addressing the key event of dendritic cell activation. The GARDskin
assay, and the dose–response adaptation, relies on the monitoring of genetic changes in
a biomarker signature following chemical exposure. The biomarker signature includes
several genes relevant to immune activation, including cd86, hmox1, nqo1, and nlrp12 [43].
The dose–response adaptation studies the summarized gene response over multiple con-
centrations to identify the lowest concentration capable of inducing a positive classification
in the GARDskin assay. As such, the main methodology is a typical toxicological approach,
which is also applied in the LLNA, where a PoD is determined from a dose–response curve
and used as a measure of potency.

In this work, we further characterize the GARDskin Dose–Response assay and provide
results that show that its readout, the cDV0 value, correlates significantly with established
potency metrics on a larger dataset and can be used to accurately predict potency. Notably,
the redundancy and potential ambiguity of having repeated NESILs derived from the
LLNA and human NOELs for model fitting was rectified using a composite potency value
describing a latent potency signal. This approach improved the predictive performance
compared with methods relying on individual references, generating NESIL predictions
relevant for risk assessment frameworks such as NGRA [40,41].

2. Materials and Methods
2.1. The GARDskin Dose–Response Assay

The GARDskin Dose–Response assay is based on the protocol of the GARDskin assay,
publicly available in the Tracking System for Alternative methods towards Regulatory
acceptance (TSAR) [44]. The assay measures the expression levels of genes in the GARDskin
Genomic Prediction Signature (GPS) following treatment with a test chemical to the cell
system [26,43,45], i.e., the Senzacell cell line (ATCC depository PTA-123875). The interpreta-
tion of gene response is made with a support vector machine (SVM) (explicitly described in
supporting documents to the OECD TG 442E [46]), which outputs a decision value (DV) on
which the subsequent classification is based. A test chemical is classified as a skin sensitizer
if the generated mean DV is greater than zero (DV ≥ 0) and as a non-sensitizer if the mean
DV is less than zero (DV < 0).

The GARDskin Dose–Response assay extends the standard protocol by evaluating the
test chemical at several concentrations [42]. DVs are calculated for every concentration and
the lowest concentration expected to induce a positive classification is determined, which
corresponds to the lowest concentration that predicts a DV of 0. Practically, this concen-
tration can be estimated using linear interpolation between the two closest concentrations
that generate predictions on the opposite sides of the GARDskin classification threshold.
The estimated concentration is the main readout of the GARDskin Dose–Response assay,
termed cDV0 [42].

In more detail, a test item assessment starts with an examination of the cytotoxic
properties of the chemical, using a protocol based on propidium iodide staining and flow
cytometry analysis. A concentration inducing low-to-non-toxic conditions, as determined
by the relative viability of the cell system following exposure, is determined. This con-
centration is termed the GARD input concentration and constitutes the sole assessment
concentration in the standard GARDskin assay and the highest evaluated concentration
in the GARDskin Dose–Response assay. Subsequent concentrations in the dose–response
assay are typically calculated using a dilution series with a dilution factor of approximately
0.5. The actual design of the concentration curve can be modified for particular purposes,
i.e., a higher number of replicates with smaller steps between concentrations may result in
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reduced uncertainty of an estimated cDV0 value but at the cost of resources. As this study
comprises chemicals from several separate experiments, the designs of the concentration
curves are not identical. For example, in Gradin et al.’s study [42], chemicals were analyzed
by evaluating 12 different concentrations with a dilution factor of 0.6 and a single replicate
per concentration. Since then, data have been acquired using more standardized dilution
schemes optimized from accumulated observations, typically including 6 concentrations
with two or three replicates. The actual dilution schemes used for each chemical in this
study are available in Supplementary Tables S2 and S3.

Cells are treated with the test chemical at the determined concentrations for 24 h,
following which cells are harvested and total RNA is isolated and purified. Gene expression
levels are quantified using the NanoString nCounter system using a custom GARDskin
codeset, as described previously [26,45]. The data analysis pipeline for transforming raw
gene expression levels into decision values has been publicly described, including all
parameter values [46]. For the dose–response analysis, the decision values are examined
against the treatment concentrations to verify the presence of a dose–response relationship.
A cDV0 concentration is estimated when a dose-dependent response is observed, using
linear interpolation between the two closest points (in terms of concentration) that are on
adjacent sides of the classification threshold.

2.2. Dataset

This work was based on a dataset of 30 chemicals, as listed in Table 1. More complete
details regarding the chemicals are presented in Supplementary Table S1. GARDskin Dose–
Response data for 18 of the chemicals were previously described in Gradin et al.’s work [42].
In that work, chemicals were selected to span a wide range of expected potency values while
preferably having both human and LLNA reference data. In addition, they were selected
to cover the potency span relatively evenly to allow for an efficient correlation analysis
between cDV0 and potency references. That dataset of 18 chemicals was extended here
with 12 new chemicals. The new chemicals raised skin-sensitization alerts and had LLNA
and human NOEL data. The chemicals were butyl resorcinol (18979-61-8); citral (5392-40-5);
chlorpromazine (50-53-3); (R)-(+)-Limonene (5989-27-5); alpha-iso-Methylionone (127-51-
5); phenylacetaldehyde (122-78-1); ethyl acrylate (140-88-5); cinnamic alcohol (104-54-1);
3-Propylidenephthalide (17369-59-4); 5-Methyl-2,3-hexanedione (13706-86-0); and carvone
(6485-40-1). A majority of weak and moderate, i.e., UN GHS Cat. 1B, skin sensitizers were
selected to reduce the uncertainty in the estimated relationship between cDV0 and the
sensitization potency for this category of ingredients, as precision in this potency range
may be of particular relevance for the cosmetics industry.

The analysis included repeated runs for 10 of the chemicals. Repeated cDV0 values
were merged by their geometric mean values before incorporation in downstream calcula-
tions (including correlation evaluations and regression analyses). Individual cDV0 values
and repeated runs’ geometric means are described in Table 1 and in Supplementary Table S1.
The geometric mean was used as it consistently maintains the relative differences be-
tween measurements. For example, the geometric mean of 0.5 µg/mL and 2 µg/mL is
1 µg/mL, which is 2-fold from either of the original values.

LLNA EC3, human NOELs, and human Lowest Observed Effect Levels (LOELs) were
collected from the published literature [47–53] (see Supplementary Table S1 for details).
LLNA EC3 values were converted into NESIL estimates in µg/cm2 by multiplying the
percentage values by 250 [54].
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Table 1. Description of the chemical dataset. The cPV column describes the computed composite
potency values. Chemicals that have data from repeated tests show results from the individual
studies within parentheses and the summarized values (the geometric mean), which are used for
subsequent calculations, outside the parentheses. Entries with dashes (“-”) represent reference data
points that could not be located or composite potency values that could not be defined due to at least
one missing reference value.

NESIL µg/cm2

Chemical CAS MW (g/mol) cDV0 (µg/mL) LLNA HRIPT NOEL Composite Potency
Value (cPV)

Human LOEL
(µg/cm2)

Benzalkonium chloride 8001-54-5 424.15 0.350 25.0 - - -
2,4-Dinitrochlorobenzene 97-00-7 202.55 0.443 13.5 8.8 9.80 8.8
Cinnamic aldehyde 104-55-2 132.16 0.524 250 591 378 775
Citral 5392-40-5 152.23 1.11 (0.737, 1.67) 1450 1417 1440 3876
Diethyl maleate 141-05-9 172.18 1.03 (0.754, 1.40) 525 1600 921 -
Dimethyl fumarate 624-49-7 144.13 0.874 87.5 88 82.8 -
Methylisothiazolinone 2682-20-4 115.15 0.904 325 15 63.4 -
Benzyl Alcohol 100-51-6 108.14 1.37 NS 5905 - 8858
Chlorpromazine 50-53-3 318.9 1.38 35.0 1150 200 17,241
alpha-Isomethylionone 127-51-5 206.32 3.10 (1.48, 6.51) 5450 70,860 21,400 -
Iodopropynyl
butylcarbamate 55406-53-6 281.09 1.61 225 - - -

Isoeugenol 97-54-1 164.21 1.70 325 250 275 775
p-Mentha-1,8-dien-7-al 2111-75-3 150.22 2.41 (1.73, 3.38) 1010 709 835 2760
Phenylacetaldehyde 122-78-1 120.15 2.68 750 591 654 1181
Carvone 6485-40-1 150.22 5.13 (3.58, 7.35) 3250 2657 2980 18,898
7-Hydroxycitronellal 107-75-5 172.26 5.70 5275 4960 5260 5814
5-Methyl-2,3-hexanedione 13706-86-0 128.169 8.97 6500 3448 4830 3450
Eugenol 97-53-0 164.21 9.29 2900 5906 4270 -
Ethyl acrylate 140-88-5 100.12 9.47 8188 1600 3630 4000
Cinnamic alcohol 104-54-1 134.17 10.3 5775 2953 4200 4724
Butyl resorcinol 18979-61-8 166.22 8.83 (10.3, 7.55) 950 - - -
Farnesol 4602-84-0 222.37 11.8 (11.5, 12.1) 1200 2755 1850 6897
Geraniol 106-24-1 154.25 15.4 (12.7, 18.7) 4025 11,811 7220 -
Imidazolidinyl urea 39236-46-9 388.29 14.9 6000 2000 3490 2000
3-Propylidenephthalide 17369-59-4 174.2 18.5 (18.8, 18.2) 925 945 928 2760
Pentachlorophenol 87-86-5 266.34 20.1 5000 2155 3310 6897
(R)-(+)-Limonene 5989-27-5 136.23 14.8 (20.2, 10.8) 13,125 10,000 12,000 -
3-Dimethylaminopropylamine 109-55-7 102.18 25.7 875 - - -
Benzyl salicylate 118-58-1 228.25 37.4 725 17,715 3790 -
Linalool 78-70-6 154.25 43.0 8875 14,998 12,100 -

2.3. Creation of a Composite Potency Value

The reference composite potency value was created by fitting a robust errors-in-
variables model between NESIL values derived from LLNA EC3 and human NOELs,
and by orthogonally projecting the datapoints onto the fitted line, creating the composite
potency values. More explicitly, a Passing–Bablok regression model [55] was fitted between
the log-transformed NESILs from LLNA EC3 and human NOEL values (see Table 1 for a
description of the data). The 25 chemicals with continuous LLNA and human data were
included in the fit. The Passing–Bablok fit was created in R (version 4.2.0) [56] with the
R-package Deming (version 1.4) [57]. Confidence intervals for the fitted coefficients were
estimated using bootstrap [58], taking 10,000 bootstrap replicates. The composite potency
values were calculated as follows.

Given the linear PB fit as line l in the form y = ax + b, and data point p with coordinates
(xi, yi), the coordinates of the projection of point p onto l was calculated by finding the
intersect between line l and the line that is orthogonal to l and passes through coordinates
(xi, yi), as described by Equation (1). The point’s projected coordinates (x̂i, ŷi) are thus given
by Equations (2) and (3).

y = − x
a
+ yi +

xi
a

, (1)

x̂i =
yi +

xi
a + b

a + 1
a

, (2)

ŷi = a × x̂i + b, (3)
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The relative distances between the projected points were calculated with the Pythagorean
theorem, using the data point with the smallest composite potency value as a reference (note
that min(x̂) and min(ŷ) refer to the same data point). As the relative distances between
the projected points may be inflated in this step, the data were scaled by the expected
inflation rate per original potency unit. The relative distances were calculated as described
in Equation (4).

di =

√
(x̂i − min(x̂))2 + (ŷi − min(ŷ))2 × 1√

1 + a2
, (4)

where di is the distance between chemical i and the chemical with the smallest composite
potency value on the composite potency scale, x̂i is the projected x-coordinate for chemical
i, ŷi is the projected y-coordinate for chemical i, min(x̂) and min(ŷ) correspond to the
minimum values of the projected x- and y-coordinates for the set of chemicals, and a is
the slope of the fitted PB model onto which the projections are made. Finally, the location
of the composite potency value was shifted so that the average differences between the
composite scale and the projected x- and y-coordinates were minimized (see Equation (5)).

cPV = d +
Avg(x̂ − d) + Avg(ŷ − d)

2
, (5)

where cPV is the composite potency value, d is the vector of distance calculated in
Equation (4), x̂ and ŷ are the projected x- and y-coordinates, and Avg is a function for
the calculation of the arithmetic mean.

2.4. Fitting of Potency Prediction Models

Two main types of models were considered for predicting potency values from cDV0.
The first one was standard linear regression, where overall prediction errors are minimized.
The other type of model was a robust implementation of linear regression, where the fit
was achieved using iterative re-weighted least squares, incorporating Huber loss to down-
weight samples with relatively outlying values [59]. The constant k in the Huber weighting
was kept at the default value of 1.345. The standard regression models were fitted using R
(version 4.2.0) and base package stats (version 4.2.0) [56]. The robust regression models
were fitted in R (version 4.2.0) with the package MASS (version 7.3-56) [60].

The performances of the fits were evaluated using repeated cross-validation, with
50 repeats and 10 folds. Classification accuracy was based on the absolute geometric mean
fold change, defined as described in Equation (6). The cross-validation performance was
summarized within repeats and then across the repeats.

Absolute geometric mean f old change = e
∑n

i=1 |log (
Predictioni
Re f erencei

)|
n (6)

where Predictioni is the potency prediction of chemical i, Referencei is the reference potency
value for chemical i, and n is the number of chemicals. Note that Predictioni and Referencei
are not log-transformed in Equation (6).

2.5. General Statistical Calculations and Visualizations

All calculations were performed in R (version 4.2.0) [56]. Correlation metrics and
regression models were calculated and fitted on log10-transformed concentrations or
dose values, unless explicitly stated otherwise. Linear correlations were calculated with
the Pearson correlation coefficient and rank correlations with the Spearman correlation
coefficient. Calculations of prediction errors were based on relative differences, expressed
as fold changes. Aggregated performance figures summarized over a set of chemicals were
calculated as absolute geometric mean fold changes (see Equation (6)).

Figures 1–3 were created using ggplot2 (version 3.4.0) [61].
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3. Results
3.1. Potency Information in cDV0 Values

The GARDskin Dose–Response assay is a method for the quantitative assessment of
skin-sensitizing potency. cDV0 has been shown to be significantly associated with skin-
sensitizing potency, defined from either LLNA EC3 values or human NOEL values. To
provide a more detailed understanding of these associations, and to examine methods
capable of predicting such potency values from cDV0, data on 12 chemicals were generated
and added to a dataset of 18 previously described chemicals [42]. The results for the
complete dataset of 30 chemicals are described in Table 1.

The correlations between cDV0 values and LLNA EC3 and human NOELs were first
assessed (see Table 2). As can be seen, both linear and rank correlations are significant and
range from 0.645 to 0.787. Generally, the cDV0 values appear more strongly correlated with
LLNA EC3 than with human NOELs. Moreover, the magnitudes of the correlation scores
are similar to those calculated between the two references.

Table 2. Linear (Pearson) and rank (Spearman) correlation coefficients between GARDskin Dose–
Response cDV0, LLNA EC3, and human NOEL values.

On Molar-Based Concentrations On Mass-Based Concentrations
Linear Correlation Rank Correlation Linear Correlation Rank Correlation

cDV0 vs. LLNA EC3 0.787 (p = 4.20 × 10−7) 0.709 (p = 2.74 × 10−5) 0.743 (p = 3.92 × 10−6) 0.669 (p = 7.18 × 10−5)
cDV0 vs. human NOEL 0.645 (p = 3.70 × 10−4) 0.664 (p = 3.08 × 10−4) 0.652 (p = 3.11 × 10−4) 0.656 (p = 2.74 × 10−4)

LLNA EC3 vs. human NOEL 0.738 (p = 2.54 × 10−5) 0.773 (p = 1.02 × 10−5) 0.736 (p = 2.72 × 10−5) 0.709 (p = 7.20 × 10−5)

3.2. Creation of Reference Composite Potency Values

As shown, the cDV0 values correlate significantly with both LLNA EC3 and human
NOELs, which suggests that the ranking of chemicals obtained from the GARDskin Dose–
Response assay is, in itself, informative of potency. However, for the metric to be useful in
NGRA, the cDV0 value is advantageously translated into a more appropriate unit such as
the more readily interpretable µg/cm2.

However, two distinct sets of references are available for constructing a potential
prediction model, i.e., NESILs derived from either LLNA EC3 values or human NOEL
values. While it may be argued that the human endpoint is the more relevant one (as we
are attempting to predict sensitization in humans), LLNA EC3 values are a more consistent
estimator of a PoD, as human NOELs do not necessarily represent the highest possible
non-sensitizing concentration (only the highest observed non-sensitizing concentration).
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As both metrices have potential advantages and disadvantages, while simultaneously
describing an underlying potency signal, it was hypothesized that one could leverage both
information sources against each other to create a composite potency value to which a
model could be fitted. Therefore, a robust errors-in-variables model, a Passing–Bablok
(PB) regression model, was fitted between the 25 chemicals with NESILs from both LLNA
EC3 and human NOEL values. The fit between the measures is displayed in Figure 1. The
fitted coefficients of the PB model are described in Table 3. The estimated coefficients were
close to, and not significantly different from, the identity line (slope = 1, intercept = 0),
indicating that no systematic differences between the references could be detected on the
examined dataset.

Table 3. Regression coefficients of the PB models fitted between the reference NESILs. The values
within the parentheses describe the estimated 95% confidence intervals of the coefficients.

Intercept Slope

Molar 0.0435 (−0.459, 0.331) 0.988 (0.700, 1.30)
Mass 0.183 (−0.778, 1.22) 0.958 (0.624, 1.22)

The composite potency values were created by projecting the individual data points
onto the fitted line. The individual reference values and the composite scores are described
in Table 1. Figure 2 compares the composite scores with the original potency references.
The figure suggests that the composite values capture the overall potency information from
either reference well.

3.3. Prediction of Potency Values from cDV0

Figure 3 shows a scatter plot comparing the cDV0 values with the derived composite
potency values. As expected, based on the underlying reference values, they correlate
strongly and significantly. The linear correlation for molar-based concentrations was
estimated to be 0.770 (p = 6.68 × 10−6) and the rank correlation to be 0.710 (p = 1.07 × 10−4).
The corresponding values for the mass-based concentrations were 0.762 (p = 9.56 × 10−6)
and 0.709 (p = 1.10 × 10−4), for linear and rank correlation respectively. Interestingly, for the
25 chemicals that had references from LLNA EC3 and human NOEL values, the correlation
scores between the composite potency values and cDV0 were higher compared with any
correlation score calculated between cDV0 and either of the individual references.

Regression models were fitted with the aim of predicting the composite potency
values from the cDV0 values. Two main variants of regression models were considered: a
standard linear regression model and a robust regression model that reduced the influence
of deviating observations. The model types were fitted both with and without a parameter
for a slope. When the slope was not estimated, a constant value of 1 was assumed. The
performances of all four types of models were examined using repeated cross-validation,
which showed that the prediction errors were consistently smaller for the models that only
estimated an intercept. The two regression techniques produced relatively similar results,
but the smallest errors were observed for the robust regression. Therefore, the robust
regression model that only included an intercept was selected as the most appropriate for
potency predictions. From the cross-validation, the prediction errors for both molar- and
mass-based models were estimated at 2.75 and 3.22 fold changes compared with the NESIL
values from the LLNA EC3 and human NOELs, respectively.

For comparative reasons, and to allow for the assessment of the utility of the composite
potency values for the fitting of the models, the cross-validation procedure was repeated
using the individual potency references for fitting and evaluating the regression models
(e.g., a model was trained and evaluated on LLNA data). The result from this cross-
validation is described in Table 4. As can be seen, the prediction errors of these models were
generally higher compared with the errors obtained for the models fitted to the composite
potency values, supporting the hypothesis that it may be beneficial to leverage potency
references against each other.
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Table 4. Results from repeated cross-validation using individual references for fitting the models.
The fold changes describe the absolute geometric mean fold changes from the cross-validation.

Potency Reference Regression Method Concentration Unit Fold-Change
Error—Intercept and Slope

Fold-Change
Error—Intercept Only

LLNA Linear regression Mass 2.97 2.84
LLNA Linear regression Molar 2.96 2.84
NOEL Linear regression Mass 3.45 3.24
NOEL Linear regression Molar 3.45 3.24
LLNA Robust regression Mass 2.98 2.82
LLNA Robust regression Molar 2.98 2.82
NOEL Robust regression Mass 3.5 3.24
NOEL Robust regression Molar 3.48 3.24

Based on available data and the presented results, the robust regression model that
only estimated an intercept and that was fitted on the composite potency values was
found to be the overall best-performing potency prediction model. Table 5 shows the
fitted coefficients. Given the simplicity of the final models and the fact that they were
fitted on log-transformed values, predictions can in practice be obtained by multiplying a
cDV0 value by a constant, which equals the value of the intercept expressed in base 10 (see
Equations (7) and (8); coefficients are rounded to three significant figures).

Predicted potency in µmol/cm2 = cDV0 in µM × 0.301, (7)

Predicted potency in µg/cm2 = cDV0 in µg/mL × 304, (8)

Table 5. Coefficients of the fitted potency models. Values within the parentheses describe the
estimated 95% confidence intervals for the coefficients.

Model Estimated Intercept

Molar-based robust regression −0.521 (−0.689, −0.353)
Mass-based robust regression 2.48 (2.32, 2.65)

The fitted values of the proposed models and their predictions for the samples not
included in the training set (i.e., the five chemicals without complete references; data are
detailed in Supplementary Table S1) were further examined. The geometric mean predic-
tion errors expressed in fold change were estimated to be 2.69 and 3.12 compared with
NESILs from LLNA EC3 and human NOELs, respectively (for both mass- and molar-based
concentrations). For comparison, the prediction error of LLNA EC3 compared with human
NOELs was 2.63 fold changes. On the same set of 25 chemicals, the GARDskin Dose–
Response’s prediction error of human NOELs was 2.94 fold changes. While the LLNA
predicted human potency with an overall lower error on this set of chemicals, the differ-
ence in performance compared with the proposed prediction model was not significant
(p = 0.508 [Wilcoxon signed-rank test]).

Figure 4 displays the relative errors between the proposed model’s predictions and
the individual references’ potency values for the chemicals, including LLNA EC3 (black
bars), human NOELs (grey bars), and the composite reference values (white bars). Fourteen
chemicals were consistently predicted within 3 fold changes compared with any of the
references (i.e., the largest fold change for any reference was below 3). Three chemicals
were predicted with a greater than 5-fold difference compared with any of the references
(i.e., the smallest fold change for any reference was greater than 5). These chemicals
were 2,4-dinitrochlorobenzene and 3-propylenephthalide (underpredicted), and alpha-
isomethylionone (overpredicted).
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Finally, considering the comparison between potency predictions and the reference
values, due to the simplicity of the proposed potency prediction model, the correlation
coefficients between predictions and references are identical to those described in Table 2
(ranging between 0.645 and 0.787 when compared with LLNA EC3 and human NOELs).

4. Discussion

The development of NAMs able to inform on chemicals’ skin-sensitizing hazards
has progressed relatively rapidly and far, and several methods have gained regulatory
approval for identifying hazards, following the demonstration of their reliabilities and
performances [24–26,29]. In addition, more recent advancements have seen integrated
testing strategies approved for categorical potency assessment in line with the subcatego-
rization defined by the UN GHS [29]. While all of these progressions reduce and replace
the necessity of animal methods for the assessment of skin sensitizers, there are still areas
where NAMs can be further improved. One such area is the assessment of skin-sensitizing
potency, particularly considering the derivation of quantitative continuous potency metri-
ces that may act as replacements for, e.g., the well-established LLNA EC3 value. This is an
active field of research and several interesting methods have been described [34,36–39].

In this work, we have expanded on previously published results, describing how
the GARDskin assay can be used to derive a continuous concentration metric, the cDV0
value, associated with skin-sensitizing potency. Specifically, the GARDskin Dose–Response
assay extends the validated GARDskin assay’s protocol by incorporating measurements at
multiple concentrations. Using the derived dose–response data, the lowest concentration
capable of inducing a positive classification is identified. Here, we describe such cDV0
concentrations for a set of 30 chemicals and further characterize their association with
both human and LLNA data. It was confirmed that cDV0 values maintained strong and
significant correlations with both LLNA EC3 and human NOELs on this extended set of
chemicals. Generally, the correlation coefficients were higher for LLNA EC3 compared to
human NOELs. This could potentially be attributed to the fact that human NOEL values
do not necessarily describe the highest possible non-sensitizing concentration. However,
the uncertainty in the correlation estimates was too high to conclude that either metric
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correlated significantly higher with cDV0 than the other. This is, however, a trend that
could be considered in future works.

Having shown that cDV0 values are associated with potency, a model capable of
predicting NESILs was defined. Several approaches could be considered for creating
prediction models that take cDV0 as input, including the creation of separate models for
the classification of NESILs derived from LLNA EC3 and human NOELs (i.e., distinct
models trained on LLNA EC3 and on human NOELs). However, this may not be ideal, as
the same cDV0 value could give rise to two distinct potency values, which could impede
interpretation. Therefore, it was explored if a single potency model could be defined from
a composite potency reference constructed using information from both LLNA EC3 and
human NOELs. A similar endeavor has been described in the construction of the reference
chemical potency list (RCPL), where a consensus potency value was defined by evaluating
both human and animal data [62]. While that scale, in part, relies on expert judgment for
potency value assignment, the approach taken here was solely data- and computationally
driven, combining NESILs from LLNA EC3 and human NOELs. The main assumption for
the creation of the potency scale was that both LLNA EC3 and human NOELs describe the
same underlying phenomenon, i.e., sensitizing potency, and that both metrics are associated
with errors. The composite potency value was then designed to attempt to describe the
common underlying potency signal, which was accomplished using a Passing–Bablok
regression model [55] that robustly captured the association between the two references.
Importantly, models fitted to the composite potency values received lower errors when
predicting the original reference potency values, as compared with models fitted to the
individual references. Moreover, the correlation coefficients were also marginally higher
for the composite potency values compared with correlations to the individual references
when considering the same set of 25 chemicals. While the reason for these results is not
completely understood, it is possible that composite potency values inflict some degree of
moderation or regularization to the original references, which may have a stabilizing effect
during model fitting. This does not seem unreasonable, as a latent signal may be better
described via the aggregation of several noisy measurements.

During initial model exploration, it was observed that the fitted parameters for the
slopes were very close to 1, suggesting that they may not need to be estimated from the
model. Indeed, models without an explicit estimate for the slope achieved lower values
of Akaike’s Information Criterion (AIC) [63]. Because of this, for the actual evaluation of
the models’ performances in cross-validation, they were fitted both with and without a
parameter for the slope. In addition, the biological implication of a fixed slope of 1 could
further indicate that the system used for the evaluation of potency is relevant, as the relative
difference of skin-sensitizing potency is sustained. The consistently best-performing models
corresponded to those without slope estimates. This is also convenient, as it leads to very
simple prediction models. As the final models were fitted to log-transformed potency
values and only contained estimates for the intercepts, in practice, they can be applied by
multiplying an untransformed cDV0 value with a constant, as specified by equations 7 and
8. Moreover, as noted, an appealing property of these models is that they suggest that an
n-factor difference in cDV0 values corresponds to an n-factor difference in the predicted
NESIL. Finally, as models only contain a single estimated parameter, the uncertainties of
the fits become relatively small and constant over the prediction range on the log scale.

The errors for the prediction model were estimated at 2.75 and 3.22 fold changes
compared with LLNA EC3 and human NOELs, respectively, evaluated using a cross-
validation approach. These figures were also close to the errors observed for the fitted
values of the final model (i.e., as predicted by the current fits without cross-validation),
which were 2.69 fold changes and 3.12 fold changes for LLNA EC3 and human NOELs,
respectively. In line with observations for the correlation coefficients, LLNA EC3 was
predicted with a lower error, though not significantly. As previously noted, human NOEL
does not necessarily represent the highest non-sensitizing concentration of a chemical,
which could potentially explain prediction discrepancies. Despite this, the numbers of



Toxics 2024, 12, 626 13 of 16

over/under-predicted chemicals were quite evenly balanced. Nevertheless, of the 12
chemicals whose potency was underpredicted compared with human NOELs, LOEL
values could be located for 10. Interestingly, only three of the underpredicted potency
instances produced predicted NESILs greater than the LOEL values (i.e., 7/10 predictions
were between NOEL and LOEL).

To put the performance figures into greater context, the prediction performances of
other potency sources were also considered. First, the error of the LLNA assay when
predicting human NOELs in this dataset was calculated, and was found to be 2.63 fold
changes. The error of the GARDskin Dose–Response model was 2.94 fold changes, com-
pared with human NOELs on the same set of 25 chemicals. While the LLNA achieved
an overall lower error, the prediction errors were not found to be significantly different.
Other sources of potency predictions include, e.g., the relatively recent publication where
several regression models incorporating data from established NAMs, including Kerati-
noSens, DPRA, h-CLAT, and the kDPRA, for predicting EC3 values were described. While
their prediction metrices were based on a larger dataset (n = 188), they reported geomet-
ric mean absolute fold changes that ranged between 3.1 and 3.5 (median values ranged
between 2.3 and 2.7). This appears to be comparable with the errors described in this
work. One aspect of consideration is, however, that the prediction model proposed in this
work is very simple and only requires a single information source, i.e., the cDV0 value, for
potency predictions.

Considering the largest prediction errors obtained with this dataset, GARDskin
Dose–Response predicted three chemicals with a fold change error greater than 5 com-
pared with both human and LLNA references. These were alpha-isomethylionone, 2,4-
dinitrochlorobenzene, and 3-propylidenephthalide. The potency of 3-propylidenephthalide
was underpredicted by approximately 6-fold. It had two similar cDV0 values, suggesting
that the assay outcomes were reproducible for the test item. Moreover, the NESILs from the
LLNA and human NOEL were also very similar to each other. Currently, no explanation
has been recognized for this prediction discrepancy. The potency of alpha-isomethylionone
was overpredicted compared with both LLNA and human NOELs. The chemical had two
runs in the GARDskin Dose–Response assay. However, these differed more than 4-fold,
indicating some uncertainty in the chemical’s actual cDV0. Even so, a prediction generated
with the larger of the two cDV0 estimates still overpredicted the potency of the chemical.
The relative error for the run with the higher cDV0 value compared with LLNA EC3 was
approximately 2.5 fold changes, which is, nevertheless, still a significant overprediction of
potency compared with the human NOEL (>25 fold). It is relevant to note that the LLNA
also overpredicts the potency of alpha-isomethylione. A tentative hypothesis for LLNA’s
overprediction was previously provided where it was suggested that the autoxidation of
the chemical, which is more likely to occur in the LLNA than under the occluded patches
in HRIPTs, could explain the higher potency in the LLNA, as the oxidation products are
typically strong sensitizers [64]. Although only a hypothesis, it is possible that this effect is
also relevant for the overprediction of its potency in the GARDskin Dose–Response assay,
which could potentially be explored in follow-up studies. Lastly, 2,4-dinitrochlorobenzene
displayed a clear and steep response and the cDV0 value was considered reliable, despite
only consisting of data from a single experiment. Interestingly, the underprediction of
its potency does not appear to be a unique observation in the GARDskin Dose–Response
assay, as similar tendencies were also described by Natsch et al. [65]. A clear explanation
for this is, however, not available. Finally, it is important to consider that the GARDskin
Dose–Response assay represents a relatively simple model of biological processes and
ignores potential components that may contribute to the observed in vivo potency values.
Additional data generated from chemical assessments in the GARDskin Dose–Response
assay will likely provide interesting avenues for future investigations. These will help to
further establish the predictive performance of the assay and other important properties,
including the reproducibility of the numerical readout. Indeed, data for these purposes are
being generated and some have already been published [41].
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To conclude, we have described the GARDskin Dose–Response assay and demon-
strated a significant association between its readout and available measures of skin-
sensitizing potency on a set of 30 chemicals. A simple model for the prediction of sensitizing
potency in the form of a quantitative continuous PoD was developed that only consisted
of a single parameter. The performance of the prediction model was evaluated using
cross-validation, and errors were estimated at 2.75 fold changes compared with NESILs
derived from the LLNA, and 3.22 fold changes compared with NESILs based on human
NOELs. The GARDskin Dose–Response method is therefore considered a useful tool for
deriving skin-sensitizing potency information, which may be used as a PoD in subsequent
risk assessments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12090626/s1, Table S1: Chemical information; Tables S2 and S3:
Dilution schemes for chemicals assayed in GARDskin Dose-Response.
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