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Abstract: Based on the life cycle assessment methodology, this study systematically analyzes the en-
ergy utilization of environmental waste through photocatalytic treatment and simultaneous hydrogen
production. Using 10,000 tons of organic wastewater as the functional unit, the study evaluates the
material consumption, energy utilization, and environmental impact potential of the photocatalytic
waste synchronous hydrogen production system (specifically, the synchronous hydrogen production
process of 4-NP wastewater with CDs/CdS/CNU). The findings indicate that potential environmen-
tal impacts from the photochemical treatment of environmental waste and synchronous hydrogen
production primarily manifest in freshwater ecological toxicity, marine ecological toxicity, terrestrial
ecological toxicity, and non-carcinogenic toxicity to humans. These ecological impacts stem from the
catalyst’s adsorption and metal leaching during the photo-degradation and hydrogen production
processes of environmental waste. By implementing reasonable modifications and morphological
refinements to the catalyst, these effects can be mitigated while achieving enhanced efficiency in
environmental waste processing and simultaneous hydrogen production. The research outcomes pro-
vide valuable insights for advancing sustainable development in green technology for environmental
waste treatment and energy utilization.

Keywords: environmental waste; synchronous hydrogen production; LCA; ecological impact;
sustainable development

1. Introduction

With the ongoing advancement of national industrialization and urbanization, the is-
sues of energy scarcity and environmental degradation have gained increasing prominence.
Energy resources, particularly strategic ones, are crucial for ensuring both livelihoods and
economic development. However, the escalating environmental impacts resulting from the
excessive exploitation and utilization of energy resources profoundly affect human life qual-
ity and economic and societal sustainability [1,2]. Waste is defined as material that loses its
utility within specific temporal and spatial contexts due to excessive consumption in daily
life and societal activities, resulting in its environmental accumulation [3–7]. The term “en-
ergy conversion of environmental waste” refers to the process of utilizing techniques such
as biogas production, incineration, and plasma gasification to convert environmental waste
into a form of energy that can be reused. The ultimate objective is to achieve comprehensive
and efficient utilization of environmental waste [8]. From 2005 to 2030, global aggregate
energy demand is projected to increase significantly by 50% [9]. Depletion of fossil fuels
and concerns regarding energy sustainability have prompted global efforts towards devel-
oping renewable energy sources [10]. To address the escalating energy demand, various
countries have successfully implemented waste-to-energy processes [11,12]. By 2014, waste
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contributed significantly to global power generation, providing 93,540 gigawatt-hours of
electricity (0.4% of the world’s total) and 399,734 terajoules of heat (equivalent to 2.7% of
the world’s total power generation) [13].

The primary forms of utilizing environmental waste as energy sources include the utiliza-
tion through synthesis gas, solid fuels, pyrolysis oil, charcoal, biogas, and bioethanol [14–17].
Among these, the utilization of waste incineration for power generation and biogas heating are
the two most prevalent forms [18]. However, these conventional methods of utilizing waste
material for energy conversion may potentially give rise to secondary pollution issues [19–21].
Environmentally friendly practices and sustainable development constitute the inevitable trajec-
tory towards the conversion of environmental waste into energy [22]. In the current landscape
of commercial energy, 95% comprises fossil fuels whose extensive utilization engenders cli-
mate predicaments at a global scale, exemplified by the emission of NOx, SO2, CO2, and their
ilk [23,24]. Therefore, an increasing number of researchers are striving to develop technological
processes that simultaneously degrade environmental pollutants and produce clean energy, in
order to address the current challenges of resource scarcity and environmental degradation [25].

Countries around the world are actively researching renewable alternative energy
sources such as hydrogen energy, biomass energy, ocean energy, geothermal energy, and
solar energy [26,27]. Among these, hydrogen energy has become one of the hottest new
energies in current research due to its renewable nature and the fact that it does not gener-
ate pollutants during combustion or afterwards [28,29]. The technology of synchronous
hydrogen production through waste disposal refers to the utilization of waste in order
to produce hydrogen, thereby achieving an inexpensive acquisition of hydrogen energy
while also allowing for the resource utilization of waste materials [30]. The photocatalytic
degradation of organic pollutants with simultaneous hydrogen generation commenced in
the early 1990s, during the previous century [31]. Organic pollutants present in wastewater
can be utilized as sacrificial agents, facilitating photocatalytic water splitting for hydrogen
production [32]. This approach not only enables the efficient conversion of pollutants and
recycling of water resources but also effectively mitigates environmental contamination
caused by wastewater [33].

The key to the photocatalytic degradation of organic pollutants with simultaneous
hydrogen generation lies in the development of synthetic, stable and environmentally
friendly photocatalytic materials to achieve the simultaneous objectives of degradation and
hydrogen production through photo-induced reduction [34–38]. Photocatalytic technology,
harnessing the power of the sun, is widely regarded as the paramount method for pollution
reduction and hydrogen production, capturing the unwavering attention of numerous
nations [39]. For example, the ternary photocatalytic material (CDs/CdS/CNU) was
prepared by combining layered materials (CN-U) with metal chalcogenides (CdS) and
loading carbon quantum dots (CDs) with good light absorption and upconversion effects.
Then, the results indicate that the synthesized composite photocatalysts can efficiently treat
organic wastewater (4-NP) and simultaneously produce hydrogen [40,41]. However, there
has been a lot of research and development on the technology of photocatalytic degradation
of pollutants and simultaneous hydrogen production, but there is relatively little research
on its environmental impact.

In order to systematically evaluate the environmental impact of photocatalytic pollu-
tant treatment and simultaneous hydrogen production, this study takes the application case
of CD/CDs/CNU in the simultaneous hydrogen production of 4-NP containing wastewater
as the research object and systematically evaluates its potential environmental risks through
the life cycle assessment (LCA) method. Life cycle assessment (LCA) is a comprehensive
method for assessing environmental impacts, adhering to the principle of “cradle to grave”,
which can ensure the credibility and scientific rigor of assessing environmental impacts
related to waste energy utilization [16,42,43]. The work carried out in this study includes
the following: (1) the research objectives and scope of photocatalytic waste treatment and
synchronous hydrogen production are defined; (2) the full life cycle inventory of photo-
catalytic waste treatment and synchronous hydrogen production was investigated and
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analyzed; (3) based on the LCA method, the ecological and environmental impact and
potential value of photocatalytic waste treatment and synchronous hydrogen production
were comprehensively evaluated; (4) we comprehensively analyzed the environmental
hazards of photocatalytic waste treatment and synchronous hydrogen production and
gave targeted improvement measures. This study will provide theoretical support for
the practical application of photocatalytic waste treatment and synchronous hydrogen
production and provide some reference for the green development of environmental waste
energy utilization technology.

2. Materials and Methods
2.1. The Principles of the Life Cycle Methods

With the continuous progress of human civilization, the escalating devastation of
the global ecological environment has become increasingly apparent. The conventional
methods of managing and remedying environmental issues are no longer applicable to
the diverse array of challenges we face today. Therefore, embracing an environmental
management approach based on the concept of life cycle thinking is much more conducive
to achieving a harmonious and sustainable balance between the economy and the environ-
ment [44]. Life cycle assessment (LCA), as an environmental management tool for product
systems, has gradually gained acceptance and application in various domains, regarded
as the most promising environmental management tool of the 21st century [45,46]. The
International Organization for Standardization (ISO), in its ISO 14040 standard, defines life
cycle assessment as the quantitative and qualitative analysis and evaluation of the resource
consumption and waste emissions caused by a product throughout its life cycle [47].

This study adheres to the boundary demarcation and data processing standards out-
lined in ISO 14040 and GB/T 24040. We utilize the ReCiPe method for calculations, which
is widely employed in life cycle assessment (LCA) to analyze and quantify the environ-
mental impacts of a product across its entire life cycle, from raw material acquisition
to production, use, and disposal [1,2]. It focuses on midpoint (problem-oriented) and
endpoint (damage-oriented) impact categories. ReCiPe not only assesses traditional envi-
ronmental impacts such as acidification, eutrophication, and ecosystem toxicity, resource
consumption and climate change impacts are also included, providing a more compre-
hensive assessment perspective. ReCiPe data sources are categorized into foreground and
background processes. The foreground processes are derived from our field investigations
and address specific aspects that may vary from other studies or result from technological
advancements. Background processes build upon comprehensive LCA data from existing
research. In this study, data from background processes are clearly cited in the manuscript,
while foreground process data, which do not have external citations, originate from our
own research.

The life cycle approach evaluates the “inputs” and “outputs” of each process [48].
According to ISO 14040, we will have certain trade-offs in the process of discussion and
traceability, as long as the corresponding trade-off rules are met; otherwise, the traceability
will be endless. The regulations also point out that there are two types of LCA that
do not need to trace the process. One is natural resources; we only need to know the
consumption of natural resources and do not need to trace their production process. The
other is environmental emissions (including greenhouse gasses, atmospheric/water/soil
pollutants, solid waste, etc.); again, we only need to know the discharge and do not need to
know the natural process after discharge.

2.2. The Fundamental Analytical Framework of the Life Cycle Approach

According to ISO 14040 and GB/T 24040, the entire process of life cycle assessment
can be divided into four main components, namely the definition of objectives and scope,
analysis of the life cycle inventory, evaluation of the life cycle impacts, and interpretation
of the life cycle results [47,49,50]. The relationship between these components is depicted
in Figure 1.
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Figure 1. Life cycle evaluation framework diagram.

(1) Definition of the goal and the scope

The primary component of LCA research is the determination of evaluation objectives.
The definition of functional units and system boundaries associated with these objectives
guides the analysis structure, ultimately providing an assessment of environmental impact
types. In this chapter, the evaluation system’s objectives and scope are meticulously divided
based on the varying technologies for environmental waste energy conversion.

(2) Life cycle inventory analysis

The term “life cycle inventory analysis” refers to the identification of the subject of study,
wherein data pertaining to all energy conversion processes involved from the origin to the final
destination are collected and computed. The resulting energy input and output data constitute a
comprehensive inventory of the life cycle evaluation system, which serves as a research reference
for analyzing issues during the product production transformation process.

(3) Impact evaluation

The assessment of the environmental impacts in LCA is a crucial step, encompass-
ing method selection, impact categorization analysis, and impact calculation process. It
ultimately relies on scientifically grounded evaluations derived from the integration of
mathematical models.

(4) The result interpretation

The outcome interpretation marks the final stage in the LCA analysis. Through the
aforementioned three steps, it establishes the identity of the research analysis subject,
defines the system boundaries for inclusion in the inventory, and incorporates model
analysis to assess environmental burdens during impact assessment. It provides feasible
recommendations, serving to adjust variables within the system framework and rectify
adverse causes of environmental impacts.

2.3. Data Sources

The data presented in this summary are primarily sourced from the Chinese Life Cycle
Inventory Database and relevant literature (specific data sources detailed in Table 1).

3. Results and Discussion
3.1. The Basic Framework of the LCA Model for Synchronous Hydrogen Production and
Environmental Waste Treatment

(1) Definition of the goal and the scope

In this section, our study focuses on the integrated hydrogen production system via
the photocatalytic treatment of waste materials. Figure 2 illustrates the process flow. The
process flow of waste treatment and synchronous hydrogen production includes wastew-
ater collection and transportation, wastewater pretreatment, photocatalyst preparation,
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wastewater treatment, photocatalytic hydrogen production, catalyst recovery, hydrogen
purification, and treated gas and water discharge. In this process, detection points are
positioned at sites O1 and O2 to evaluate the influence of environmental indicators on as-
sessing a synchronous hydrogen production system used for catalytic waste treatment. We
have adopted a functional unit capable of treating 10,000 metric tons of organic wastewater.
Employing a life cycle assessment (LCA) approach, our objective is to analyze resource
consumption, energy utilization, and potential environmental impacts related to the photo-
catalytic treatment of waste materials and the integrated hydrogen production system.
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Figure 2. Process diagram for waste treatment and synchronous hydrogen production.

Figure 3 illustrates a diagram depicting the delineation of boundaries. In this study, the
life cycle of wastewater treatment and synchronous hydrogen production is divided into
the following stages: wastewater collection and transportation stage, wastewater pretreat-
ment stage, photocatalyst preparation stage, wastewater treatment stage, photocatalytic
hydrogen production stage, and treated water and gas discharge stage.
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(2) Inventory analysis

Table 1 outlines the input–output inventories of each component unit. Key metrics
including water quality, waste discharge, equipment operation, and hydrogen production
were quantitatively assessed. Electrical energy consumption was computed following the



Toxics 2024, 12, 652 6 of 15

method outlined in the preceding section, and greenhouse gas emissions were evaluated
using the same approach. The measured data were chosen to accurately depict wastewater
treatment efficacy and its genuine environmental impacts (Table 2).

Table 1. Annual life cycle inventory of materials for each functional unit in the photocatalytic
treatment and simultaneous hydrogen production process.

Material Input Material Output

Wastewater Collection and
Transportation Stage Unit Magnitude Photocatalytic Hydrogen

Production Stage Unit Magnitude

Wastewater [51] t 10,000 Annual hydrogen production
[40,41] m3 5264

Wastewater transportation [52] km 50 Gas emission in photocatalytic
process (for CDs/CdS/treatment of

4-NP wastewater with CNU) [53,54]
Unit MagnitudeWastewater transportation

fuel consumption [52] L·a−1 13,800

Wastewater pretreatment stage Unit Magnitude CO2 g·m−3 9450
Fan power consumption

(4 units) [51] kWh·a−1 3160 SO2 g·m−3 50

Solid–liquid separator power
consumption [55] kWh·a−1 3800 N2O g·m−3 0

Photocatalyst preparation stage Unit Magnitude CO g·m−3 5.3
Catalyst dosage kg 2000 NOx g·m−3 0.3

Power consumption for
CDs/CdS/CNU preparation [40] kWh·a−1 8.0 × 104 VOC g·m−3 0.02

Wastewater treatment stage Unit Magnitude Content of contaminated
elements [56] Unit Magnitude

CDs/CdS/CNU treatment
containing 4-NP wastewater [40] kWh·a−1 6.0 × 104 TN g/kg 348.2

Power consumption purification by
voltage washing in hydrogen

purification stage [57]
kWh·a−1 2.0 × 105 TP g/kg 0

a. Wastewater transportation: Primarily carried out through the utilization of diesel
engines, with an estimated total fuel consumption of approximately 13,800 L·a−1 during
the transportation phase.

b. Pre-processing phase: Configure four Granfu wastewater lift pumps. Activate two
units for eight hours during the day and activate two units for sixteen hours during the
night. The air in the sand removal tank is supplied by a magnetic levitation fan, which
is shared with the aerating fan in the aerobic tank. The power consumption of the fan is
3.16 × 103 kWh. The power consumption of the solid–liquid separator is 3.8 × 103 kWh.
Therefore, the daily power consumption of the pre-treatment stage’s process equipment is
approximately 6.96 × 103 kWh (for processing ten thousand tons of sewage).

c. Cost of photocatalyst preparation: Approximately 2000 kg of photocatalytic ma-
terial is used for treating 10,000 tons of wastewater. Taking into account the lifespan and
manufacturing process of the catalyst, using CDs/CdS/CNU as an example, the electricity
required to prepare one year’s worth of photocatalyst is approximately 8.0 × 104 kWh.

d. Wastewater treatment in reaction tanks: The total annual electricity consumption
of the circulating agitator is 6.0104 kilowatt-hours. The annual consumption of 4-NP
wastewater treatment using the solid–liquid separation machine CDs/CdS/CNU, after
catalyst dehydration, is quantified at 4.0 × 105 kWh. The photocatalyst employed in this
process harnesses solar irradiation, rendering any external light source unnecessary.

e. Hydrogen purification phase: An elevated hydraulic pressure is employed to elimi-
nate impurities from the hydrogen, while adhering to an annual electricity consumption
target denoted by 2.0 × 105 kWh·a−1. The annual quantity of purified hydrogen amounts
to approximately 5264 cubic meters. The comprehensive energy consumption, as well as
the data when converted to coal equivalent, is presented below:
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Table 2. Total energy consumption and coal conversion (synchronous hydrogen production process
of 4-NP wastewater with CDs/CdS/CNU).

Waste Disposal and
Synchronous Hydrogen

Production

Wastewater
Transportation (L·a−1)

Pretreatment
(kWh·a−1)

Photocatalytic
Preparation
(kWh·a−1)

Reaction Pool
Processing (kWh·a−1)

Hydrogen Purification
(kWh·a−1)

Energy consumption 13,800 6.96 × 103 8.0 × 104 4.0 × 105 2.0 × 105

Coal conversion coefficient 6.12 × 10−4 3.09 × 10−3 1.23 × 10−4 2.35 × 10−4 1.23 × 10−4

Coal conversion 16.89 8.53 9.84 46.87 24.60

3.2. Analysis of the Potential Environmental Impact

(1) Determining the types of impact:

During the photolytic treatment of environmental waste and the synchronous hydro-
gen production process, the degradation of waste and the emission of other gasses into
the environment, such as CO2, SO2, and VOCs, occur during engine and diesel engine
operations. Data collection is conducted through five instances of measurements to obtain
an average value and ensure the reliability of the data. The specific data regarding the
emission of other gasses during the simultaneous hydrogen production process using
photosensitizing agents CDs/CdS/CNU for 4-NP wastewater treatment can be observed
in Table 3 and Figure 4. It is noteworthy that in the process of treating 4-NP wastewater
and simultaneous hydrogen production with photosensitizing agents CDs/CdS/CNU, the
generation of CO2 is maximal, with negligible emissions of other gasses such as SO2, N2O,
CO, and VOC. Furthermore, it should be emphasized that NOx emerges as the primary
environmental contaminant produced within the wastewater.

Table 3. Emission of other gasses during the synchronous hydrogen production process of 4-NP
wastewater treated with CDs/CdS/CNU.

Project Detection 1 Detection 2 Detection 3 Detection 4 Detection 5 Average Value

Carbon dioxide (CO2) g·m−3 9450 9448 9449 9452 9448 9449.4
Sulfur dioxide (SO2) g·m−3 49 51 47 50 51 49.6
nitrous oxide (N2O) g·m−3 0 0 0 0 0 0

carbon monoxide (CO)g·m−3 5 5.5 5 5.8 5.6 5.38
nitrogen oxide (NOx)g·m−3 0.3 0.4 0.3 0.38 0.35 0.346

VOC g·m−3 225 220 223 228 221 223.4
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Furthermore, this section provides a comprehensive analysis of the environmental
impacts caused by the photolytic treatment and simultaneous hydrogen production pro-
cesses of environmental waste. These effects include global warming, stratospheric ozone
depletion, ionizing radiation, human health implications, particulate matter formation,
terrestrial pollution, land acidification, eutrophication of freshwater bodies, eutrophication
of marine ecosystems, toxicity to terrestrial ecosystems, toxicity to freshwater ecosystems,
toxicity to marine organisms, carcinogenic toxicity to humans, non-carcinogenic toxic ef-
fects on humans, land utilization issues, and scarcity of mineral and fossil resources and
water consumption.

(2) Quantifying Standardized Environmental Impact Metrics:

Employing the ReCiPe model [58–60], we calculate the characterization factors of the
features to shed light on distinct types of environmental impacts. The purpose of character-
izing calculations is to convert different substances from each type of environmental impact
into a unified parameter for subsequent weighted calculations. ReCiPe 2016 is a general
and mature full life cycle environmental impact assessment model with very mature and
comprehensive assumptions, groupings, and databases. The ReCiPe model integrates
18 types of potential environmental impacts, including global warming, stratospheric
ozone depletion, ionizing radiation, ozone formation and human health, fine particulate
matter formation, land acidification, ozone formation, terrestrial ecosystems, freshwater
eutrophication, marine eutrophication, terrestrial ecotoxicity, marine ecotoxicity, freshwater
ecotoxicity, human carcinogenic toxicity, human non-carcinogenic toxicity, mineral resource
scarcity, fossil resource scarcity, land use, and water consumption (Table 4). In relation to
global hot environmental issues, this study primarily focuses on 18 types of environmental
impacts during the process of wastewater treatment and synchronous hydrogen production.
The specific standardization results are shown in Table 5. The characterizing calculation
results are obtained by multiplying the corresponding gas emissions with their respective
relevant factors to obtain the final outcome [61].

Table 4. Characteristic value (synchronous hydrogen production process of 4-NP wastewater with
CDs/CdS/CNU).

Impact Category Unit Altogether Cadmium
Sulfide Phenylethane Urea Muriate Citric Acid Ammonia Alcohol Deionized

Water
Power

Consumption

Global warming kg CO2 eq 23,340.50 0.60 45.20 82.74 0.43 5.74 1.72 329.9 0.024 22,871.2
Stratospheric ozone

depletion kg CFC11 eq 0.006 1.90 × 10−7 3.70 × 10−6 1.3 × 10−4 7.80 × 10−8 8.50 × 10−6 5.90 × 10−7 6.10 × 10−5 2.04 × 10−8 0.0062

Ionizing radiation kBq Co-60 eq 326.34 0.06 0.67 4.67 0.02 0.13 0.02 10.96 0.001 309.82
Human health kg NOx eq 53.98 0.0018 0.071 0.16 0.0009 0.01 0.002 0.65 4.81 × 10−5 53.09

Fine particulate
matter formation kg PM2.5 eq 9.71 0.0004 0.023 0.052 0.0005 0.0029 0.001 0.11 1.60 × 10−5 9.52

Land kg NOx eq 54.15 0.002 0.08 0.16 0.0009 0.014 0.002 0.73 4.87 × 10−5 53.09
Ground

acidification kg SO2 eq 0.14 0.014 0.10 0.47 0.001 0.03 0.01 0.88 0.0001 136.24

Eutrophication of
freshwater. kg P eq 252.00 0.0003 0.009 0.03 9.60 × 10−5 0.002 0.0001 0.07 7.68 × 10−6 2.42

Eutrophication of
the sea kg N eq 0.21 1.70 × 10−5 0.0006 0.03 7.50 × 10−6 0.001 7.10 × 10−6 0.02 8.51 × 10−7 0.16

Land ecological
toxicity kg 1,4-DCB eq 6451.90 1.68 20.12 123.58 0.31 6.77 6.97 297.04 0.042 5995.37

Freshwater
ecological toxicity kg 1,4-DCB eq 417.53 0.06 0.50 4.65 0.01 0.26 0.03 6.19 0.017 405.83

Seawater ecological
toxicity kg 1,4-DCB eq 108.96 0.0167 0.17 1.27 0.003 0.07 0.01 2.07 0.0004 105.35

Human
carcinogenic

toxicity
kg 1,4-DCB eq 2.72 0.0002 0.049 0.082 7.50 × 10−5 0.0020 0.0013 0.12 1.15 × 10−5 2.46

Non-carcinogenic
toxicity in humans kg 1,4-DCB eq 125.67 0.025 0.38 2.17 0.005 0.14 0.023 4.86 0.0007 118.06

Land use m2a crop eq 253.95 0.18 0.32 11.18 1.43 65.37 0.05 13.91 0.0033 161.49
Scarcity of mineral

resources. kg Cu eq 9.61 0.05 0.03 0.49 0.003 0.05 0.002 0.54 0.00045 8.45

Scarcity of fossil
resources kg oil eq 3277.05 0.18 20.67 22.47 0.071 0.99 0.55 152.46 0.0052 3079.64

Water consumption m3 83.84 0.0065 0.48 1.51 0.0027 0.15 0.033 3.94 0.043 77.68
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Table 5. Standardized value (synchronous hydrogen production process of 4-NP wastewater with
CDs/CdS/CNU).

Impact Category Altogether Cadmium
Sulfide Phenylethane Urea Muriate Citric Acid Aqueous Alcohol Deionized

Water
Power Con-
sumption

Global warming 2.17 5.61 × 10−5 0.0042 0.00769 4.02 × 10−5 0.0005 0.0001 0.0306 2.3 × 10−6 2.13
Ozone layer consumption 0.098 2.88 × 10−6 5.71 × 10−5 0.00192 1.12 × 10−6 0.0001 8.99 × 10−6 0.0009 3.12 × 10−7 0.095

Ionizing radiation 0.695 0.0001 0.0014 0.0099 3.963 × 10−5 0.0002 4.42 × 10−5 0.0233 2.85 × 10−6 0.066
Ozone formation, and

human health 2.621 8.63 × 10−5 0.003 0.0077 4.35 × 10−5 0.0006 9.44 × 10−5 0.0315 2.34 × 10−6 2.58

Particulate matter formation 0.606 2.65 × 10−5 0.001 0.0032 3.136 × 10−5 0.0001 5.98 × 10−5 0.0071 9.97 × 10−7 0.59
Land ecology 3.041 0.0001 0.0045 0.0092 5.102 × 10−5 0.0007 0.0001 0.0410 2.75 × 10−6 2.99

Ground acidification 3.360 0.0003 0.0024 0.0113 2.858 × 10−5 0.0007 0.0002 0.0215 2.89 × 10−6 3.32
Water eutrophication 3.880 0.0003 0.0138 0.0405 0.0001 0.0025 0.0001 0.1028 1.18 × 10−5 3.72
Ocean eutrophication 0.0457 3.77 × 10−6 0.0001 0.0057 1.62 × 10−6 0.0002 1.54 × 10−6 0.0048 1.85 × 10−7 0.034

Land ecological toxicity 11.613 0.0030 0.0362 0.2224 0.0005 0.0121 0.0125 0.5346 7.63 × 10−5 10.79
Freshwater ecological toxicity 410.8 0.05864254 0.4954 4.5725 0.0097 0.2529 0.0288 6.0905 0.0016 399.33

Marine ecological toxicity 274.5 93452 0.4316 3.19 0.0074 0.1811 0.0283 5.2045 0.0011 265.48
Human carcinogenic toxicity 1.167 0.0001 0.0210 0.0353 3.19 × 10−5 0.0008 0.0005 0.0527 4.93 × 10−6 1.06

Non-carcinogenic toxicity
in humans 4.046 0.0007 0.0122 0.0698 0.0001 0.0045 0.0007 0.1563 2.28 × 10−5 3.80

Land use 0.041 2.94 × 10−5 5.16 × 10−5 0.0018 0.0002 0.0105 8.79 0.0022 5.29 × 10−7 0.03

Scarcity of mineral resources. 4.97 × 10−5 2.48 × 10−7 1.61 × 10−7 2.55E-
06 1.54 × 10−8 2.46 × 10−7 1.13 × 10−8 2.78 × 10−6 2.33 × 10−9 4.38 × 10−9

Scarcity of fossil resources 3.34 0.0001 0.0210 0.0229 7.232 × 10−5 0.0010 0.0005 0.1555 5.35 × 10−6 3.14
Water consumption 0.31 2.45 × 10−5 0.002 0.0056 1.00 × 10−5 0.00055 0.00012 0.015 0.00016 0.29

After computing the characteristic values, it is necessary to standardize and assign
weights to the obtained impact potentials. In this study, the environmental impact load
of 1990 was taken as the benchmark value for weighted calculations, with a step value of
1. The formula for calculating standardized potential values of environmental pollutants’
effects is provided below [62,63]:

NPEm = EPm/ERm

In the provided equation, NPEm represents the normalized data value of the m-th
type of environmental impact potential; EPm denotes the environmental potential value
of the m-th type of environmental impact within the system; and ERm corresponds to
the standardized data value of the m-th type of environmental impact potential. The
computational outcome is depicted in Table 5.

3.3. Result Analysis and Improvement Measures

From the aforementioned data in Table 5, it can be inferred that the rank order of the
negative impact on environmental types during the simultaneous hydrogen production
process through photocatalytic treatment of waste is as follows: freshwater ecological
toxicity > marine ecological toxicity > terrestrial ecological toxicity > non-carcinogenic
toxicity to human beings > water eutrophication > terrestrial acidification > scarcity of
mineral resources > terrestrial ecosystems > ozone formation, human health > global
warming > carcinogenic toxicity to human beings > ionizing radiation > particle formation
> water consumption > depletion of ozone layer > marine eutrophication > land utilization
> scarcity of mineral resources. Freshwater ecotoxicity, marine ecotoxicity, terrestrial
ecotoxicity, and human non-carcinogenic toxicity are the main environmental adverse
effects in the process of hydrogen production from photocatalytic waste.

This study systematically analyzed the potential environmental impact of the simulta-
neous hydrogen production from 4-NP wastewater treated by CDs/CdS/CNU. According
to the process flow of CDs/CdS/CNU treating 4-NP wastewater and producing hydrogen
simultaneously, the primary source of these four toxicities is attributed to cadmium sulfide
(CdS) present in the photocatalyst [40,64]. Although the inherent toxicity risk of CdS itself
may be minimal, it possesses exceptional adsorption capacity and affinity, enabling it to ad-
sorb pollutants in the environment. In aquatic ecosystems, due to the poor water solubility
of CdS, it tends to accumulate and precipitate in sedimentary deposits within the water [65].
Consequently, CdS entering sediments has the potential to alter the ecological toxicity of
pollutants within them, thus posing a threat to aquatic ecosystems. Additionally, as a result
of some leaching issues with CdS catalysts, Cd can enter aquatic ecosystems and terrestrial
ecosystems and ultimately impact human health. Due to its lack of essential biological
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functions, when it reaches a certain concentration within an organism, it will damage the
biological cell membrane [66]. It has the capability to combine with sulfur-based groups
(-SH), thus affecting the activity of various enzymes in the human body [67]. This, in turn,
hampers normal physiological functions within cells and disrupts the DNA of living organ-
isms. Furthermore, both the sediment and leaching metals from this aqueous substance
can enter neighboring soil through treated water and be absorbed into the surrounding
ecosystem by humans along its path. This causes toxic accumulation and subsequently
results in ecological toxicity that disrupts the ecological equilibrium [68]. Hence, these
are potential factors contributing to the occurrence of this environmental type. Although
CdS has some environmental drawbacks as a photocatalyst, it is notable for its direct band
gap semiconductor properties. CdS possesses a band gap of 2.4 eV, enabling it to absorb
light with wavelengths shorter than 520 nm within sunlight. Additionally, its conduction
band potential is -0.88 eV, and its valence band potential is 1.52 eV, which are suitable for
hydrogen production through water reduction. As a direct band gap semiconductor, CdS
also exhibits high photoelectric conversion efficiency and effective carrier diffusion, making
it a prominent focus of research in photocatalytic hydrogen production [69,70].

Since the discovery of photocatalytic water decomposition in the 1970s, numerous semicon-
ductor photocatalytic materials have been developed, including metal sulfides [71–73], metal
oxides [74,75], metal oxynitrides [76,77], and organic semiconductors [78–80]. In the solar spec-
trum, ultraviolet light, visible light, and infrared light account for approximately 5%, 46%,
and 49% of solar energy, respectively. To efficiently absorb sunlight over a broad wave-
length range, photocatalytic materials generally require a narrow band gap. Under typical
experimental pH conditions, the conduction band and valence band positions of most
semiconductor compounds align well with the redox potential of water. However, these
materials often have band gaps greater than 3.0 eV, limiting their excitation to ultraviolet
light. In contrast, CdS exhibits a suitable band gap of approximately 2.4 eV and favorable
energy band positions. Its absorption edge is at 520 nm, enabling strong responsiveness
to the visible portion of the solar spectrum [69,70]. Moreover, the conduction band and
valence band potential energies of CdS align with the requirements for photocatalytic water
splitting (~1.23 eV) [81]. Consequently, CdS is considered an ideal catalyst for visible light-
driven hydrogen evolution and presents significant potential for advancing the industrial
application of photocatalysis. However, in addressing these environmental risks, one can
endeavor to minimize the impact of environmental influencing factors and thereby alleviate
cumulative environmental harm through the following measures. Addressing concerns
regarding CdS’s significant adsorption affinity and capacity can be achieved through post-
modification techniques aimed at morphologically altering CdS [82]. Transforming its
structure into a hollow configuration enhances active sites and typically includes pores
larger than pollutant dimensions, facilitating increased surface contact between catalysts
and contaminants [83]. This enhancement leads to more efficient degradation of persistent
toxic pollutants, thereby reducing their accumulation on the catalyst. Moreover, another
cause of various toxicities lies in the leaching of cadmium (Cd) from CdS catalysts used in
simultaneous hydrogen production during the photocatalytic treatment of waste [84]. Cd
is a highly toxic non-biogenic heavy metal recognized as an environmentally hazardous
substance due to its accumulative and latent properties, posing potential risks to terrestrial
ecosystems and human health upon leaching [85]. To address the issue of metal leaching,
subsequent measures can involve modifying the surface of CdS and grafting hydrophobic
functional groups to stabilize the Cd-S bond [86]. This approach reduces its interaction
with water, thereby mitigating the problem of metal leaching.

4. Conclusions

Wastewater treatment and simultaneous hydrogen production is one of the possible
ways to solve environmental problems and the energy crisis, but its own environmental
impact cannot be ignored. This study takes the synchronous hydrogen production process
of 4-NP wastewater with CDs/CdS/CNU as a practical case to investigate the environ-
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mental impact of wastewater treatment and synchronous hydrogen production process
throughout its life cycle. The results showed that the simultaneous treatment of wastewater
and hydrogen production would have great potential effects on freshwater ecotoxicity,
marine ecosystem toxicity, terrestrial ecotoxicity, and human non-carcinogenic toxicity.
The freshwater ecotoxicological impact standard value during simultaneous hydrogen
production and waste disposal is measured at 410.8, indicating that catalyst enrichment in
waste disposal adversely affects freshwater ecosystems. Meanwhile, the marine ecotoxico-
logical impact standard value stands at 274.5, suggesting that water body branching and
confluence contribute to pollutant accumulation in marine ecosystems, thereby causing
significant environmental repercussions. Through the analysis of the whole life cycle of the
process, various ecotoxicological phenomena are derived from the adsorption and metal
leaching characteristics of the catalyst during waste treatment and synchronous hydro-
gen production. Rational modification and morphology enhancement of these catalysts
offer avenues to mitigate these impacts and enhance both waste disposal efficiency and
simultaneous hydrogen production. Despite potential environmental pollution concerns
inherent in waste treatment and simultaneous hydrogen production processes, effective
waste management can mitigate these issues and present a viable solution to the energy
crisis posed by hydrogen energy. This study demonstrates the feasibility of life cycle assess-
ment in assessing the environmental impact of waste utilization technologies. The main
potential environmental impacts of the synchronous hydrogen production process of 4-NP
wastewater with CDs/CdS/CNU are proposed. It will provide a basis for the promotion
and application of more wastewater treatment and synchronous hydrogen production
technology, technical improvement, and government decision-making.
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