Which Environmental Pollutants Are Toxic to Our Ears?—Evidence of the Ototoxicity of Common Substances
Abstract
:1. Introduction
1.1. Ototoxicity and Health Burden
1.2. Exposure to Ototoxic Substances
1.3. Disorders Associated with Ototoxic Substance Exposure and Hearing Impairment
2. Materials and Methods
2.1. ATSDR Toxicological Profiles
2.2. Toxicological Profile Selection Criteria
2.3. Data Extraction and Charting
3. Results
3.1. Levels of Reported Ototoxicity Evidence
3.2. Evidence for Ototoxic Health Effects
3.3. Potential Relationships between Ototoxicity and Other Major Health Effects
4. Discussion
4.1. Ototoxicity by Substance Category
4.1.1. Fuels and Oils
4.1.2. VOCs and Solvents
4.1.3. Pesticides and Herbicides
4.1.4. Sulfides
4.1.5. Metals
4.1.6. Noise
4.2. Toxicological Research and Tinnitus
5. Limitations
6. Recent Profile Advances
7. Considerations
8. Recommendations
9. Challenge to Researchers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, F.R.; Niparko, J.K.; Ferrucci, L. Hearing loss prevalence in the United States. Arch. Intern. Med. 2011, 171, 1851–1853. [Google Scholar] [CrossRef] [PubMed]
- Crews, J.E.; Campbell, V.A. Vision impairment and hearing loss among community-dwelling older Americans: Implications for health and functioning. Am. J. Public Health 2004, 94, 823–829. [Google Scholar] [CrossRef]
- Murphy, C.; Schubert, C.R.; Cruickshanks, K.J.; Klein, B.E.; Klein, R.; Nondahl, D.M. Prevalence of olfactory impairment in older adults. JAMA 2002, 288, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, J.M.; Lin, H.W.; Bhattacharyya, N. Prevalence, severity, exposures, and treatment patterns of tinnitus in the United States. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Campbell, V.A.; Crews, J.E.; Moriarty, D.G.; Zack, M.M.; Blackman, D.K. Surveillance for sensory impairment, activity limitation, and health-related quality of life among older adults—United States, 1993–1997. MMWR CDC Surveill Summ 1999, 48, 131–156. [Google Scholar]
- Agrawal, Y.; Carey, J.P.; Della Santina, C.C.; Schubert, M.C.; Minor, L.B. Disorders of balance and vestibular function in US adults: Data from the National Health and Nutrition Examination Survey, 2001–2004. Arch. Intern. Med. 2009, 169, 938–944. [Google Scholar] [CrossRef]
- Konrad-Martin, D.; Poling, G.L.; Garinis, A.C.; Ortiz, C.E.; Hopper, J.; O’Connell Bennett, K.; Dille, M.F. Applying US national guidelines for ototoxicity monitoring in adult patients: Perspectives on patient populations, service gaps, barriers and solutions. Int. J. Audiol. 2018, 57, S3–S18. [Google Scholar] [CrossRef]
- Dimitrov, L.; Gossman, W. Pediatric Hearing Loss; StatPearls: Treasure Island, FL, USA, 2019. [Google Scholar]
- Stacey, L. Children with hearing loss: Developing listening and talking, birth to six, 3rd edition. Int. J. Audiol. 2017, 56, 1–2. [Google Scholar] [CrossRef]
- Agrup, C.; Gleeson, M.; Rudge, P. The inner ear and the neurologist. J. Neurol. Neurosurg. Psychiatry 2007, 78, 114–122. [Google Scholar] [CrossRef]
- Bhatt, J.M.; Bhattacharyya, N.; Lin, H.W. Relationships between tinnitus and the prevalence of anxiety and depression. Laryngoscope 2017, 127, 466–469. [Google Scholar] [CrossRef]
- Ford, A.H.; Hankey, G.J.; Yeap, B.B.; Golledge, J.; Flicker, L.; Almeida, O.P. Hearing loss and the risk of dementia in later life. Maturitas 2018, 112, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Niskar, A.S.; Kieszak, S.M.; Holmes, A.E.; Esteban, E.; Rubin, C.; Brody, D.J. Estimated prevalence of noise-induced hearing threshold shifts among children 6 to 19 years of age: The Third National Health and Nutrition Examination Survey, 1988–1994, United States. Pediatrics 2001, 108, 40–43. [Google Scholar] [CrossRef]
- Quick Statistics about Hearing, Balance, & Dizziness; National Institute on Deafness and Other Communication Disorders: Bethesda, MD, USA, 2024.
- Benedict, R.T.; Scinicariello, F.; Abadin, H.G.; Zarus, G.M.; Attanasio, R. Hearing Loss and Urinary trans, trans-Muconic Acid (t, t-MA) in 6-to 19-Year-Old Participants of NHANES 2017–March 2020. Toxics 2024, 12, 191. [Google Scholar] [CrossRef]
- Abouee-Mehrizi, A.; Rasoulzadeh, Y.; Mesgari-Abbasi, M.; Mehdipour, A.; Ebrahimi-Kalan, A. Nephrotoxic effects caused by co-exposure to noise and toluene in New Zealand white rabbits: A biochemical and histopathological study. Life Sci. 2020, 259, 118254. [Google Scholar] [CrossRef]
- Natalie, S.; Alida, N. An overview of pharmacotherapy-induced ototoxicity. S. Afr. Fam. Pract. 2013, 55, 357–365. [Google Scholar] [CrossRef]
- Dillard, L.K.; Lopez-Perez, L.; Martinez, R.X.; Fullerton, A.M.; Chadha, S.; McMahon, C.M. Global burden of ototoxic hearing loss associated with platinum-based cancer treatment: A systematic review and meta-analysis. Cancer Epidemiol. 2022, 79, 102203. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.-C.; Morata, T.C. Occupational Exposure to Chemicals and Hearing Impairment; University of Gothenburg Gothenburg: Göteborg, Sweden, 2010; Volume 142. [Google Scholar]
- Morata, T.C.; Dunn, D.E.; Sieber, W.K. Occupational exposure to noise and ototoxic organic solvents. Arch. Environ. Health Int. J. 1994, 49, 359–365. [Google Scholar] [CrossRef]
- Ödkvist, L.; Arlinger, S.; Edling, C.; Larsby, B.; Bergholtz, L. Audiological and vestibulo-oculomotor findings in workers exposed to solvents and jet fuel. Scand. Audiol. 1987, 16, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Morata, T.C.; Hungerford, M.; Konrad-Martin, D. Potential risks to hearing functions of service members from exposure to jet fuels. Am. J. Audiol. 2021, 30, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Fay, R.; Mumtaz, M. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database. Food Chem. Toxicol. 1996, 34, 1163–1165. [Google Scholar] [CrossRef]
- Ritchie, G.; Still, K.; Rossi Iii, J.; Bekkedal, M.; Bobb, A.; Arfsten, D. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. J. Toxicol. Environ. Health Part B 2003, 6, 357–451. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.A.; Louie, J.J.; Shinagawa, Y.; Xiao, G.; Asilador, A.R.; Sable, H.J.; Schantz, S.L.; Llano, D.A. Developmental exposure to polychlorinated biphenyls prevents recovery from noise-induced hearing loss and disrupts the functional organization of the inferior colliculus. J. Neurosci. 2023, 43, 4580–4597. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cheng, C.; Lu, L.; Ma, X.; Zhang, X.; Li, A.; Chen, J.; Qian, X.; Gao, X. Hearing loss in neurological disorders. Front. Cell Dev. Biol. 2021, 9, 716300. [Google Scholar] [CrossRef] [PubMed]
- Ash, P.E.; Dhawan, U.; Boudeau, S.; Lei, S.; Carlomagno, Y.; Knobel, M.; Al Mohanna, L.F.; Boomhower, S.R.; Newland, M.C.; Sherr, D.H. Heavy metal neurotoxicants induce ALS-linked TDP-43 pathology. Toxicol. Sci. 2019, 167, 105–115. [Google Scholar] [CrossRef]
- Ash, P.E.; Stanford, E.A.; Al Abdulatif, A.; Ramirez-Cardenas, A.; Ballance, H.I.; Boudeau, S.; Jeh, A.; Murithi, J.M.; Tripodis, Y.; Murphy, G.J. Dioxins and related environmental contaminants increase TDP-43 levels. Mol. Neurodegener. 2017, 12, 35. [Google Scholar] [CrossRef]
- Hester, K.; Kirrane, E.; Anderson, T.; Kulikowski, N.; Simmons, J.E.; Lehmann, D.M. Environmental exposure to metals and the development of tauopathies, synucleinopathies, and TDP-43 proteinopathies: A systematic evidence map protocol. Environ. Int. 2022, 169, 107528. [Google Scholar] [CrossRef]
- Koski, L.; Ronnevi, C.; Berntsson, E.; Wärmländer, S.K.; Roos, P.M. Metals in ALS TDP-43 pathology. Int. J. Mol. Sci. 2021, 22, 12193. [Google Scholar] [CrossRef]
- Garnier, C.; Devred, F.; Byrne, D.; Puppo, R.; Roman, A.Y.; Malesinski, S.; Golovin, A.V.; Lebrun, R.; Ninkina, N.N.; Tsvetkov, P.O. Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates. Sci. Rep. 2017, 7, 6812. [Google Scholar] [CrossRef]
- Leventoğlu, E.; Kenan, B.U.; Öğüt, B.; Büyükkaragöz, B.; Gönül, İ.I.; Fidan, K. Heavy Metal Exposure in Alport Syndrome in an Adolescent: A Case Report. J. Pediatr. Nephrol. 2023, 11, 88. [Google Scholar] [CrossRef]
- Kalogeropoulos, P.; Sardeli, A.; Liapis, G.; Giannakopoulos, P.; Lionaki, S. Nephrotic Syndrome Associated with Heavy Metals Exposure: A Case Report and Literature Review. Cureus 2024, 16, e52029. [Google Scholar] [CrossRef]
- Mishra, S.; Dwivedi, S.P.; Singh, R. A review on epigenetic effect of heavy metal carcinogens on human health. Open Nutraceuticals J. 2010, 3, 188–193. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, X.; Xu, L.; Wei, X.; Wu, W.; Wu, X.; Xu, X. Hearing loss in children with e-waste lead and cadmium exposure. Sci. Total Environ. 2018, 624, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Helwany, M.; Tadi, P. Embryology, Ear; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Buser, M.C.; Pohl, H.R. Windows of sensitivity to toxic chemicals in the development of cleft palates. J. Toxicol. Environ. Health Part B 2015, 18, 242–257. [Google Scholar] [CrossRef]
- Graven, S.N.; Browne, J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008, 8, 187–193. [Google Scholar] [CrossRef]
- Vanneste, S.; Alsalman, O.; De Ridder, D. COMT and the neurogenetic architecture of hearing loss induced tinnitus. Hear. Res. 2018, 365, 145. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-M.; Chen, L.; Chen, G.; Zhang, J.; Hoffman, H.J. A Missense Variant in COMT Associated with Hearing Loss among Young Adults: The National Longitudinal Study of Adolescent to Adult Health (Add Health). Biomedicines 2022, 10, 2756. [Google Scholar] [CrossRef]
- Sun, H.; Yuan, F.; Shen, X.; Xiong, G.; Wu, J. Role of COMT in ADHD: A systematic meta-analysis. Mol. Neurobiol. 2014, 49, 251–261. [Google Scholar] [CrossRef]
- Chmielowiec, K.; Chmielowiec, J.; Masiak, J.; Strońska-Pluta, A.; Śmiarowska, M.; Boroń, A.; Grzywacz, A. Associations between the COMT rs4680 gene polymorphism and personality dimensions and anxiety in patients with a diagnosis of other stimulants dependence. Genes 2022, 13, 1768. [Google Scholar] [CrossRef]
- Hoth, K.F.; Paul, R.H.; Williams, L.M.; Dobson-Stone, C.; Todd, E.; Schofield, P.R.; Gunstad, J.; Cohen, R.A.; Gordon, E. Associations between the COMT Val/Met polymorphism, early life stress, and personality among healthy adults. Neuropsychiatr. Dis. Treat. 2006, 2, 219–225. [Google Scholar] [CrossRef]
- Oshima, T.; Ikeda, K.; Takasaka, T. Sensorineural hearing loss associated with Byler disease. Tohoku J. Exp. Med. 1999, 187, 83–88. [Google Scholar] [CrossRef]
- Jung, D. Association between fatty liver disease and hearing impairment in Korean adults: A retrospective cross-sectional study. J. Yeungnam Med. Sci. 2023, 40, 402–411. [Google Scholar] [CrossRef]
- Chen, H.-C.; Chung, C.-H.; Wang, C.-H.; Lin, J.-C.; Chang, W.-K.; Lin, F.-H.; Tsao, C.-H.; Wu, Y.-F.; Chien, W.-C. Increased risk of sudden sensorineural hearing loss in patients with hepatitis virus infection. PLoS ONE 2017, 12, e0175266. [Google Scholar] [CrossRef]
- Boateng, J.O.; Boafo, N.; Osafo, C.; Anim-Sampong, S. Hearing impairment among chronic kidney disease patients on haemodialysis at a tertiary hospital in Ghana. Ghana Med. J. 2019, 53, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Saeed, H.K.; Al-Abbasi, A.M.; Al-Maliki, S.K.; Al-Asadi, J.N. Sensorineural hearing loss in patients with chronic renal failure on hemodialysis in Basrah, Iraq. Tzu Chi Med. J. 2018, 30, 216–220. [Google Scholar]
- Liu, W.; Meng, Q.; Wang, Y.; Yang, C.; Liu, L.; Wang, H.; Su, Z.; Kong, G.; Zhao, Y.; Zhang, L. The association between reduced kidney function and hearing loss: A cross-sectional study. BMC Nephrol. 2020, 21, 145. [Google Scholar] [CrossRef]
- Izzedine, H.; Tankere, F.; Launay-Vacher, V.; Deray, G. Ear and kidney syndromes: Molecular versus clinical approach. Kidney Int. 2004, 65, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Adone, A.; Anjankar, A. Alport Syndrome: A Comprehensive Review. Cureus 2023, 15, e47129. [Google Scholar] [CrossRef] [PubMed]
- U.S. Code § 9604-Response Authorities; U.S. Government Publishing Office: Washington, DC, USA, 2020.
- Sudweeks, S.; Elgethun, K.; Abadin, H.; Zarus, G.; Irvin, E. Applied toxicology at the Agency for Toxic Substances and Disease Registry (ATSDR). Encycl. Toxicol. 2023, 1, 761–767. [Google Scholar]
- Substance Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 28 August 2024).
- Superfund: National Priorities List (NPL). Available online: https://www.epa.gov/superfund/superfund-national-priorities-list-npl (accessed on 28 August 2024).
- Minimal Risk Levels (MRLs)—For Professionals. Available online: https://www.atsdr.cdc.gov/mrls/index.html (accessed on 28 August 2024).
- Chou, C.-H.S.J.; Holler, J.; De Rosa, C.T. Minimal risk levels (MRLs) for hazardous substances. J. Clean Technol. Environ. Toxicol. Occup. Med. 1998, 7, 1–24. [Google Scholar]
- Interaction Profile for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). Available online: https://www.atsdr.cdc.gov/interactionprofiles/ip05.html (accessed on 28 August 2024).
- Toxicological Profile for Fuel Oils. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=516&tid=91 (accessed on 28 August 2024).
- Toxicological Profile for Jet Fuels JP-4 and JP-7. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=768&tid=149 (accessed on 28 August 2024).
- Toxicological Profile for JP-5, JP-8, and Jet A fuels. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=773&tid=150 (accessed on 28 August 2024).
- Toxicological Profile for Otto Fuel II. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=781&tid=152 (accessed on 28 August 2024).
- Toxicological Profile for 1,1,1-Trichloroethane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=432&tid=76 (accessed on 28 August 2024).
- Toxicological Profile for 1,2-Dichloroethane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=592&tid=110 (accessed on 28 August 2024).
- Toxicological Profile for 2-Butanone. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=343&tid=60 (accessed on 28 August 2024).
- Toxicological Profile for Acetone. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=5&tid=1 (accessed on 28 August 2024).
- Toxicological Profile for Benzene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=40&tid=14 (accessed on 28 August 2024).
- Toxicological Profile for Acrolein. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=557&tid=102 (accessed on 28 August 2024).
- Toxicological Profile for Chlorobenzene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=489&tid=87 (accessed on 28 August 2024).
- Toxicological Profile for Chloroethane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=827&tid=161 (accessed on 28 August 2024).
- Toxicological Profile for Chloroform. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=53&tid=16 (accessed on 28 August 2024).
- Toxicological Profile for Chloromethane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=587&tid=109 (accessed on 28 August 2024).
- Toxicological Profile for Ethylbenzene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=383&tid=66 (accessed on 28 August 2024).
- Toxicological Profile for Formaldehyd. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=220&tid=39 (accessed on 28 August 2024).
- Toxicological Profile for n-Hexane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=393&tid=68 (accessed on 28 August 2024).
- Toxicological Profile for Styrene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=421&tid=74 (accessed on 28 August 2024).
- Toxicological Profile for Tetrachloroethylene (PERC). Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=265&tid=48 (accessed on 28 August 2024).
- Toxicological Profile for Toluene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=161&tid=29 (accessed on 28 August 2024).
- Toxicological Profile for Trichloroethylene (TCE). Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=173&tid=30 (accessed on 28 August 2024).
- Toxicological Profile for Vinyl Chloride. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=282&tid=51 (accessed on 28 August 2024).
- Toxicological Profile for Xylene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=296&tid=53 (accessed on 28 August 2024).
- Toxicological Profile for 1,2-Dibromoethane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=726&tid=131 (accessed on 28 August 2024).
- Toxicological Profile for Aldrin and Dieldrin. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=317&tid=56 (accessed on 28 August 2024).
- Toxicological Profile for Atrazine. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=338&tid=59 (accessed on 28 August 2024).
- Toxicological Profile for Chlordane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=355&tid=62 (accessed on 28 August 2024).
- Toxicological Profile for Chlorpyrifos. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=495&tid=88 (accessed on 28 August 2024).
- Toxicological Profile for Cyanide. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=72&tid=19 (accessed on 28 August 2024).
- Toxicological Profile for DDT, DDE, and DDD. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=81&tid=20 (accessed on 28 August 2024).
- Toxicological Profile for Diazinon. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=512&tid=90 (accessed on 28 August 2024).
- Toxicological Profile for Disulfoton. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=978&tid=205 (accessed on 28 August 2024).
- Toxicological Profile for Endosulfan. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=609&tid=113 (accessed on 28 August 2024).
- Toxicological Profile for Endrin. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=617&tid=114 (accessed on 28 August 2024).
- Toxicological Profile for Glyphosate. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1488&tid=293 (accessed on 28 August 2024).
- Toxicological Profile for Heptachlor and Heptachlor Epoxide. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=746&tid=135 (accessed on 28 August 2024).
- Toxicological Profile for Hexachlorocyclohexane. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=754&tid=138 (accessed on 28 August 2024).
- Toxicological Profile for Malathion. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=522&tid=92 (accessed on 28 August 2024).
- Toxicological Profile for Methyl Parathion. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=636&tid=117 (accessed on 28 August 2024).
- Toxicological Profile for n-Nitrosodi-n-propylamine. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1005&tid=211 (accessed on 28 August 2024).
- Toxicological Profile for Parathion. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1425&tid=246 (accessed on 28 August 2024).
- Toxicological Profile for Pentachlorophenol. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=402&tid=70 (accessed on 28 August 2024).
- Toxicological Profile for Phosphate Ester Flame Retardants. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1119&tid=239 (accessed on 28 August 2024).
- Toxicological Profile for Toxaphene. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=548&tid=99 (accessed on 28 August 2024).
- Toxicological Profile for Carbon Disulfide. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=474&tid=84 (accessed on 28 August 2024).
- Toxicological Profile for Hydrogen Sulfide/Carbonyl Sulfide. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=389&tid=67 (accessed on 28 August 2024).
- Toxicological Profile for Sulfur Dioxide. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=253&tid=46 (accessed on 28 August 2024).
- Toxicological Profile for Aluminum. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=191&tid=34 (accessed on 28 August 2024).
- Toxicological Profile for Arsenic. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=22&tid=3 (accessed on 28 August 2024).
- Toxicological Profile for Cadmium. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=48&tid=15 (accessed on 28 August 2024).
- Toxicological Profile for Chromium. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=62&tid=17 (accessed on 28 August 2024).
- Toxicological Profile for Cobalt. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=373&tid=64 (accessed on 28 August 2024).
- Toxicological Profile for Copper. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=206&tid=37 (accessed on 28 August 2024).
- Toxicological Profile for Lead. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22 (accessed on 28 August 2024).
- Toxicological Profile for Manganese. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=102&tid=23 (accessed on 28 August 2024).
- Toxicological Profile for Mercury. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=115&tid=24 (accessed on 28 August 2024).
- Toxicological Profile for Nickel. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=245&tid=44 (accessed on 28 August 2024).
- Toxicological Profile for Selenium. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=153&tid=28 (accessed on 28 August 2024).
- Toxicological Profile for Tin. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=543&tid=98 (accessed on 28 August 2024).
- Toxicological Profile for Zinc. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=302&tid=54 (accessed on 28 August 2024).
- Chemicals That Affect Hearing & Balance; American Speech-Language-Hearing Association (ASHA): Rockville, MD, USA, 2000.
- Occupational Hygiene—Ototoxic Chemicals: Canadian Centre for Occupational Health and Safety (CCOHS). 2021. Available online: https://www.ccohs.ca/oshanswers/hsprograms/occ_hygiene/occ_ototoxic_chemicals.html (accessed on 28 August 2024).
- Campo, P.; Maguin, K.; Gabriel, S.; Möller, A.; Nies, E.; Solé Gómez, M.D.; Toppila, E. Combined Exposure to Noiseand Ototoxic Substances; European Agency for Safety and Health at Work (EU-OSHA): Luxembourg, 2009. [Google Scholar]
- Lakhiani, S. Ototoxicants—What Are They and How May They Worsen Hearing Loss in the Workplace? UK Hearing Conservation Association (HCA): Cambridge, UK, 2020. [Google Scholar]
- Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure; U.S. Occupational Safety and Health Administration (OSHA): Washington, DC, USA, 2018.
- Hu, K.; Schwarz, D. Electrophysiological evaluation of chloroform-induced inner ear damage. Arch. Oto-Rhino-Laryngol. 1987, 244, 222–228. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Yin, S.; Wang, Y.; Zhou, Y.; Wang, S.; Xu, X.; Liu, W.; Xu, L. Environmental exposure to organochlorine pesticides and its association with the risk of hearing loss in the Chinese adult population: A case-control study. Sci. Total Environ. 2021, 767, 145153. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Fitó, N.; Cardo, E.; Sala, M.; Eulàlia de Muga, M.; Mazón, C.; Verdú, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 2003, 111, e580–e585. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Nakai, Y.; Koshimo, H.; Ikeoka, H.; Esaki, Y. Acute effects of sulfur dioxide exposure on the middle ear mucosa. Ann. Otol. Rhinol. Laryngol. 1989, 98, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zhan, K.; Wu, S.; Ji, X.; Li, N.; Yu, J.; Gao, X. Chromium-induced hearing loss in rats and the protective effect of copper and manganese. Trace Elem. Electrolytes 2012, 29, 72–77. [Google Scholar] [CrossRef]
- Ding, D.; Roth, J.; Salvi, R. Manganese is toxic to spiral ganglion neurons and hair cells in vitro. Neurotoxicology 2011, 32, 233–241. [Google Scholar] [CrossRef]
- Castellanos, M.J.; Fuente, A. The Adverse Effects of Heavy Metals with and without Noise Exposure on the Human Peripheral and Central Auditory System: A Literature Review. Int. J. Environ. Res Public Health 2016, 13, 1223. [Google Scholar] [CrossRef]
- Kaya, H.; Koç, A.K.; Sayın, İ.; Güneş, S.; Altıntaş, A.; Yeğin, Y.; Kayhan, F.T. Vitamins A, C, and E and selenium in the treatment of idiopathic sudden sensorineural hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1119–1125. [Google Scholar] [CrossRef]
- Carlson, K. Evaluating the Risk of Ototoxicity Due to Metals Exposures. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2019. [Google Scholar]
- Estill, C.F.; Rice, C.H.; Morata, T.; Bhattacharya, A. Noise and neurotoxic chemical exposure relationship to workplace traumatic injuries: A review. J. Saf. Res. 2017, 60, 35–42. [Google Scholar] [CrossRef]
- Lewkowski, K.; Heyworth, J.S.; Williams, W.; Goulios, H.; McCausland, K.; Gray, C.; Fritschi, L. The Associations Between Workplace Noise, Ototoxic Chemicals, and Tinnitus. Ear Hear. 2023, 44, 1507–1513. [Google Scholar] [CrossRef]
- Silva, L.K.; Espenship, M.F.; Pine, B.N.; Ashley, D.L.; De Jesús, V.R.; Blount, B.C. Methyl tertiary-butyl ether exposure from gasoline in the US population, NHANES 2001–2012. Environ. Health Perspect. 2019, 127, 127003. [Google Scholar] [CrossRef]
- Sobus, J.R.; DeWoskin, R.S.; Tan, Y.-M.; Pleil, J.D.; Phillips, M.B.; George, B.J.; Christensen, K.; Schreinemachers, D.M.; Williams, M.A.; Hubal, E.A.C. Uses of NHANES biomarker data for chemical risk assessment: Trends, challenges, and opportunities. Environ. Health Perspect. 2015, 123, 919–927. [Google Scholar] [CrossRef]
- Pirkle, J.L.; Brody, D.J.; Gunter, E.W.; Kramer, R.A.; Paschal, D.C.; Flegal, K.M.; Matte, T.D. The decline in blood lead levels in the United States: The National Health and Nutrition Examination Surveys (NHANES). JAMA 1994, 272, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.M.; Masterson, E.A.; Azman, A.S. Prevalence of hearing loss among noise-exposed workers within the Mining and Oil and Gas Extraction sectors, 2006–2015. Am. J. Ind. Med. 2019, 62, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.n.W.; Xu, H.; Wong, B.A.; McInturf, S.M.; Reboulet, J.E.; Ortiz, P.A.; Mattie, D.R. Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity. J. Toxicol. Environ. Health Part A 2014, 77, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Fechter, L.D.; Gearhart, C.A.; Fulton, S. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol. Sci. 2010, 116, 239–248. [Google Scholar] [CrossRef]
- Fechter, L.D.; Gearhart, C.; Fulton, S.; Campbell, J.; Fisher, J.; Na, K.; Cocker, D.; Nelson-Miller, A.; Moon, P.; Pouyatos, B. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Toxicol. Sci. 2007, 98, 510–525. [Google Scholar] [CrossRef]
- Fechter, L.D.; Fisher, J.W.; Chapman, G.D.; Mokashi, V.P.; Ortiz, P.A.; Reboulet, J.E.; Stubbs, J.E.; Lear, A.M.; McInturf, S.M.; Prues, S.L. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats. J. Toxicol. Environ. Health Part A 2012, 75, 299–317. [Google Scholar] [CrossRef]
- Landfill Gas Primer: An Overview for Environmental Health Professionals; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2001.
- Burk, T.; Zarus, G. DIRECT FROM ATSDR: Community Exposures to Chemicals Through Vapor Intrusion: A Review of Past Agency for Toxic Substances and Disease Registry Public Health Evaluations. J. Environ. Health 2013, 75, 36–41. [Google Scholar]
- Pryor, G.T.; Rebert, C.S.; Howd, R.A. Hearing loss in rats caused by inhalation of mixed xylenes and styrene. J. Appl. Toxicol. 1987, 7, 55–61. [Google Scholar] [CrossRef]
- Abbate, C.; Giorgianni, C.; Munao, F.; Brecciaroli, R. Neurotoxicity induced by exposure to toluene: An electrophysiologic study. Int. Arch. Occup. Environ. Health 1993, 64, 389–392. [Google Scholar] [CrossRef]
- Staudt, A.M.; Whitworth, K.W.; Chien, L.-C.; Whitehead, L.W.; Gimeno Ruiz de Porras, D. Association of organic solvents and occupational noise on hearing loss and tinnitus among adults in the US, 1999–2004. Int. Arch. Occup. Environ. Health 2019, 92, 403–413. [Google Scholar] [CrossRef]
- Schwarz, D.; Schwarz, I.; Hu, K. Histopathology of chloroform-induced inner ear damage. J. Otolaryngol. 1988, 17, 32–37. [Google Scholar] [PubMed]
- Sliwinska-Kowalska, M.; Zamyslowska-Szmytke, E.; Szymczak, W.; Kotylo, P.; Fiszer, M.; Dudarewicz, A.; Wesolowski, W.; Pawlaczyk-Luszczynska, M.; Stolarek, R. Hearing loss among workers exposed to moderate concentrations of solvents. Scand. J. Work Environ. Health 2001, 27, 335–342. [Google Scholar] [CrossRef]
- Gagnaire, F.; Langlais, C.; Grossmann, S.; Wild, P. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks. Arch. Toxicol. 2007, 81, 127–143. [Google Scholar] [CrossRef]
- Gagnaire, F.; Langlais, C. Relative ototoxicity of 21 aromatic solvents. Arch. Toxicol. 2005, 79, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Gagnaire, F.; Marignac, B.; Langlais, C.; Bonnet, P. Ototoxicity in Rats Exposed to Ortho-, Meta-and Para-Xylene Vapours for 13 Weeks. Pharmacol. Toxicol. 2001, 89, 6–14. [Google Scholar] [CrossRef]
- Boyes, W.K.; Bushnell, P.J.; Crofton, K.M.; Evans, M.; Simmons, J.E. Neurotoxic and pharmacokinetic responses to trichloroethylene as a function of exposure scenario. Environ. Health Perspect. 2000, 108, 317–322. [Google Scholar] [CrossRef]
- Cappaert, N.L.; Klis, S.F.; Muijser, H.; de Groot, J.C.; Kulig, B.M.; Smoorenburg, G.F. The ototoxic effects of ethyl benzene in rats. Hear. Res. 1999, 137, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Campo, P.; Lataye, R.; Cossec, B.; Placidi, V. Toluene-induced hearing loss: A mid-frequency location of the cochlear lesions. Neurotoxicology Teratol. 1997, 19, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Campo, P.; Lataye, R.; Loquet, G.; Bonnet, P. Styrene-induced hearing loss: A membrane insult. Hear. Res. 2001, 154, 170–180. [Google Scholar] [CrossRef]
- Pollastrini, L.; Abramo, A.; Cristalli, G.; Baretti, F.; Greco, A. Early signs of occupational ototoxicity caused by inhalation of benzene derivative industrial solvents. Acta Otorhinolaryngol. Ital. 1994, 14, 503–512. [Google Scholar] [PubMed]
- Wang, S.; Luo, J.; Zhang, F.; Zhang, R.; Ju, W.; Wu, N.; Zhang, J.; Liu, Y. Association between blood volatile organic aromatic compound concentrations and hearing loss in US adults. BMC Public Health 2024, 24, 623. [Google Scholar] [CrossRef]
- Chuang, H.; Ho, C.; Lee, T.; Ho, K.; Wu, T.N.; Chang, S.; Chen, C.; Hsu, L. A case-control study on chemical exposure and hearing loss at work place: ISEE-480. Epidemiology 2003, 14, S96. [Google Scholar] [CrossRef]
- Silva, T.F.d.; Rodrigues, D.d.R.F.; Coutinho, G.B.F.; Soares, M.; Almeida, M.S.d.; Sarcinelli, P.d.N.; Mattos, R.d.C.O.d.C.; Larentis, A.L.; Matos, G.G.d.O. Ototoxicidade dos hidrocarbonetos presentes na gasolina: Uma revisão de literatura. Rev. CEFAC 2018, 20, 110–122. [Google Scholar] [CrossRef]
- Mac Crawford, J.; Hoppin, J.A.; Alavanja, M.C.; Blair, A.; Sandler, D.P.; Kamel, F. Hearing loss among licensed pesticide applicators in the agricultural health study. J. Occup. Environ. Med. 2008, 50, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Choochouy, N.; Kongtip, P.; Chantanakul, S.; Nankongnab, N.; Sujirarat, D.; Woskie, S.R. Hearing loss in agricultural workers exposed to pesticides and noise. Ann. Work Expo. Health 2019, 63, 707–718. [Google Scholar] [CrossRef]
- Sena, T.R.; Dourado, S.S.; Lima, L.V.; Antoniolli, Â.R. The hearing of rural workers exposed to noise and pesticides. Noise Health 2018, 20, 23–26. [Google Scholar]
- Long, L.; Tang, X. Exploring the association of organochlorine pesticides exposure and hearing impairment in United States adults. Sci. Rep. 2022, 12, 11887. [Google Scholar] [CrossRef]
- Zou, M.; Huang, M.; Zhang, J.; Chen, R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front. Public Health 2022, 10, 1001760. [Google Scholar] [CrossRef]
- de Souza Alcarás, P.A.; Zeigelboim, B.S.; Corazza, M.C.A.; Lüders, D.; Marques, J.M.; de Lacerda, A.B.M. Findings on the central auditory functions of endemic disease control agents. Int. J. Environ. Res. Public Health 2021, 18, 7051. [Google Scholar] [CrossRef]
- Teixeira, C.F.; da Silva Augusto, L.G.; Morata, T.C. Occupational exposure to insecticides and their effects on the auditory system. Noise Health 2002, 4, 31–39. [Google Scholar] [PubMed]
- Ernest, K.; Thomas, M.; Paulose, M.; Rupa, V.; Gnanamuthu, C. Delayed effects of exposure to organophosphorus compounds. Indian J. Med. Res. 1995, 101, 81–84. [Google Scholar] [PubMed]
- Rabinowitz, P.M.; Sircar, K.D.; Tarabar, S.; Galusha, D.; Slade, M.D. Hearing loss in migrant agricultural workers. J. Agromedicine 2005, 10, 9–17. [Google Scholar] [CrossRef]
- Current Trends Follow-Up on Pentachlorophenol in Log Homes. Morbidity and Mortality Weekly Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 1981; Volume 31, pp. 170–171. [Google Scholar]
- Zarus, G.M.; Rosales-Guevara, L. Exposure to pentachlorophenol near a wood treatment plant. Rev. De Salud Ambient. 2012, 12, 82–92. [Google Scholar]
- Exposure Investigation Report: William C. Meredith Wood Treatment Facility (Meredith); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007.
- Airborne Chemicals from Wood Treatment Chemical: William C. Meredith Wood Treatment Facility (Meredith); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004.
- Air Exposures to Wood Treatment Chemicals: Kerr-McGee Chemical Corporation, Forest Products Division (Kerr-McGee); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2009.
- Cullis, C.; Hirschler, M. Atmospheric sulphur: Natural and man-made sources. Atmos. Environ. (1967) 1980, 14, 1263–1278. [Google Scholar] [CrossRef]
- Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Medical Management Guidelines for Hydrogen Sulfide. Available online: https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=385&toxid=67 (accessed on 28 August 2024).
- Toda, K.; Dasgupta, P.K.; Li, J.; Tarver, G.A.; Zarus, G.M.; Ohira, S.-I. Measurement of atmospheric hydrogen sulfide by continuous flow fluorometry. Anal. Sci. Suppl. 2002, 17, i407–i410. [Google Scholar]
- Pongpiachan, S.; Thumanu, K.; Kositanont, C.; Schwarzer, K.; Prietzel, J.; Hirunyatrakul, P.; Kittikoon, I. Parameters influencing sulfur speciation in environmental samples using sulfur K-edge X-ray absorption near-edge structure. J. Anal. Methods Chem. 2012, 2012. [Google Scholar] [CrossRef]
- Toda, K.; Dasgupta, P.K.; Li, J.; Tarver, G.A.; Zarus, G.M. Fluorometric field instrument for continuous measurement of atmospheric hydrogen sulfide. Anal. Chem. 2001, 73, 5716–5724. [Google Scholar] [CrossRef]
- Campagna, D.; Kathman, S.J.; Pierson, R.; Inserra, S.G.; Phifer, B.L.; Middleton, D.C.; Zarus, G.M.; White, M.C. Ambient hydrogen sulfide, total reduced sulfur, and hospital visits for respiratory diseases in northeast Nebraska, 1998–2000. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 180–187. [Google Scholar] [CrossRef]
- Mickunas, D.B.; Zarus, G.M.; Turpin, R.D.; Campagna, P.R. Remote optical sensing instrument monitoring to demonstrate compliance with short-term exposure action limits during cleanup operations at uncontrolled hazardous waste sites. J. Hazard. Mater. 1995, 43, 55–65. [Google Scholar] [CrossRef]
- Environmental Odors. Available online: https://www.atsdr.cdc.gov/odors/ (accessed on 28 August 2024).
- Chalansonnet, M.; Carreres-Pons, M.; Venet, T.; Thomas, A.; Merlen, L.; Boucard, S.; Cosnier, F.; Nunge, H.; Bonfanti, E.; Llorens, J. Effects of co-exposure to CS 2 and noise on hearing and balance in rats: Continuous versus intermittent CS 2 exposures. J. Occup. Med. Toxicol. 2020, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-J.; Shih, T.-S.; Chou, T.-C.; Chen, C.-J.; Chang, H.-Y.; Sung, F.-C. Hearing loss in workers exposed to carbon disulfide and noise. Environ. Health Perspect. 2003, 111, 1620–1624. [Google Scholar] [CrossRef] [PubMed]
- Morata, T.C. Study of the effects of simultaneous exposure to noise and carbon disulfide on workers’ hearing. Scand. Audiol. 1989, 18, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, S.; Sułkowski, W.; Sińczuk-Walczak, H. Assessment of the hearing system in workers chronically exposed to carbon disulfide and noise. Med. Pr. 2000, 51, 123–138. [Google Scholar] [PubMed]
- Herr, D.W.; Graff, J.E.; Moser, V.C.; Crofton, K.M.; Little, P.B.; Morgan, D.L.; Sills, R.C. Inhalational exposure to carbonyl sulfide produces altered brainstem auditory and somatosensory-evoked potentials in Fischer 344N rats. Toxicol. Sci. 2007, 95, 118–135. [Google Scholar] [CrossRef]
- Morgan, D.L.; Little, P.B.; Herr, D.W.; Moser, V.C.; Collins, B.; Herbert, R.; Johnson, G.A.; Maronpot, R.R.; Harry, G.J.; Sills, R.C. Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks. Toxicol. Appl. Pharmacol. 2004, 200, 131–145. [Google Scholar] [CrossRef]
- Maldonado, C.M.S.; Kim, D.-S.; Purnell, B.; Li, R.; Buchanan, G.F.; Smith, J.; Thedens, D.R.; Gauger, P.; Rumbeiha, W.K. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023, 485, 153424. [Google Scholar] [CrossRef]
- Li, X.; Mao, X.-B.; Hei, R.-Y.; Zhang, Z.-B.; Wen, L.-T.; Zhang, P.-Z.; Qiu, J.-H.; Qiao, L. Protective role of hydrogen sulfide against noise-induced cochlear damage: A chronic intracochlear infusion model. PLoS ONE 2011, 6, e26728. [Google Scholar] [CrossRef]
- Rumbeiha, W.; Whitley, E.; Anantharam, P.; Kim, D.S.; Kanthasamy, A. Acute hydrogen sulfide–induced neuropathology and neurological sequelae: Challenges for translational neuroprotective research. Ann. N. Y. Acad. Sci. 2016, 1378, 5–16. [Google Scholar] [CrossRef]
- Lee, D.-H.; Han, J.; Jang, M.-j.; Suh, M.-W.; Lee, J.H.; Oh, S.H.; Park, M.K. Association between Meniere’s disease and air pollution in South Korea. Sci. Rep. 2021, 11, 13128. [Google Scholar] [CrossRef]
- Tsai, S.C.-S.; Hsu, Y.-C.; Lai, J.-N.; Chou, R.-H.; Fan, H.-C.; Lin, F.C.-F.; Zhang, R.; Lin, C.-L.; Chang, K.-H. Long-term exposure to air pollution and the risk of developing sudden sensorineural hearing loss. J. Transl. Med. 2021, 19, 424. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-G.; Chen, Y.-H.; Yen, S.-Y.; Lin, H.-C.; Lin, H.-C.; Chou, K.-R.; Cheng, C.-A. Air Pollution Exposure and the Relative Risk of Sudden Sensorineural Hearing Loss in Taipei. Int. J. Environ. Res. Public Health 2022, 19, 6144. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Suzuki, J.; Ikeda, R.; Katori, Y. Sensorineural hearing loss due to acute carbon monoxide poisoning. J. Int. Adv. Otol. 2023, 19, 435. [Google Scholar]
- Fechter, L.D.; Thorne, P.R.; Nuttall, A.L. Effects of carbon monoxide on cochlear electrophysiology and blood flow. Hear. Res. 1987, 27, 37–45. [Google Scholar] [CrossRef]
- Lacerda, A.; Leroux, T.; Morata, T. Ototoxic effects of carbon monoxide exposure: A review. Pró-Fono Rev. De Atualização Científica 2005, 17, 403–412. [Google Scholar] [CrossRef]
- Jackson, D.; Grosse, C.; Zarus, G.M.; Rosales-Guevara, L. Higher blood lead levels among children living in older homes in Evansville Indiana: Associations between year house built, soil lead levels and blood lead levels among children aged 1-5 years-1998 to 2006. Rev. De La Soc. Española De Sanid. Ambient. 2012, 12, 34–45. [Google Scholar]
- Richter, P.; Faroon, O.; Pappas, R.S. Cadmium and cadmium/zinc ratios and tobacco-related morbidities. Int. J. Environ. Res. Public Health 2017, 14, 1154. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Polzin, G.M.; Watson, C.H.; Ashley, D.L. Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem. Toxicol. 2007, 45, 202–209. [Google Scholar] [CrossRef]
- Mahaffey, K.R. Environmental lead toxicity: Nutrition as a component of intervention. Environ. Health Perspect. 1990, 89, 75–78. [Google Scholar] [CrossRef]
- Morawiec, M. Effects of harmful trace elements on iron, zinc and copper: Their interactions in animals and humans. II. Lead. Rocz. Panstw. Zakl. Hig. 1991, 42, 121–126. [Google Scholar] [PubMed]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Jing-Chun, H.; Da-Lian, D.; Dong-Zhen, Y.; Hai-Yan, J.; Shan-Kai, Y.; Salvi, R. Modulation of copper transporters in protection against cisplatin-induced cochlear hair cell damage. J. Otol. 2011, 6, 51–59. [Google Scholar] [CrossRef]
- Yates, B.J.; Catanzaro, M.F.; Miller, D.J.; McCall, A.A. Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: Potential contributions to motion sickness. Exp. Brain Res. 2014, 232, 2455–2469. [Google Scholar] [CrossRef]
- Murphey, C.P.; Shulgach, J.A.; Amin, P.R.; Douglas, N.K.; Bielanin, J.P.; Sampson, J.T.; Horn, C.C.; Yates, B.J. Physiological changes associated with copper sulfate-induced nausea and retching in felines. Front. Physiol. 2023, 14, 1077207. [Google Scholar] [CrossRef] [PubMed]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef]
- Limaye, D.A.; Shaikh, Z.A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol. Appl. Pharmacol. 1999, 154, 59–66. [Google Scholar] [CrossRef]
- Sterenborg, I.; Vork, N.A.; Verkade, S.K.; van Gestel, C.A.; van Straalen, N.M. Dietary zinc reduces uptake but not metallothionein binding and elimination of cadmium in the springtail, Orchesella cincta. Environ. Toxicol. Chem. Int. J. 2003, 22, 1167–1171. [Google Scholar] [CrossRef]
- More, S.S.; Akil, O.; Ianculescu, A.G.; Geier, E.G.; Lustig, L.R.; Giacomini, K.M. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J. Neurosci. 2010, 30, 9500–9509. [Google Scholar] [CrossRef]
- Perde-Schrepler, M.; Fischer-Fodor, E.; Virag, P.; Brie, I.; Cenariu, M.; Pop, C.; Valcan, A.; Gurzau, E.; Maniu, A. The expression of copper transporters associated with the ototoxicity induced by platinum-based chemotherapeutic agents. Hear. Res. 2020, 388, 107893. [Google Scholar] [CrossRef]
- Nordberg, M.; Nordberg, G.F. Metallothionein and cadmium toxicology—Historical review and commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ding, D.; Sun, H.; Jiang, H.; Wu, X.; Roth, J.A.; Salvi, R. Cadmium-induced ototoxicity in rat cochlear organotypic cultures. Neurotox. Res. 2014, 26, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Alampi, I.; Briggs, J.; Tarcza, K.; Stawicki, T.M. Mechanotransduction activity facilitates hair cell toxicity caused by the heavy metal cadmium. Front. Cell. Neurosci. 2020, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Morata, T.C.; Dunn, D.E.; Kretschmer, L.W.; Lemasters, G.K.; Keith, R.W. Effects of occupational exposure to organic solvents and noise on hearing. Scand. J. Work Environ. Health 1993, 19, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Radziwon, K.; Auerbach, B.D.; Ding, D.; Liu, X.; Chen, G.-D.; Salvi, R. Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala. Neuroscience 2019, 422, 212–227. [Google Scholar] [CrossRef]
- Fredriksson, S.; Hussain-Alkhateeb, L.; Torén, K.; Sjöström, M.; Selander, J.; Gustavsson, P.; Kähäri, K.; Magnusson, L.; Waye, K.P. The impact of occupational noise exposure on hyperacusis: A longitudinal population study of female workers in Sweden. Ear Hear. 2022, 43, 1366–1377. [Google Scholar] [CrossRef]
- Baguley, D.; McFerran, D.; Hall, D. Tinnitus. Lancet 2013, 382, 1600–1607. [Google Scholar] [CrossRef]
- White, H.J.; Helwany, M.; Biknevicius, A.R.; Peterson, D.C. Anatomy, Head and Neck, Ear Organ of Corti; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kirk, K.M.; McGuire, A.; Nielsen, L.; Cosgrove, T.; McClintock, C.; Nasveld, P.E.; Treloar, S.A. Self-reported tinnitus and ototoxic exposures among deployed Australian Defence Force personnel. Mil. Med. 2011, 176, 461–467. [Google Scholar] [CrossRef]
- Cianfrone, G.; Pentangelo, D.; Cianfrone, F.; Mazzei, F.; Turchetta, R.; Orlando, M.P.; Altissimi, G. Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: A reasoned and updated guide. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 601–636. [Google Scholar]
- Curhan, S.G.; Glicksman, J.; Wang, M.; Eavey, R.D.; Curhan, G.C. Longitudinal Study of Analgesic Use and Risk of Incident Persistent Tinnitus. J. Gen. Intern. Med. 2022, 37, 3653–3662. [Google Scholar] [CrossRef]
- Gopinath, B.; Flood, V.M.; Teber, E.; McMahon, C.M.; Mitchell, P. Dietary intake of cholesterol is positively associated and use of cholesterol-lowering medication is negatively associated with prevalent age-related hearing loss. J. Nutr. 2011, 141, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Liu, H.; Qi, W.; Jiang, H.; Li, Y.; Wu, X.; Sun, H.; Gross, K.; Salvi, R. Ototoxic effects and mechanisms of loop diuretics. J. Otol. 2016, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Tabuchi, K.; Hara, A. Effects of NSAIDs on the inner ear: Possible involvement in cochlear protection. Pharmaceuticals 2010, 3, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- SHEPPARD, A.; Hayes, S.; Chen, G.-D.; Ralli, M.; Salvi, R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. Acta Otorhinolaryngol. Ital. 2014, 34, 79. [Google Scholar]
- Pokharel, A.; Bhandary, S. Evaluation of hearing level in patients on long term aspirin therapy. F1000Research 2017, 6, 445. [Google Scholar] [CrossRef]
- Curhan, S.G.; Eavey, R.; Shargorodsky, J.; Curhan, G.C. Analgesic use and the risk of hearing loss in men. Am. J. Med. 2010, 123, 231–237. [Google Scholar] [CrossRef]
- Fu, X.; Wan, P.; Li, P.; Wang, J.; Guo, S.; Zhang, Y.; An, Y.; Ye, C.; Liu, Z.; Gao, J. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front. Cell. Neurosci. 2021, 15, 692762. [Google Scholar] [CrossRef]
- Yücel, H.; Yücel, A.; Arbağ, H.; Cure, E.; Eryilmaz, M.A.; Özer, A.B. Effect of statins on hearing function and subjective tinnitus in hyperlipidemic patients. Rom. J. Intern. Med. 2019, 57, 133–140. [Google Scholar] [CrossRef]
- Olzowy, B.; Canis, M.; Hempel, J.-M.; Mazurek, B.; Suckfüll, M. Effect of atorvastatin on progression of sensorineural hearing loss and tinnitus in the elderly: Results of a prospective, randomized, double-blind clinical trial. Otol. Neurotol. 2007, 28, 455–458. [Google Scholar] [CrossRef]
- Liu, M.; Alafris, A.; Longo, A.J.; Cohen, H. Irreversible atorvastatin-associated hearing loss. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2012, 32, e27–e34. [Google Scholar] [CrossRef]
- Figueiredo, R.R.; Azevedo, A.A.; Penido, N.D.O. Positive association between tinnitus and arterial hypertension. Front. Neurol. 2016, 7, 216058. [Google Scholar] [CrossRef] [PubMed]
- Samelli, A.G.; Santos, I.S.; Padilha, F.Y.O.M.M.; Gomes, R.F.; Moreira, R.R.; Rabelo, C.M.; Matas, C.G.; Bensenor, I.M.; Lotufo, P.A. Hearing loss, tinnitus, and hypertension: Analysis of the baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Clinics 2021, 76, e2370. [Google Scholar] [CrossRef] [PubMed]
- Ramatsoma, H.; Patrick, S.M. Hypertension associated with hearing loss and tinnitus among hypertensive adults at a tertiary hospital in South Africa. Front. Neurol. 2022, 13, 857600. [Google Scholar] [CrossRef]
- Reynard, P.; Thai-Van, H. Drug-induced hearing loss: Listening to the latest advances. Therapies 2024, 79, 283–295. [Google Scholar] [CrossRef]
- Tomiazzi, J.S.; Pereira, D.R.; Judai, M.A.; Antunes, P.A.; Favareto, A.P.A. Performance of machine-learning algorithms to pattern recognition and classification of hearing impairment in Brazilian farmers exposed to pesticide and/or cigarette smoke. Environ. Sci. Pollut. Res. 2019, 26, 6481–6491. [Google Scholar] [CrossRef] [PubMed]
- de Sena, T.R.R.; Dourado, S.S.F.; Antoniolli, A.R. High frequency hearing among rural workers exposed to pesticides/Audicao em altas frequencias em trabalhadores rurais expostos a agrotoxicos. Ciência Saúde Coletiva 2019, 24, 3923–3933. [Google Scholar] [CrossRef]
- Mattsson, J.L.; Albee, R.R.; Lomax, L.G.; Beekman, M.J.; Spencer, P.J. Neurotoxicologic examination of rats exposed to 1, 1, 1-trichloroethane vapor for 13 weeks. Neurotoxicol. Teratol. 1993, 15, 313–326. [Google Scholar] [CrossRef]
- Vyskocil, A.; Leroux, T.; Truchon, G.; Lemay, F.; Gagnon, F.; Gendron, M.; Botez, S.; El Majidi, N.; Boudjerida, A.; Lim, S. Ototoxicity of industrial chemicals alone or in combination with noise. 2010. Available online: https://espum.umontreal.ca/fileadmin/espum/documents/DSEST/Ototoxicite_EN/10.pdf#:~:text=Ototoxicity%20of%20industrial%20chemicals%20alone%20or%20in%20combination%20with%20noise** (accessed on 28 August 2024).
- Vyskocil, A.; Truchon, G.; Leroux, T.; Lemay, F.; Gendron, M.; Gagnon, F.; Majidi, N.E.; Boudjerida, A.; Lim, S.; Emond, C. A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicol. Ind. Health 2012, 28, 796–819. [Google Scholar] [CrossRef]
- Niklasson, M.; Tham, R.; Larsby, B.; Eriksson, B. Effects of toluene, styrene, trichloroethylene, and trichloroethane on the vestibulo-and opto-oculo motor system in rats. Neurotoxicol. Teratol. 1993, 15, 327–334. [Google Scholar] [CrossRef]
- Torkelson, T.; Oyen, F.; McCollister, D.; Rowe, V. Toxicity of 1, 1, 1-trichloroethane as determined on laboratory animals and human subjects. Am. Ind. Hyg. Assoc. J. 1958, 19, 353–362. [Google Scholar] [CrossRef]
- Stewart, R.D.; Gay, H.H.; Erley, D.S.; Hake, C.L.; Schaffer, A.W. Human exposure to 1, 1, 1-trichloroethane vapor: Relationship of expired air and blood concentrations to exposure and toxicity. Am. Ind. Hyg. Assoc. J. 1961, 22, 252–262. [Google Scholar] [CrossRef]
- Stewart, R.D.; Gay, H.H.; Schaffer, A.W.; Erley, D.S.; Rowe, V. Experimental human exposure to methyl chloroform vapor. Arch. Environ. Health: Int. J. 1969, 19, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sisto, R.; Moleti, A.; Palkovičová Murínová, Ľ.; Wimmerová, S.; Lancz, K.; Tihányi, J.; Čonka, K.; Šovčíková, E.; Hertz-Picciotto, I.; Jusko, T.A. Environmental exposure to organochlorine pesticides and deficits in cochlear status in children. Environ. Sci. Pollut. Res. 2015, 22, 14570–14578. [Google Scholar] [CrossRef] [PubMed]
- Lund, S.P.; Hass, U.; Johnson, A.; Nylén, P. (Eds.) Qualitative startle reflex assessment failed to detect toluene hearing loss in rats. Poster at the 6th Meeting of International Neurotoxicity Association. In NeuroToxicology; Elsevierpure: Amsterdam, The Netherlands, 1997. [Google Scholar]
Toxicological Profile (Date) | Hearing Loss | Tinnitus | Vestibular | Exposure Route (Most to Least Frequency) | Hepatotoxicity | Renal and Nephrotoxicity | Neurological | Developmental | Ototoxicity Confirmation and Supporting Data |
---|---|---|---|---|---|---|---|---|---|
Fuels and Oils | |||||||||
BTEX interaction (2004) petroleum products gasoline & coal | Y | NA | P | I, O, D | Y | Y | Y | Y | Hearing loss and dizziness are listed throughout. See individual components in VOCs. |
Fuel Oils (1995) [59] | P; for kerosene | NA | P; (Sec 2) | I, O, D | Y | DL/IF | Y | DL/IF | P; many neurological effects including ocular (Sec 2 p26, p80); see JP5. |
Jet Fuels JP4 & JP7 (1995) [60] | P; (Sec 2.2) | NA | P; (Sec 1.5; 2.2) | I, D, O | Y | DL/IF | Y | DL/IF | P; many neurological effects including ocular (Sec 2.2, 2.2.1.4); see JP5. |
Jet Fuels JP5, JP8, and Jet A Fuels (2017) [61] | Y (Sec 3) | NA | Y | I, D, O | Y | DL/IF | Y | DL/IF | Y; hearing loss and altered balance (Sec 3.2.1.4 p53, p55). |
Otto Fuel II & components (1995) [62] | NA | NA | P; (Sec 2) | DL/IF | DL/IF | Y | DL/IF | P; many neurological effects, including ocular (Sec 2.2.1.4, p341; Sec 2.2,3,4 p64); see JP5. | |
Volatile Organic Compounds (VOCs) & Solvents | |||||||||
1,1,1-Trichloroethane (2024) [63] | Neg (Sec 2.15) | NA | P (equilib Sec 2.15), not ocular | I, O, D | Y | DL/IF | Y | DL/IF | P; but some studies have neg findings (Sec 2.15). |
1,2-Dichloroethane (2022) [64] | NA | NA | NA | I, O, D | Y | Y | Y (ataxia Sec 2.15) | Y | NA |
2-Butanone (2020) [65] | NA | NA | NA | I, O, D | DL/IF | DL/IF | Y | DL/IF | P; headache, incoordination (Sec 2.15). |
Acetone (2021) [66] | Y (Sec 2.18) | NA | NA | I, D, O | DL/IF | Y | Y | Y | Y; hearing loss with mixtures (Sec 2.18). |
Acrolein (2024) [68] | NA | NA | NA | I, O, D | DL/IF | DL/IF | DL/IF | DL/IF | NA |
Benzene (2007) [67] | Y (Sec 2.2) | NA | Y (Sec 3.2.1.4) | I, D, O | DL/IF | DL/IF | Y | DL/IF | Y (Sec 2.2; 3.2.1.4 p89; Sec 3.2.2.4 p134) & (ASHA/CCOHS) |
Chlorobenzene (2020) [69] | Y (Sec 2.2) | NA | NA | I, O, D | Y | Y | Y | DL/IF | Y (OSHA) |
Chloroethane (2024) [70] | Y (Sec 1.5) | NA | Y (2.2.1.4) NS | I, D, O | DL/IF | Y | Y | Y | P; due to observed vertigo (Sec 2.2.1.4). |
Chloroform (2024) [71] | P (Sec 2.2) | NA | P (dizziness Sec 1, 2.15) | I, O, D | Y | Y | Y | DL/IF | P; based on (Hu & Schwarz, 1987) [124]. Electrophysiological evaluation of chloroform-induced inner ear damage. |
Chloromethane (2022) [70] | NA | NA | Y (Sec 2.15) NS | I, O, D | Y | Y | Y | DL/IF | P; based on vertigo disturbance (Sec 2.15). |
Ethylbenzene (2010) [73] | Y (Sec 3.2.1.4) | NA | Y (Sec 3.2.1.4) | I, O, D | Y | Y | Y | Y | Y (OSHA) & (Sec 3.2.1.4 p66; Sec 3.2.2.4 p83) |
Formaldehyde (1999) [74] | Y; (Sec 2.11.2) | NA | Y (Sec 1.5) NS | I, D, O | Y | Y | Y | DL/IF | Y balance (Sec 2.2.1.4) |
n-Hexane (2024) [75] | Y (Sec 2.15). | NA | P (dizziness Sec 2.15) | I, D, O | DL/IF | DL/IF | Y | DL/IF | Y (OSHA) |
Styrene (2010) [76] | Y (Sec 2.3) | NA | Y (Sec 2.2) | I, D, O | DL/IF | DL/IF | Y | DL/IF | Y (OSHA); hair cells in the organ of Corti (Sec 3.2.1.4 p68) |
Tetrachloroethylene (PERC) (2019) [77] | Y Sec (2.2) | NA | NA | I, O, D | Y | Y | Y | DL/IF | Y (Sec3.2.1.4 p74, p76) |
Toluene (2017) [78] | Y (Sec 3.2.1.4) | NA | Y (Sec 3.2.1.4) | I, D, O | DL/IF | DL/IF | Y | Y | Y (OSHA) |
Trichloroethylene (TCE) (2019) [79] | Y (Sec 2.2) | NA | NA | I, O, D | Y | Y | Y | Y | Y (OSHA) |
Vinyl Chloride (2023) [80] | P (Sec 3.2.1.4) | NA | NA | I, O, D | Y | DL/IF | Y | Y | P (Sec 2.15); visual effects reported from acute exposures |
Xylenes (2007) [81] | Y (Sec 2.2) | NA | Y (Sec 3.5.2) | I, O, D | Y | Y | Y | DL/IF | Y; only p-xylene isomer (OSHA) |
Pesticides, Herbicides, and Barriers | |||||||||
1,2-Dibromoethane (2018) [82] | NA | NA | NS; (Sec 2.15) | O, I, D | Y | Y | DL/IF | DL/IF | NA; Confusion & brain lesions (Sec 2.15) |
Aldrin & Dieldrin (2022) [83] | Neg (Zhang et al., 2021) [125] | NA | NA | O, I, D | Y | DL/IF | Y | Y | One Epi study found no hearing loss (Zhang et al., 2021) [125]; NA (Sec 2.15 p63) |
Atrazine (2003) [84] | NA | NA | NA | I, O, D | Y | Y | DL/IF | Y | NA |
Chlordane (2018) [85] | NA | NA | NA | I, O, D | Y | DL/IF | Y | Y | Dizziness (Sec 2.15) |
Chlorpyrifos (1997) [86] | NA | NA | P, NS | I, D, O | DL/IF | DL/IF | Y | DL/IF | Blurred vision (Sec 2.2.1.2) |
Cyanide (2006) [87] | Y; Sec (2.2) | NA | NA | I, D, O | DL/IF | DL/IF | Y | DL/IF | Y (Sec 3.12.2) Y (NIOSH) |
DDT, DDE, & DDD (2022) [88] | NA | NA | NA | O, I, D | Y | DL/IF | Y | Y | One breast-feeding study found no hearing loss in the children of exposed workers (Ribas-Fito et al., 2003) [126] dizziness (Sec 2.15 p147). |
Diazinon (2008) [89] | NA | NA | P, NS | I, D, O | DL/IF | DL/IF | Y | DL/IF | Dizziness and blurred vision (Sec 3.2.1.4). |
Disulfoton (2022) [90] | Y Sec (2.15) | NA | NA | I, O, D | DL/IF | DL/IF | Y | Y | Y (Sec 2.15 p73) |
Endosulfan (2015) [91] | NA | NA | NA | I, D, O | DL/IF | DL/IF | Y | Y | NA (Sec 2.3) |
Endrin (2021) [92] | NA | NA | NA | O, I, D | Y | DL/IF | Y | DL/IF | (Sec 2.15 p57) offers related data. |
Glyphosate (2020) [93] | NA | NA | NA | O, I, D | Y | Y | DL/IF | DL/IF | NA |
Heptachlor & Heptachlor Epoxide (2007) [94] | NA | NA | NA | O, I, D | Y | DL/IF | DL/IF | Y | Neurological alterations (Sec 2.2); neuromotor effects lack studies (Sec 3.12.2). |
Hexachlorocyclohexane (2024) [95] | Y Sec (2.15) | NA | NA | I, D, O | Y | DL/IF | Y | Y | Y for α-HCH (Sec 2.15); P for β-HCH (Sec 2.17) |
Malathion (2003) [96] | NA | NA | P, NS | I, D, O | DL/IF | DL/IF | Y | DL/IF | Equilibrium and vision impacted (Sec 3.2.2.4) |
Methyl parathion (2001) [97] | * Y | P, NS | I, D, O | DL/IF | DL/IF | Y | Y | Updated hearing loss data are provided in the parathion profile | |
n-Nitroso-n-propylamine (2023) [98] | NA | NA | NA | I, D, O | DL/IF | DL/IF | DL/IF | DL/IF | NA |
Parathion (2017) [99] | Y (Sec 1, 2.2, 3.3.2.4) | NA | P, NS | I, D, O | DL/IF | DL/IF | Y | DL/IF | Good primate dosing study also human studies (Sec 3.2.2.4) |
Pentachlorophenol (2022) [100] | NA | NA | NA | I, O, D | Y | DL/IF | DL/IF | Y | Ocular effects in workers, animal studies disagree (Sec 2.12). |
Phosphate Ester Flame Retardants (2012) [101] | NA | NA | NA | O, I, D | Y | Y | Y | DL/IF | NA (Sec 3.2.2.6) |
Toxaphene (2014) [102] | NA | NA | NA | I, O, D | DL/IF | DL/IF | DL/IF | Y | NA; limited neurological studies reported (Sec 3.2.3.4). |
Sulfides | |||||||||
Carbon Disulfide (1996) [103] | Y (Sec 2.2.1.4) | NA | NA | I, D, O | Y | DL/IF | Y | DL/IF | Y (OSHA) |
Carbonyl sulfide (2016) [104] | P (Sec 2.2.1.4) | NA | P; | I, O | DL/IF | DL/IF | Y | DL/IF | Carbonyl sulfide impacts brain stem. |
Hydrogen sulfide (2016) [104] | P; (Sec 2.2.1.4) | NA | P; | I, O | DL/IF | DL/IF | Y | DL/IF | Hydrogen sulfide is possibly protective. |
Sulfur dioxide (1998) [105] | Neg (Ohashi et al. 1989) [127] | NA | NA | I, O | DL/IF | DL/IF | DL/IF | DL/IF | No effusion found in middle ear (Ohashi et al. 1989) [127] |
Metals | |||||||||
Aluminum (2008) [106] | Y; Sec (2.0) | NA | NA | I, O, D | DL/IF | DL/IF | Y | DL/IF | Limited due to studies not reporting aluminum content of the basal diet. |
Arsenic (2007) [107] | Y; Sec (2.0) | NA | Y; limited (Sec 3.2.2.4) NS | I, O | DL/IF | Y | DL/IF | DL/IF | Suspected; limited evidence (OSHA). |
Cadmium (2012) [108] | Y; Sec (2.0) | NA | NA | O, I | DL/IF | Y | DL/IF | DL/IF | Suspected; limited evidence (OSHA); very good Epi and animal studies with mixed results. |
Chromium (2012) [109] | * P | NA | Y; Limited; NS | O, I, D | DL/IF | DL/IF | DL/IF | DL/IF | P; auditory damage in rats (EPA, Zhan et al., 2012) [128] |
Cobalt (2023) [110] | P; limited | NA | NA | I, O, D | Y | DL/IF | DL/IF | DL/IF | Potential Y, decreased auditory response, and hearing loss reported during cobalt therapy (Sec 5.7). |
Copper (2024) [111] | * P | NA | P; NS | O, I, D | Y | Y | Y | DL/IF | Copper sulfate has potentially protective properties, as demonstrated with platinum-induced ototoxicity. |
Lead (2020) [112] | Y; Sec (2.0) | NA | NA | I, O, D | DL/IF | Y | Y | Y | Y (HCA/OSHA) |
Manganese (2012) [113] | Y | NA | Y but limited; NS | I, O | DL/IF | DL/IF | Y | Y | Suspected (Ding et al., 2011) [129] |
Mercury (2022) [114] | Y; Sec (2.0) | NA | Y | O, I | DL/IF | Y | Y | Y | Y (HCA/OSHA) |
Nickel (2005) [115] | NA | NA | NA | O, I, D | DL/IF | DL/IF | DL/IF | Y | No ototoxicity studies (Castellanos & Fuente, 2016) [130] |
Selenium (2003) [116] | * P | NA | Y | O, I | Y | Y | Y | DL/IF | Treats idiopathic sudden sensorineural HL (Kaya et al., 2015) [131], but higher levels are significantly associated with HL (Carlson, 2019) [132]. |
Tin and tin compounds (2005) [117] | Y; Sec (2.2) | NA | NA | O, D, I | Y | Y | Y | DL/IF | Y, Organotins (OSHA) |
Zinc (2005) [118] | * P | NA | Y but limited; NS | O, I | DL/IF | DL/IF | DL/IF | DL/IF | P; increasing levels of zinc were associated with HL (Carlson, 2019) [132]. |
Ototoxic Potential [62] | Neurotoxic Potential | Renal and Nephrotoxic Potential | Hepatotoxic Potential | Developmental Effects |
---|---|---|---|---|
OTO 13 | 100% | 54% | 46% | 38% |
EO 27 | 89% | 48% | 44% | 37% |
SEOP 41 | 85% | 41% | 49% | 29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarus, G.M.; Ruiz, P.; Benedict, R.; Brenner, S.; Carlson, K.; Jeong, L.; Morata, T.C. Which Environmental Pollutants Are Toxic to Our Ears?—Evidence of the Ototoxicity of Common Substances. Toxics 2024, 12, 650. https://doi.org/10.3390/toxics12090650
Zarus GM, Ruiz P, Benedict R, Brenner S, Carlson K, Jeong L, Morata TC. Which Environmental Pollutants Are Toxic to Our Ears?—Evidence of the Ototoxicity of Common Substances. Toxics. 2024; 12(9):650. https://doi.org/10.3390/toxics12090650
Chicago/Turabian StyleZarus, Gregory M., Patricia Ruiz, Rae Benedict, Stephan Brenner, Krystin Carlson, Layna Jeong, and Thais C. Morata. 2024. "Which Environmental Pollutants Are Toxic to Our Ears?—Evidence of the Ototoxicity of Common Substances" Toxics 12, no. 9: 650. https://doi.org/10.3390/toxics12090650
APA StyleZarus, G. M., Ruiz, P., Benedict, R., Brenner, S., Carlson, K., Jeong, L., & Morata, T. C. (2024). Which Environmental Pollutants Are Toxic to Our Ears?—Evidence of the Ototoxicity of Common Substances. Toxics, 12(9), 650. https://doi.org/10.3390/toxics12090650