A High-Throughput Method for Quantifying Drosophila Fecundity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culturing Conditions and Fecundity Assay
2.2. Construction of the 3D-Printed Fly Transfer Device
2.3. Adding and Transferring Flies Using a 3D-Printed Fly Transfer Device
2.4. Construction of the RoboCam
2.5. Imaging
2.6. Imaging Pipeline Implementation
2.7. Quantifly Analysis
2.8. Stardist Model Training
2.9. Preparation of Chemical Solutions
2.10. Chemical Exposure Time Course
2.11. Data and Code Availability
3. Results
3.1. Multiwell Culture Conditions
3.2. Fly Transfer Device
3.3. RoboCam Platform
- https://store.anycubic.com/products/anycubic-i3-mega (accessed on 6 August 2024).
- https://www.amazon.com/gp/product/B0755C2CBF?th=1 (accessed on 6 August 2024).
- https://www.arducam.com/product/12-3mp-477m-hq-camera-module-for-raspberry-pi-with-135d-m12-wide-angle-lens/ (accessed on 6 August 2024).
- https://www.adafruit.com/product/4562 (accessed on 6 August 2024).
- https://www.canakit.com/raspberry-pi-3-model-b.html?cid=usd&src=raspberrypi (accessed on 6 August 2024).
3.4. Image Segmentation
3.5. Quantification of the Effects of Chemical Exposure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical Pollution: A Growing Peril and Potential Catastrophic Risk to Humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.O.; Barton-Maclaren, T.S.; Bhuller, Y.; Henriquez, J.E.; Henry, T.R.; Hirn, C.; Miller-Holt, J.; Nagy, E.G.; Perron, M.M.; Ratzlaff, D.E.; et al. Use of New Approach Methodologies (NAMs) to Meet Regulatory Requirements for the Assessment of Industrial Chemicals and Pesticides for Effects on Human Health. Front. Toxicol. 2022, 4, 964553. [Google Scholar] [CrossRef] [PubMed]
- Holsopple, J.M.; Smoot, S.R.; Popodi, E.M.; Colbourne, J.K.; Shaw, J.R.; Oliver, B.; Kaufman, T.C.; Tennessen, J.M. Assessment of Chemical Toxicity in Adult Drosophila Melanogaster. J. Vis. Exp. 2023, 193, e65029. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, J.F.; Bare, J.C.; Carignan, C.C.; Dionisio, K.L.; Dodson, R.E.; Jolliet, O.; Liu, X.; Meyer, D.E.; Newton, S.R.; Phillips, K.A.; et al. New Approach Methodologies for Exposure Science. Curr. Opin. Toxicol. 2019, 15, 76–92. [Google Scholar] [CrossRef]
- Peterson, E.K.; Long, H.E. Experimental Protocol for Using Drosophila as an Invertebrate Model System for Toxicity Testing in the Laboratory. J. Vis. Exp. 2018, 57450. [Google Scholar] [CrossRef]
- Ong, C.; Yung, L.-Y.L.; Cai, Y.; Bay, B.-H.; Baeg, G.-H. Drosophila Melanogaster as a Model Organism to Study Nanotoxicity. Nanotoxicology 2015, 9, 396–403. [Google Scholar] [CrossRef]
- Rand, M.D. Drosophotoxicology: The Growing Potential for Drosophila in Neurotoxicology. Neurotoxicol. Teratol. 2010, 32, 74–83. [Google Scholar] [CrossRef]
- Rand, M.D.; Tennessen, J.M.; Mackay, T.F.C.; Anholt, R.R.H. Perspectives on the Drosophila Melanogaster Model for Advances in Toxicological Science. Curr. Protoc. 2023, 3, e870. [Google Scholar] [CrossRef]
- Spradling, A.C.; Niu, W.; Yin, Q.; Pathak, M.; Maurya, B. Conservation of Oocyte Development in Germline Cysts from Drosophila to Mouse. Elife 2022, 11, e83230. [Google Scholar] [CrossRef]
- Novoseltsev, V.N.; Novoseltseva, J.A.; Boyko, S.I.; Yashin, A.I. What Fecundity Patterns Indicate about Aging and Longevity: Insights from Drosophila Studies. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 484–494. [Google Scholar] [CrossRef]
- Shianiou, G.; Teloni, S.; Apidianakis, Y. Intestinal Immune Deficiency and Juvenile Hormone Signaling Mediate a Metabolic Trade-off in Adult Drosophila Females. Metabolites 2023, 13, 340. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.I.; Wigby, S.; Boone, J.M.; Partridge, L.; Chapman, T. Feeding, Fecundity and Lifespan in Female Drosophila Melanogaster. Proc. Biol. Sci. 2008, 275, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L. Aging and the Germ Line: Where Mortality and Immortality Meet. Stem Cell Rev. 2007, 3, 192–200. [Google Scholar] [CrossRef]
- Khalid, M.Z.; Sun, Z.; Chen, Y.; Zhang, J.; Zhong, G. Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary. Insects 2022, 13, 414. [Google Scholar] [CrossRef] [PubMed]
- Grandison, R.C.; Piper, M.D.W.; Partridge, L. Amino-Acid Imbalance Explains Extension of Lifespan by Dietary Restriction in Drosophila. Nature 2009, 462, 1061–1064. [Google Scholar] [CrossRef]
- Ahmed, S.M.H.; Maldera, J.A.; Krunic, D.; Paiva-Silva, G.O.; Pénalva, C.; Teleman, A.A.; Edgar, B.A. Fitness Trade-Offs Incurred by Ovary-to-Gut Steroid Signalling in Drosophila. Nature 2020, 584, 415–419. [Google Scholar] [CrossRef]
- Dweck, H.K.M.; Ebrahim, S.A.M.; Thoma, M.; Mohamed, A.A.M.; Keesey, I.W.; Trona, F.; Lavista-Llanos, S.; Svatoš, A.; Sachse, S.; Knaden, M.; et al. Pheromones Mediating Copulation and Attraction in Drosophila. Proc. Natl. Acad. Sci. USA 2015, 112, E2829–E2835. [Google Scholar] [CrossRef]
- Vijayan, V.; Wang, Z.; Chandra, V.; Chakravorty, A.; Li, R.; Sarbanes, S.L.; Akhlaghpour, H.; Maimon, G. An Internal Expectation Guides Drosophila Egg-Laying Decisions. Sci. Adv. 2022, 8, eabn3852. [Google Scholar] [CrossRef]
- Lin, C.-C.; Prokop-Prigge, K.A.; Preti, G.; Potter, C.J. Food Odors Trigger Drosophila Males to Deposit a Pheromone That Guides Aggregation and Female Oviposition Decisions. Elife 2015, 4, e08688. [Google Scholar] [CrossRef]
- Armstrong, A.R. Drosophila Melanogaster as a Model for Nutrient Regulation of Ovarian Function. Reproduction 2020, 159, R69–R82. [Google Scholar] [CrossRef]
- Droujinine, I.A.; Perrimon, N. Defining the Interorgan Communication Network: Systemic Coordination of Organismal Cellular Processes under Homeostasis and Localized Stress. Front. Cell. Infect. Microbiol. 2013, 3, 82. [Google Scholar] [CrossRef] [PubMed]
- Mirth, C.K.; Nogueira Alves, A.; Piper, M.D. Turning Food into Eggs: Insights from Nutritional Biology and Developmental Physiology of Drosophila. Curr. Opin. Insect. Sci. 2019, 31, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Drummond-Barbosa, D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila Melanogaster. Genetics 2019, 213, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Finger, D.S.; Whitehead, K.M.; Phipps, D.N.; Ables, E.T. Chapter Eleven—Nuclear Receptors Linking Physiology and Germline Stem Cells in Drosophila. In Vitamins and Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 116, pp. 327–362. [Google Scholar]
- Ables, E.T.; Hwang, G.H.; Finger, D.S.; Hinnant, T.D.; Drummond-Barbosa, D. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis. G3 2016, 6, 2629–2642. [Google Scholar] [CrossRef]
- Mazzalupo, S.; Cooley, L. Illuminating the Role of Caspases during Drosophila Oogenesis. Cell Death Differ. 2006, 13, 1950–1959. [Google Scholar] [CrossRef]
- Pritchett, T.L.; Tanner, E.A.; McCall, K. Cracking Open Cell Death in the Drosophila Ovary. Apoptosis 2009, 14, 969–979. [Google Scholar] [CrossRef]
- Giorgi, F.; Deri, P. Cell Death in Ovarian Chambers of Drosophila Melanogaster. J. Embryol. Exp. Morphol. 1976, 35, 521–533. [Google Scholar]
- Sun, J.; Spradling, A.C. Ovulation in Drosophila Is Controlled by Secretory Cells of the Female Reproductive Tract. Elife 2013, 2, e00415. [Google Scholar] [CrossRef]
- Knapp, E.; Sun, J. Steroid Signaling in Mature Follicles Is Important for Drosophila Ovulation. Proc. Natl. Acad. Sci. USA 2017, 114, 699–704. [Google Scholar] [CrossRef]
- Loppin, B.; Dubruille, R.; Horard, B. The Intimate Genetics of Drosophila Fertilization. Open Biol. 2015, 5, 150076. [Google Scholar] [CrossRef]
- Wang, F.; Wang, K.; Forknall, N.; Patrick, C.; Yang, T.; Parekh, R.; Bock, D.; Dickson, B.J. Neural Circuitry Linking Mating and Egg Laying in Drosophila Females. Nature 2020, 579, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, J.; Ponton, F.; Tychsen, I.; Cassar, J.; Wigby, S. Interactions between the Developmental and Adult Social Environments Mediate Group Dynamics and Offspring Traits in Drosophila Melanogaster. Sci. Rep. 2017, 7, 3574. [Google Scholar] [CrossRef]
- Drummond-Barbosa, D.; Spradling, A.C. Stem Cells and Their Progeny Respond to Nutritional Changes during Drosophila Oogenesis. Dev. Biol. 2001, 231, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.N.; Sgrò, C.M.; Piper, M.D.W.; Mirth, C.K. Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster. Front. Cell Dev. Biol. 2022, 10, 822685. [Google Scholar] [CrossRef]
- Piper, M.D.W.; Partridge, L. Protocols to Study Aging in Drosophila. Methods Mol. Biol. 2016, 1478, 291–302. [Google Scholar]
- Cury, K.M.; Axel, R. Flexible Neural Control of Transition Points within the Egg-Laying Behavioral Sequence in Drosophila. Nat. Neurosci. 2023, 26, 1054–1067. [Google Scholar] [CrossRef]
- Nouhaud, P.; Mallard, F.; Poupardin, R.; Barghi, N.; Schlötterer, C. High-Throughput Fecundity Measurements in Drosophila. Sci. Rep. 2018, 8, 4469. [Google Scholar] [CrossRef]
- Ng’oma, E.; King, E.G.; Middleton, K.M. A Model-Based High Throughput Method for Fecundity Estimation in Fruit Fly Studies. Fly 2018, 12, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Waithe, D.; Rennert, P.; Brostow, G.; Piper, M.D.W. QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting. PLoS ONE 2015, 10, e0127659. [Google Scholar] [CrossRef]
- Walters, J.D.; Hatfield, J.S.; Baker, B.B.; Mackay, T.F.C.; Anholt, R.R.H. A High Throughput Microplate Feeder Assay for Quantification of Consumption in Drosophila. J. Vis. Exp. 2021, 172, e62771. [Google Scholar] [CrossRef]
- Seong, K.-H.; Matsumura, T.; Shimada-Niwa, Y.; Niwa, R.; Kang, S. The Drosophila Individual Activity Monitoring and Detection System (DIAMonDS). Elife 2020, 9, e58630. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, J.R.; Keshri, R.; Taslim, T.H.; Brewer, D.K.; Chan, T.C.; Lyons, S.; McManamen, A.M.; Chen, A.; Del Castillo, D.; Ruohola-Baker, H. Chemical Genetic Screen in Drosophila Germline Uncovers Small Molecule Drugs That Sensitize Stem Cells to Insult-Induced Apoptosis. Cells 2021, 10, 2771. [Google Scholar] [CrossRef]
- Jaime, M.D.L.A.; Salem, G.H.; Martinez, D.J.; Karott, S.; Flores, A.; Palmer, C.D.; Mahadevaraju, S.; Krynitsky, J.; Garmendia-Cedillos, M.; Anderson, S.; et al. Whole Animal Feeding FLat (WAFFL): A Complete and Comprehensive Validation of a Novel, High-Throughput Fly Experimentation System. G3 2023, 13, jkad012. [Google Scholar] [CrossRef] [PubMed]
- Weigert, M.; Schmidt, U.; Haase, R.; Sugawara, K.; Myers, G. Star-Convex Polyhedra for 3D Object Detection and Segmentation in Microscopy. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, Snowmass Village, CO, USA, 1–5 March 2020; pp. 3655–3662. [Google Scholar]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 265–273. [Google Scholar]
- Zimmerman, S.G.; Berg, C.A. CO2 Exposure Drives a Rapid PH Response in Live Adult Drosophila. PLoS ONE 2024, 19, e0302240. [Google Scholar] [CrossRef] [PubMed]
- Akogbéto, M.C.; Padonou, G.G.; Gbénou, D.; Irish, S.; Yadouleton, A. Bendiocarb, a Potential Alternative against Pyrethroid Resistant Anopheles Gambiae in Benin, West Africa. Malar. J. 2010, 9, 204. [Google Scholar] [CrossRef]
- Bjedov, I.; Toivonen, J.M.; Kerr, F.; Slack, C.; Jacobson, J.; Foley, A.; Partridge, L. Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila Melanogaster. Cell Metab. 2010, 11, 35–46. [Google Scholar] [CrossRef]
- Edi, C.V.; Djogbénou, L.; Jenkins, A.M.; Regna, K.; Muskavitch, M.A.T.; Poupardin, R.; Jones, C.M.; Essandoh, J.; Kétoh, G.K.; Paine, M.J.I.; et al. CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito Anopheles Gambiae. PLoS Genet. 2014, 10, e1004236. [Google Scholar] [CrossRef]
- Mugenzi, L.M.J.; A Tekoh, T.; S Ibrahim, S.; Muhammad, A.; Kouamo, M.; Wondji, M.J.; Irving, H.; Hearn, J.; Wondji, C.S. The Duplicated P450s CYP6P9a/b Drive Carbamates and Pyrethroids Cross-Resistance in the Major African Malaria Vector Anopheles Funestus. PLoS Genet. 2023, 19, e1010678. [Google Scholar] [CrossRef]
- Nazir, A.; Mukhopadhyay, I.; Saxena, D.K.; Chowdhuri, D.K. Evaluation of the No Observed Adverse Effect Level of Solvent Dimethyl Sulfoxide in Drosophila Melanogaster. Toxicol. Mech. Methods 2003, 13, 147–152. [Google Scholar] [CrossRef]
- Ja, W.W.; Carvalho, G.B.; Mak, E.M.; de la Rosa, N.N.; Fang, A.Y.; Liong, J.C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE Assay. Proc. Natl. Acad. Sci. USA 2007, 104, 8253–8256. [Google Scholar] [CrossRef]
- Elis, S.; Desmarchais, A.; Cardona, E.; Fouchecourt, S.; Dalbies-Tran, R.; Nguyen, T.; Thermes, V.; Maillard, V.; Papillier, P.; Uzbekova, S.; et al. Genes Involved in Drosophila Melanogaster Ovarian Function Are Highly Conserved Throughout Evolution. Genome Biol. Evol. 2018, 10, 2629–2642. [Google Scholar] [CrossRef] [PubMed]
- Fellmeth, J.E.; McKim, K.S. A Brief History of Drosophila (Female) Meiosis. Genes 2022, 13, 775. [Google Scholar] [CrossRef] [PubMed]
- Billeter, J.-C.; Wolfner, M.F. Chemical Cues That Guide Female Reproduction in Drosophila Melanogaster. J. Chem. Ecol. 2018, 44, 750–769. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Padula, A.; Sirota, M.; Woodruff, T.J. Environmental Influences on Reproductive Health: The Importance of Chemical Exposures. Fertil. Steril. 2016, 106, 905–929. [Google Scholar] [CrossRef]
- Singh, R.P.; Chandra, N.; Swamy, M.; Bharti, S. Ecotoxicology and Its Impact on Ecosystem: A Review. Agric. Rev. 2021, 42, 450–454. [Google Scholar] [CrossRef]
- Dar, A.C.; Das, T.K.; Shokat, K.M.; Cagan, R.L. Chemical Genetic Discovery of Targets and Anti-Targets for Cancer Polypharmacology. Nature 2012, 486, 80–84. [Google Scholar] [CrossRef]
- Su, T.T. Drug Screening in Drosophila; Why, When, and When Not? Wiley Interdiscip. Rev. Dev. Biol. 2019, 8, e346. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Buchon, N. Drosophila Melanogaster as a Powerful Tool for Studying Insect Toxicology. Pestic. Biochem. Physiol. 2019, 161, 95–103. [Google Scholar] [CrossRef]
- Mackay, T.F.C.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila Melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef]
- Lyman, R.F.; Lyman, R.A.; Yamamoto, A.; Huang, W.; Harbison, S.T.; Zhou, S.; Anholt, R.R.H.; Mackay, T.F.C. Natural Genetic Variation in a Dopamine Receptor Is Associated with Variation in Female Fertility in Drosophila Melanogaster. Proc. Biol. Sci. 2023, 290, 20230375. [Google Scholar] [CrossRef]
Website | Model | Cost | Specification |
---|---|---|---|
1 | AnyCube Mega-S | USD 239 | Positioning Accuracy: 12.5 um X/Y, 2 um Z. Build size: 210 × 210 × 205 mm |
2 | Light Panel | USD 21 | USB powered, dimmable, white LEDs |
3 | Camera | USD 50 | Sony IMX477 sensor, 12 Mpix |
4 | Lens | USD 50 | 16 mm focal length, F1.4–16, C Mount |
5 | Raspberry Pi | USD 35 | Quad Core, 1.2 GHz, 1 GB RAM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, A.; Gonzalez, S.; Oke, A.; Luo, J.; Duong, J.B.; Esquerra, R.M.; Zimmerman, T.; Capponi, S.; Fung, J.C.; Nystul, T.G. A High-Throughput Method for Quantifying Drosophila Fecundity. Toxics 2024, 12, 658. https://doi.org/10.3390/toxics12090658
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A High-Throughput Method for Quantifying Drosophila Fecundity. Toxics. 2024; 12(9):658. https://doi.org/10.3390/toxics12090658
Chicago/Turabian StyleGomez, Andreana, Sergio Gonzalez, Ashwini Oke, Jiayu Luo, Johnny B. Duong, Raymond M. Esquerra, Thomas Zimmerman, Sara Capponi, Jennifer C. Fung, and Todd G. Nystul. 2024. "A High-Throughput Method for Quantifying Drosophila Fecundity" Toxics 12, no. 9: 658. https://doi.org/10.3390/toxics12090658
APA StyleGomez, A., Gonzalez, S., Oke, A., Luo, J., Duong, J. B., Esquerra, R. M., Zimmerman, T., Capponi, S., Fung, J. C., & Nystul, T. G. (2024). A High-Throughput Method for Quantifying Drosophila Fecundity. Toxics, 12(9), 658. https://doi.org/10.3390/toxics12090658