Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals for Exposure Experiments
2.2. Animals and Chemical Treatment
2.3. Chemical Analysis
2.4. Calculation of Elimination Kinetic Parameters
3. Results
3.1. Uptake and Distribution in Liver, Brain, and Plasma
3.2. Presence of Monohydroxylated Metabolites in Liver
3.3. Elimination Kinetics in Liver, Brain, and Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Persson, L.; Almroth, B.M.C.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- DeVito, M.; Bokkers, B.; van Duursen, M.B.M.; van Ede, K.; Feeley, M.; Antunes Fernandes Gáspár, E.; Haws, L.; Kennedy, S.; Peterson, R.E.; Hoogenboom, R.; et al. The 2022 World Health Organization reevaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls. Regul. Toxicol. Pharmacol. 2024, 146, 105525. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Pham, T.T.; Nguyen, A.T.N.; Tran, N.N.; Nakagawa, H.; Hoang, L.V.; Morikawa, Y.; Ho, M.D.; Kido, T.; Nguyen, M.N.; et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin in breast milk increases autistic traits of 3-year-old children in Vietnam. Mol. Psychiatry 2014, 19, 1220–1226. [Google Scholar] [CrossRef]
- Viluksela, M.; Pohjanvirta, R. Multigenerational and transgenerational effects of dioxins. Int. J. Mol. Sci. 2019, 20, 2947. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Kuch, B. Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated–chlorinated dibenzodioxins and dibenzofurans. Environ. Int. 2003, 29, 699–710. [Google Scholar] [CrossRef]
- Altarawneh, M.; Saeed, A.; Al-Harahsheh, M.; Dlugogorski, B.Z. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212–259. [Google Scholar] [CrossRef]
- Hanari, N.; Kannan, K.; Okazawa, T.; Kodavanti, P.R.S.; Yamashita, N. Occurrence of polybrominated biphenyls, polybrominated dibenzo-p-dioxins, and polybrominated dibenzofurans as impurities in commercial polybrominated diphenyl ether mixtures. Environ. Sci. Technol. 2006, 40, 4400–4405. [Google Scholar] [CrossRef]
- Kajiwara, N.; Noma, Y.; Takigami, H. Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight. Environ. Sci. Technol. 2008, 42, 4404–4409. [Google Scholar] [CrossRef]
- Suzuki, G.; Matsukami, H.; Michinaka, C.; Hashimoto, S.; Nakayama, K.; Sakai, S. Emission of dioxin-like compounds and flame retardants from commercial facilities handling Deca-BDE and their downstream sewage treatment plants. Environ. Sci. Technol. 2021, 55, 2324–2335. [Google Scholar] [CrossRef]
- Tasaki, T.; Takasuga, T.; Osako, M.; Sakai, S. Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Manag. 2004, 24, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Sindiku, O.; Babayemi, J.O.; Tysklind, M.; Osibanjo, O.; Weber, R.; Watson, A.; Schlummer, M.; Lundstedt, S. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in e-waste plastic in Nigeria. Environ. Sci. Pollut. Res. 2015, 22, 14515–14529. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Addink, R.; Yun, S.; Cheng, J.; Wang, W.; Kannan, K. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in Eastern China. Environ. Sci. Technol. 2009, 43, 7350–7356. [Google Scholar] [CrossRef]
- Takahashi, S.; Tue, N.M.; Takayanagi, C.; Tuyen, L.H.; Suzuki, G.; Matsukami, H.; Viet, P.H.; Kunisue, T.; Tanabe, S. PCBs, PBDEs and dioxin-related compounds in floor dust from an informal end-of-life vehicle recycling site in northern Vietnam: Contamination levels and implications for human exposure. J. Mater. Cycles Waste Manag. 2017, 19, 1333–1341. [Google Scholar] [CrossRef]
- Suzuki, G.; Someya, M.; Takahashi, S.; Tanabe, S.; Sakai, S.; Takigami, H. Dioxin-like activity in Japanese indoor dusts evaluated by means of in vitro bioassay and instrumental analysis: Brominated dibenzofurans are an important contributor. Environ. Sci. Technol. 2021, 44, 8330–8336. [Google Scholar] [CrossRef] [PubMed]
- Tue, N.M.; Suzuki, G.; Takahashi, S.; Kannan, K.; Takigami, H.; Tanabe, S. Dioxin-related compounds in house dust from New York State: Occurrence, in vitro toxic evaluation and implications for indoor exposure. Environ. Pollut. 2013, 181, 75–80. [Google Scholar] [CrossRef]
- Tue, N.M.; Matsushita, T.; Goto, A.; Itai, T.; Asante, K.A.; Obiri, S.; Mohammed, S.; Tanabe, S.; Kunisue, T. Complex mixtures of brominated/chlorinated diphenyl ethers and dibenzofurans in soils from the Agbogbloshie e-waste site (Ghana): Occurrence, formation, and exposure implications. Environ. Sci. Technol. 2019, 53, 3010–3017. [Google Scholar] [CrossRef]
- Hashimoto, S.; Matsukami, H.; Ieda, T.; Suzuki, G. Comprehensive screening of polybromochlorodibenzo-p-dioxins, dibenzofurans as mixed halogenated compounds in wastewater samples from industrial facilities by GC×GC/ToFMS and post-data processing. Chemosphere 2021, 276, 130085. [Google Scholar] [CrossRef]
- Behnisch, P.A.; Hosoe, K.; Sakai, S. Brominated dioxin-like compounds: In vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ. Int. 2003, 29, 861–877. [Google Scholar] [CrossRef]
- Olsman, H.; Engwall, M.; Kammann, U.; Klempt, M.; Otte, J.; van Bavel, B.; Hollert, H. Relative differences in aryl hydrocarbon receptor-mediated response for 18 polybrominated and mixed halogenated dibenzo-p-dioxins and -furans in cell lines from four different species. Environ. Toxicol. Chem. 2007, 26, 2448–2454. [Google Scholar] [CrossRef]
- Samara, F.; Gullett, B.K.; Harrison, R.O.; Chu, A.; Clark, G.C. Determination of relative assay response factors for toxic chlorinated and brominated dioxins/furans using an enzyme immunoassay (EIA) and a chemically-activated luciferase gene expression cell bioassay (CALUX). Environ. Int. 2009, 35, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, L.S.; Morrissey, R.; Harris, M.W. Teratogenic effects of 2,3,7,8-tetrabromodibenzo-p-dioxin and three polybrominated dibenzofurans in C57BL/6N mice. Toxicol. Appl. Pharmcol. 1991, 107, 141–152. [Google Scholar] [CrossRef]
- Kimura, E.; Suzuki, G.; Uramaru, N.; Endo, T.; Maekawa, F. Behavioral impairments in infant and adult mouse offspring exposed to 2,3,7,8-tetrabromodibenzofuran in utero and via lactation. Environ. Int. 2020, 142, 105833. [Google Scholar] [CrossRef]
- Nakayama, K.; Tue, N.M.; Fujioka, N.; Tokusumi, H.; Goto, A.; Uramaru, N.; Suzuki, G. Determination of the relative potencies of brominated dioxins for risk assessment in aquatic environments using the early-life stage of Japanese medaka. Ecotoxicol. Environ. Saf. 2022, 247, 114227. [Google Scholar] [CrossRef]
- van den Berg, M.; Denison, M.S.; Birnbaum, L.S.; DeVito, M.J.; Fiedler, H.; Falandysz, J.; Rose, M.; Schrenk, D.; Safe, S.; Tohyama, C.; et al. Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: Inclusion in the toxicity equivalency factor concept for dioxin-like compounds. Toxicol. Sci. 2013, 133, 197–208. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.; Birnbaum, L.S.; Denison, M.S.; DeVito, M.J.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Golor, G.; Yamashita, K.; McLachlan, M.; Hutzinger, O.; Neubert, D. Comparison of the kinetics of chlorinated and brominated dioxins and furans in the rat. Organohalog. Compd. 1993, 13, 203–206. [Google Scholar]
- Schulz, T.; Golor, G.; Körner, W.; Hagenmaier, H.; Neubert, D. Comparative study on enzyme induction and tissue distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran and 2,3,4,7,8-pentabromodibenzofuran in marmoset monkeys (Callithrix jacchus). Organohalog. Compd. 1993, 13, 145–148. [Google Scholar]
- Kedderis, L.B.; Jackson, J.A.; Patterson, D.G., Jr.; Grainger, J.; Diliberto, J.J.; Birnbaum, L.S. Chemical characterization and disposition studies with 1,2,7,8-tetrabromodibenzofuran in the rat. J. Toxicol. Environ. Health 1994, 41, 53–69. [Google Scholar] [CrossRef]
- Arnoldsson, K.; Haldén, A.N.; Norrgren, L.; Haglund, P. Retention and maternal transfer of environmentally relevant polybrominated dibenzo-p-dioxins and dibenzofurans, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in zebrafish (Danio rerio) after dietary exposure. Environ. Toxicol. Chem. 2012, 31, 804–812. [Google Scholar] [CrossRef]
- Birnbaum, L.S. Distribution and excretion of 2,3,7,8-tetrachlorodibenzo-p-dioxin in congenic strains of mice which differ at the Ah locus. Drug Metab. Dispos. 1986, 14, 34–40. [Google Scholar] [PubMed]
- Decad, G.M.; Birnbaum, L.S.; Matthews, H.B. Distribution and excretion of 2,3,7,8-tetrachlorodibenzofuran in C57BL/6J and DBA/2J mice. Toxicol. Appl. Pharmcol. 1981, 59, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Kimura, E.; Suzuki, G.; Uramaru, N.; Kakeyama, M.; Maekawa, F. 2-Chloro-3,7,8-tribromodibenzofuran as a new environmental pollutant inducing atypical ultrasonic vocalization in infant mice. Toxicol. Res. 2023, 12, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Kimura, E.; Suzuki, G.; Uramaru, N.; Kakeyama, M.; Maekawa, F. Liver-specific decrease in Tff3 gene expression in infant mice perinatally exposed to 2,3,7,8-tetrabromodibenzofuran or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Appl. Toxicol. 2022, 42, 305–317. [Google Scholar] [CrossRef]
- Olson, J.R.; McGarrigle, B.P.; Gigliotti, P.J.; Kumar, S.; McReynolds, J.H. Hepatic uptake and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran. Fundam. Appl. Toxicol. 1994, 22, 631–640. [Google Scholar] [CrossRef]
- Sovocool, G.W.; Mitchum, R.K.; Donnelly, J.R. Use of the ‘ortho effect’ for chlorinated biphenyl and brominated biphenyl isomer identification. Biomed. Environ. Mass. Spectrom. 1987, 14, 579–582. [Google Scholar] [CrossRef]
- Eguchi, A.; Nomiyama, K.; Devanathan, G.; Subramanian, A.; Bulbule, K.A.; Parthasarathy, P.; Takahashi, S.; Tanabe, S. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India. Environ. Int. 2012, 47, 8–16. [Google Scholar] [CrossRef]
- Eguchi, A.; Nomiyama, K.; Ochiai, M.; Mizukawa, H.; Nagano, Y.; Nakagawa, K.; Tanaka, K.; Miyagawa, H.; Tanabe, S. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry. Talanta 2014, 118, 253–261. [Google Scholar] [CrossRef]
- Nomiyama, K.; Tanizaki, T.; Ishibashi, H.; Arizono, K.; Shinohara, R. Production mechanism of hydroxylated PCBs by oxidative degradation of selected PCBs using TiO2 in water and estrogenic activity of their intermediates. Environ. Sci. Technol. 2005, 39, 8762–8769. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Jaki, T.; Wolfsegger, M.J. Estimation of pharmacokinetic parameters with the R package PK. Pharm. Stat. 2011, 10, 284–288. [Google Scholar] [CrossRef]
- Riches, A.C.; Sharp, J.G.; Thomas, D.B.; Smith, S.V. Blood volume determination in the mouse. J. Physiol. 1973, 228, 279–284. [Google Scholar] [CrossRef]
- Weber, L.W.D.; Ernst, S.W.; Stahl, B.U.; Rozman, K. Tissue distribution and toxicokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats after intravenous injection. Fundam. Appl. Toxicol. 1993, 21, 523–534. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.; DeJongh, J.; Poiger, H.; Olson, J.R. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. Crit. Rev. Toxicol. 1994, 24, 1–74. [Google Scholar] [CrossRef]
- DeVito, M.J.; Ross, D.G.; Dupuy, A.E., Jr.; Ferrario, J.; McDaniel, D.; Birnbaum, L. Dose–response relationships for disposition and hepatic sequestration of polyhalogenated dibenzo-p-dioxins, dibenzofurans, and biphenyls following subchronic treatment in mice. Toxicol. Sci. 1998, 46, 223–234. [Google Scholar] [CrossRef]
- van Ede, K.I.; Aylward, L.L.; Andersson, P.L.; van den Berg, M.; van Duursen, M.B.M. Tissue distribution of dioxin-like compounds: Potential impacts on systemic relative potency estimates. Toxicol. Lett. 2013, 220, 294–302. [Google Scholar] [CrossRef]
- Kedderis, L.B.; Diliberto, J.J.; Jackson, J.A.; Linko, P.; Goldstein, J.A.; Birnbaum, L.S. Effects of dose and route of exposure on dioxin disposition. Chemosphere 1992, 25, 7–10. [Google Scholar] [CrossRef]
- Abbott, B.D.; Birnbaum, L.S.; Diliberto, J.J. Rapid distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to embryonic tissues in C57BL/6N mice and correlation with palatal uptake in vitro. Toxicol. Appl. Pharmcol. 1996, 141, 256–263. [Google Scholar] [CrossRef]
- Nagao, T.; Yamashita, K.; Golor, G.; Bittmann, H.; Körner, W.; Hagenmaier, H.; Neubert, D. Tissue distribution after a single subcutaneous administration of 2,3,7,8-tetrabromodibenzo-p-dioxin in comparison with toxicokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Wistar rats. Life Sci. 1996, 58, 325–336. [Google Scholar] [CrossRef]
- Ishida, T.; Matsumoto, Y.; Takeda, T.; Koga, T.; Ishii, Y.; Yamada, H. Distribution of 14C-2,3,7,8-tetrachlorodibenzo-p-dioxin to the brain and peripheral tissues of fetal rats and its comparison with adults. J. Toxicol. Sci. 2010, 35, 563–569. [Google Scholar] [CrossRef]
- Poiger, H.; Schlatter, C. Biological degradation of TCDD in rats. Nature 1979, 281, 706–707. [Google Scholar] [CrossRef]
- Poiger, H.; Buser, H.R.; Weber, H.; Zweifel, U.; Schlatter, C. Structure elucidation of mammalian TCDD-metabolites. Experentia 1982, 38, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Sorg, O.; Zennegg, M.; Schmid, P.; Fedosyuk, R.; Valikhnovskyi, R.; Gaide, O.; Kniazevych, V.; Saurat, J.H. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: Identification and measurement of TCDD metabolites. Lancet 2009, 374, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Burka, L.T.; McGown, S.R.; Tomer, K.B. Identification of the biliary metabolites of 2,3,7,8-tetrachlorodibenzofuran in the rat. Chemosphere 1990, 21, 1231–1242. [Google Scholar] [CrossRef]
- Pluess, N.; Poiger, H.; Schlatter, C.; Buser, H.R. The metabolism of some pentachlorodibenzofurans in the rat. Xenobiotica 1987, 17, 209–216. [Google Scholar] [CrossRef]
- Lee, M.L.; Poon, W.Y.; Kingdon, H.S. A two-phase linear regression model for biologic half-life data. J. Lab. Clin. Med. 1990, 115, 745–748. [Google Scholar]
Compound | Day | Liver | Plasma 1 | Brain |
---|---|---|---|---|
TCDD | 1 | 0.69 | 3.3 × 10−3 | 3.6 × 10−3 |
3 | 0.84 | 2.4 × 10−3 | 1.8 × 10−3 | |
7 | 0.73 | 1.5 × 10−3 | 1.4 × 10−3 | |
28 | 0.16 | 4.8 × 10−4 | 3.4 × 10−4 | |
56 | 0.012 | 2.7 × 10−4 | 1.2 × 10−4 | |
TrBDF | 1 | 8.0 × 10−5 | 9.6 × 10−6 | 1.1 × 10−5 |
3 | 9.1 × 10−6 | 1.4 × 10−6 | 1.1 × 10−6 | |
7 | 2.3 × 10−6 | 4.1 × 10−7 | 3.7 × 10−7 | |
28 | 7.9 × 10−7 | ND 2 | ND 2 | |
TrBCDF | 1 | 0.42 | 1.7 × 10−3 | 3.4 × 10−4 |
3 | 0.24 | 3.5 × 10−4 | 7.2 × 10−5 | |
7 | 0.23 | 1.4 × 10−4 | 4.5 × 10−5 | |
28 | 0.015 | 7.4 × 10−5 | 7.5 × 10−6 | |
TeBDF | 1 | 0.33 | 1.7 × 10−3 | 1.9 × 10−4 |
3 | 0.31 | 3.8 × 10−4 | 5.0 × 10−5 | |
7 | 0.26 | 2.8 × 10−4 | 3.0 × 10−5 | |
28 | 0.053 | 1.1 × 10−4 | 1.1 × 10−5 | |
56 | 5.2 × 10−3 | 3.2 × 10−5 | 6.4 × 10−6 | |
PeBDF | 1 | 0.29 | 5.4 × 10−4 | 3.6 × 10−5 |
3 | 0.25 | 9.9 × 10−5 | 6.5 × 10−6 | |
7 | 0.27 | 6.9 × 10−5 | 3.7 × 10−6 | |
28 | 0.085 | 2.6 × 10−5 | 7.1 × 10−7 |
Tissue | Compound | Model | Elimination Rate (d−1) | Half-Time (d) | Concentration at t = 0 (ng/g) | R2 |
---|---|---|---|---|---|---|
Liver | TCDD | First-order | −0.0346 (±0.0058) | 8.7 (7.4–10) | 57 (39–84) | 0.992 |
TrBDF | Two-phase * | −0.493, −0.072 | 0.61, 4.2 | 2.0 | ||
TrBCDF | First-order | −0.0542 (±0.0214) | 5.6 (4.0–9.2) | 250 (120–510) | 0.983 | |
TeBDF | First-order | −0.0343 (±0.0017) | 8.8 (8.4–9.2) | 310 (280–350) | 0.999 | |
PeBDF | First-order | −0.0227 (±0.0089) | 13 (9.5, 22) | 790 (580–1100) | 0.984 | |
OH-TrBDF | Two-phase * | −0.555, −0.0262 | 1.2, 11 | 0.65 | ||
OH-TrBCDF | Two-phase * | −0.418, −0.033 | 0.72, 9.2 | 0.34 | ||
OH-TeBDF | First-order | −0.0369 (±0.0085) | 8.1 (6.6–11) | 0.38 (0.22–0.65) | 0.985 | |
OH-PeBDF | First-order | −0.0262 (±0.0179) | 11 (6.8–36) | 0.036 (0.020–0.065) | 0.952 | |
Plasma | TCDD | Two-phase | −0.0657, −0.0115 | 4.6, 26 | 0.19 | 0.999 |
TrBDF | Two-phase * | −0.410, −0.140 | 0.73, 2.1 | 0.15 | ||
TrBCDF | Two-phase * | −0.347, −0.0168 | 0.87, 18 | 2.0 | ||
TeBDF | Two-phase | −0.316, −0.0208 | 0.95, 14 | 2.5 | 0.999 | |
PeBDF | Two-phase * | −0.368, −0.0227 | 0.82, 13 | 2.8 | ||
Brain | TCDD | Two-phase | −0.155, −0.0211 | 1.9, 14 | 0.73 | 0.995 |
TrBDF | Two-phase * | −0.478, −0.127 | 0.63, 2.4 | 0.57 | ||
TrBCDF | Two-phase * | −0.341, −0.0377 | 0.88, 8.0 | 1.2 | ||
TeBDF | Two-phase | −0.300, −0.0134 | 1.0, 22 | 0.78 | 0.999 | |
PeBDF | Two-phase * | −0.359, −0.0337 | 0.84, 8.9 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tue, N.M.; Kimura, E.; Maekawa, F.; Goto, A.; Uramaru, N.; Kunisue, T.; Suzuki, G. Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice. Toxics 2024, 12, 656. https://doi.org/10.3390/toxics12090656
Tue NM, Kimura E, Maekawa F, Goto A, Uramaru N, Kunisue T, Suzuki G. Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice. Toxics. 2024; 12(9):656. https://doi.org/10.3390/toxics12090656
Chicago/Turabian StyleTue, Nguyen Minh, Eiki Kimura, Fumihiko Maekawa, Akitoshi Goto, Naoto Uramaru, Tatsuya Kunisue, and Go Suzuki. 2024. "Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice" Toxics 12, no. 9: 656. https://doi.org/10.3390/toxics12090656
APA StyleTue, N. M., Kimura, E., Maekawa, F., Goto, A., Uramaru, N., Kunisue, T., & Suzuki, G. (2024). Uptake, Elimination and Metabolism of Brominated Dibenzofurans in Mice. Toxics, 12(9), 656. https://doi.org/10.3390/toxics12090656