Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analyses
2.2. Biomarker Assessments
2.3. Statistical Analyses
3. Results
3.1. PFAS Exposure
- (1)
- PFAS40Estimate = 1.216 × PFAS13 + 24.48 for eggs
- (2)
- PFAS40Estimate = 1.039 × PFAS13 + 7.005 for nestlings
- (3)
- PFAS13Estimate = 0.820 × PFAS40 − 19.017 for eggs
- (4)
- PFAS13Estimate = 0.876 × PFAS40 − 2.433 for nestlings
3.2. PFAS Composition—Regional and Site Comparisons
3.3. Contribution of Individual PFAS to Total PFAS
3.4. Carboxylic Acid to Sulfonate Ratios
3.5. Organochlorine and Trace Element Contaminants
3.6. Biomarkers
4. Discussion
4.1. PFAS Exposure
4.2. Other Chemical Exposures
4.3. Biomarker Responses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindstrom, A.B.; Stryner, M.J.; Libelo, E.L. Polyfluorinated compounds: Past, present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al. Assessing the ecological risks of per- and polyfluoroalkyl substances: Current State-of-the science and a proposed path forward. Environ. Toxicol. Chem. 2021, 40, 564–605. [Google Scholar] [CrossRef] [PubMed]
- Dasu, K.; Xia, X.; Siriwardena, D.; Klupinski, T.P.; Seay, B. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. J. Environ. Manag. 2022, 301, 113879. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Robertsh, S.M. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Fromme, H.; Tittlemier, S.A.; Völkel, W.; Wilhelm, M.; Twardella, D. Perfluorinated compounds—Exposure assessment for the general population in western countries. Intern. J. Hygiene Environ. Health 2009, 212, 239–270. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Gaines, L.G.T. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Indust. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef]
- Custer, T.W.; Custer, C.M.; Dummer, P.M.; Goldberg, D.; Franson, J.C.; Erickson, R.A. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and Binational Great Lakes Areas of Concern. Environ. Toxicol. Chem. 2017, 36, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Custer, C.M. Swallows as a Sentinel Species for Contaminant Exposure and Effect Studies. In Wildlife Ecotoxicology: Forensic Approaches, Emerging Topics in Ecotoxicology 3; Elliott, J.E., Bishop, C.A., Morrissey, C., Eds.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2011; pp. 45–91. [Google Scholar]
- Bigorgne, E.; Custer, T.W.; Dummer, P.M.; Erickson, R.A.; Karouna-Reiner, N.; Schultz, S.; Custer, C.M.; Thogmartin, W.E.; Matson, C.W. Chromosomal damage and EROD induction in tree swallows (Tachycineta bicolor) along the Upper Mississippi River, Minnesota, USA. Ecotoxicology 2015, 24, 1028–1039. [Google Scholar] [CrossRef]
- Custer, T.W.; Custer, C.M.; Dummer, P.M.; Bigorgne, E.; Oziolor, E.; Karouna-Renier, N.; Schultz, S.; Erickson, R.A.; Aagard, K.A.; Matson, C.W. EROD activity, chromosomal damage, and oxidative stress in response to contaminant exposure in tree swallows (Tachycineta bicolor) nestling from Great Lakes Areas of Concern. Ecotoxicology 2017, 26, 1392–1407. [Google Scholar] [CrossRef]
- Robertson, R.J.; Stutchbury, B.J.; Cohen, R.R. Tree swallow. In The Birds of North America No. 11; Poole, A., Stettenheim, P., Gill, F., Eds.; Academy of Natural Sciences and American Ornithologists’ Union: Philadelphia, PA, USA; American Ornithologists’ Union: Washington, DC, USA, 1992; Volume 11, pp. 1–28. [Google Scholar]
- HydroGeoLogic, Inc. Preliminary Assessment Report for Perfluorinated Compounds at Duluth Air National Guard Base, Duluth, Minnesota, Final Report to Air Force Civil Engineer Center, FA8903-08-D-8772, Task Order No. 0065, Lackland AFB, Texas; HydroGeoLogic, Inc.: Reston, VA, USA, 2016; 124p. [Google Scholar]
- Custer, C.M.; Custer, T.W.; Dummer, P.M.; Goldberg, D.; Franson, J.C. Concentrations and spatial patterns of organic contaminants in tree swallow (Tachycineta bicolor) eggs at United States and binational Great Lakes Areas of Concern, 2010–2015. Environ. Toxicol. Chem. 2016, 35, 3071–3092. [Google Scholar] [CrossRef]
- AMVA. AMVA Guidelines for the Euthanasia of Animals, 2013th ed.; American Veterinary Medical Association: Schaumburg, IL, USA, 2013. [Google Scholar]
- Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.C.; Brunstrom, B.; Cook, P.; Feeley, M.; Giesey, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect 1998, 106, 775–792. [Google Scholar] [CrossRef]
- USEPA. Environmental Protection Agency (USEPA) Draft Method 1633-Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS; Office of Water, U.S.: Washington, DC, USA, 2022.
- USEPA. Method 1668 Revision A: Chlorinated Biphenyl Congeners in Water Soil Sediment and Tissue by HRGC/HRMS, EPA 821R00002; USEPA: Washington, DC, USA, 1999.
- USEPA. Method 1614: Brominated Diphenyl Ethers in Water Soil, Sediment and Tissue by HRGC/HRMS, EPA 821/R-07/005; USEPA: Washington, DC, USA, 2007.
- USEPA. Method 1699: Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS, EPA-821-R-08-001; USEPA: Washington, DC, USA, 2007.
- Custer, C.M.; Custer, T.W.; Delaney, R.; Dummer, P.M.; Schultz, S.; Karouna-Renier, N. Perfluoroalkyl contaminant exposure in tree swallows nesting at Clarks Marsh, Oscoda, Michigan, USA. Arch. Environ. Toxicol. Chem. 2019, 77, 1–13. [Google Scholar] [CrossRef]
- Custer, T.W.; Custer, C.M.; Dummer, P.M.; Goldberg, D.; Franson, J.C. Element concentrations in Tree Swallows (Tachycineta bicolor) from the U.S. and Binational Great Lakes Areas of Concern. Arch. Environ. Toxicol. Chem. 2019, 76, 414–424. [Google Scholar] [CrossRef]
- Custer, C.M.; Custer, T.W.; Dummer, P.M.; Schultz, S.; Tseng, C.Y.; Karouna-Renier, N.; Matson, C.M. Legacy and contaminants of emerging concern (CECs) in tree swallows along an agricultural to industrial gradient: Maumee River, Ohio. Environ. Toxicol. Chem. 2020, 39, 1936–1952. [Google Scholar] [CrossRef]
- McNabb, F.M.A.; Jang, D.A.; Larsen, C.T. Does thyroid function in developing birds adapt to sustained ammonium perchlorate exposure? Toxicol. Sci. 2004, 82, 106–113. [Google Scholar] [CrossRef]
- Vindelov, L.L.; Christensen, I.J. Detergent and proteolytic enzyme based techniques for nuclear isolation and DNA content-analysis. In Flow Cytometry: Methods in Cell Biology Part A, 2nd ed.; Darzynkiewicz, Z., Robinson, J.P., Crissman, H.A., Eds.; Academic Press: New York, NY, USA, 1994; pp. 219–292. [Google Scholar]
- Fassbinder-Orth, C.; Wilcoxen, T.; Tran, T.; Boughton, R.; Fair, J.; Homeister, E.; Grindstaff, J.; Owen, J. Immunoglobulin detection in wild birds: Effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species. Methods Ecol. Evol. 2016, 7, 1174–1181. [Google Scholar] [CrossRef]
- Custer, T.W.; Custer, C.M. Transfer and accumulation of organochlorines from black-crowned night-heron eggs to chicks. Environ. Toxicol. Chem. 1995, 14, 533–536. [Google Scholar]
- Clarke, R.K.; Warwick, R.M. Nonmetric multivariate analysis in community-level ecotoxicology. Environ. Toxicol. Chem. 1999, 18, 118–127. [Google Scholar]
- Backe, W.J.; Day, T.C.; Field, J.A. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ. Sci. Technol. 2013, 47, 5226–5234. [Google Scholar] [CrossRef]
- Soto-Jiménez, M. Trace element trophic transfer in aquatic food webs. Hydrobiologica 2011, 21, 239–248. [Google Scholar]
- Custer, C.M.; Custer, T.W.; Dummer, P.M.; Etterson, M.A.; Thogmartin, W.E.; Wu, Q.; Kannan, K.; Trowbridge, A.; McKann, P.C. Exposure and effects of perfluoroalkyl substances in tree swallows nesting in Minnesota and Wisconsin, USA. Arch. Environ. Contam. Toxicol. 2014, 66, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Custer, T.W.; Dummer, P.M.; Custer, C.M.; Wu, Q.; Kannan, K.; Trowbridge, A. Perfluorinated compound concentrations in great blue heron eggs near St. Paul, Minnesota USA in 1993 and 2010–2011. Environ. Toxicol. Chem. 2013, 32, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Route, B.; Rasmussen, P.; Key, R.; Meyer, M.; Martell, M. Spatial Patterns of Persistent Contaminants in Bald Eagle Nestlings at Three National Parks in the Upper Midwest: 2006–2009, Natural Resource Technical Report NPS/GLKN/NRTR—2011/431; National Park Service: Fort Collins, CO, USA, 2011. [Google Scholar]
- Dykstra, C.R.; Route, W.T.; Williams, K.A. Trends and patterns of perfluoroalkyl substances in blood plasma samples of Bald Eagle nestlings in Wisconsin and Minnesota, USA. Environ. Toxicol. Chem. 2021, 40, 754–766. [Google Scholar] [CrossRef]
- Charbonnet, J.A.; Rodowa, A.E.; Joseph, N.T.; Guelfo, J.L.; Field, J.A.; Jones, G.D.; Higgins, C.P.; Helbling, D.E.; Houtz, E.F. Environmental source tracking of per-and polyfluoroalkyl substances within a forensic context: Current and future techniques. Environ. Sci. Technol. 2021, 55, 7237–7245. [Google Scholar] [CrossRef]
- Kibbey, T.C.G.; Jabrzemski, R.; O’Carroll, D.M. Supervised machine learning for source allocation of per- and polyfluoroalkyl substances (PFAS) in environmental samples. Chemosphere 2020, 252, 126593. [Google Scholar] [CrossRef]
- Hu, X.C.; Dassuncao, C.; Zhang, X.; Grandjean, P.; Weihe, P.; Webster, G.M.; Nielsen, F.; Sunderland, E.M. Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environ. Health 2018, 17, 11. [Google Scholar] [CrossRef]
- Dauwe, T.; Van de Vijver, K.; De Coen, W.; Eens, M. PFOS levels in the blood and liver of a small insectivorous songbird near a fluorochemical plant. Environ. Internat. 2007, 33, 357–361. [Google Scholar] [CrossRef]
- Houtz, E.F.; Higgins, C.P.; Fields, J.A.; Sedlak, D.L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 2013, 47, 8187–8196. [Google Scholar] [CrossRef]
- USEPA. Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS EPA 821-R-24-001; USEPA: Washington, DC, USA, 2024; 69p.
- Dunn, P.O.; Whittingham, L.A. Radio-tracking of female Tree Swallows prior to egg-laying. J. Field Ornithol. 2005, 76, 259–263. [Google Scholar] [CrossRef]
- Ankley, G.T.; Niemi, G.J.; Lodge, K.B.; Harris, H.J.; Beaver, D.L.; Tillitt, D.E.; Schwartz, T.R.; Giesy, J.P.; Jones, P.D.; Hagley, C. Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower Fox River/Green Bay, Wisconsin. Arch. Environ. Contam. Toxicol. 1993, 24, 332–344. [Google Scholar] [CrossRef]
- Custer, C.M.; Custer, T.W.; Dummer, P.M. Using tree swallows to assess reductions in PCB exposure as a result of dredging at Great Lakes Restoration Initiative (GLRI) sites in the Upper Midwest, USA. Ecotoxicology 2021, 30, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Custer, C.M.; Custer, T.W.; Archuleta, A.S.; Coppock, L.C.; Swartz, C.D.; Bickham, J.W. A mining impacted stream: Exposure and effects of lead and other trace elements on tree swallows (Tachycineta bicolor) nesting in the upper Arkansas River basin, Colorado. In Handbook of Ecotoxicology, 2nd ed.; Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairns, J., Jr., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 787–812. [Google Scholar]
- Nichols, J.W.; Larsen, C.P.; McDonald, M.E.; Niemi, G.J.; Ankley, G.T. A bioenergetics-based model for accumulation of polychlorinated biphenyls by nestling tree swallows, Tachycineta bicolor. Environ. Sci. Technol. 1995, 29, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.M.; Schmidt, T.S.; Walters, D.M.; Wanty, R.B.; Zuellig, R.E.; Wolf, R.E. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecol. Applic. 2014, 24, 235–243. [Google Scholar] [CrossRef]
- Custer, C.M.; Custer, T.W.; Etterson, M.A.; Dummer, P.M.; Goldberg, D.; Franson, J.C. Reproductive success and contaminant associations in tree swallows (Tachycineta bicolor) used to assess a Beneficial Use Impairment in U.S. and Binational Great Lakes’ Areas of Concern. Ecotoxicology 2018, 27, 457–476. [Google Scholar] [CrossRef]
- Furness, R.W. Cadmium in birds. In Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations; Beyer, W.N., Heinz, G.H., Redmon-Norwood, A.W., Eds.; Lewis: Boca Raton, FL, USA, 1996; pp. 389–404. [Google Scholar]
PFAS and Sample Size | Eggs | Nestling | Diet |
---|---|---|---|
Sample size (n) | 47 | 83 | 9 |
Sulfonates | |||
PFOS | 100 | 99 | 100 |
PFHxS | 96 | 86 | 67 |
PFDS | 91 | 60 1 | 22 |
Carboxylic acids | |||
PFOA | 72 | 90 | 89 |
PFNA | 100 | 99 | 100 |
PFDA | 98 | 88 | 33 |
PFUnA | 98 | 71 | 33 |
PFDoA | 100 | 52 | 0 |
PFTrDA | 87 | 19 1 | 0 |
PFTeDA | 79 | 19 1 | 0 |
Other types | |||
N-EtFOSE | 64 | 20 1 | 0 |
7:3 FTCA | 60 | 23 1 | 11 |
6:2 FTS | 13 | 17 1 | 56 |
EtFOSAA | 6 | 56 1 | 11 |
St. Louis River | North Region | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PFAS | Thomson Reservoir | Boy Scout Landing | Munger Landing | Erie Ponds | Miller Creek | ANG | Martin Road | Rice Lake North | UMD | Boulder Lake |
n = 9 | n = 6 | n = 6 | n = 3 | n = 5 | n = 4 | n = 3 | n = 3 | n = 2 | n = 5 | |
Sulfonates | ||||||||||
PFOS | 10.49 C 1 (7.60–14.48) 5.60–17.50 | 34.80 BC (14.49–83.57) 18.32–107 | 16.31 BC (11.45–23.24) 9.91–27.3 | 18.25 BC (14.50–22.97) 16.50–19.80 | 6.52 C (4.32–9.85) 4.38–8.67 | 136.90 AB (25.20–743) 29.50–339 | 92.08 AB (58.27–145.52) 81–114 | 469.7 A (28.25–7809) 181–1640 | 26.64 BC (8.29–85.57) 24.30–29.20 | 6.08 C (4.22–8.74) 3.93–8.24 |
PFHxS | 0.23 CD (0.17–0.31) 0.13–0.39 | 1.52 BC (0.78–2.96) 0.73–3.55 | 0.39 CD (0.28–0.54) 0.26–0.61 | 0.50 CD (0.36–0.68) 0.44–0.56 | 0.26 CD (0.17–0.41) 0.15–0.39 | 11.00 AB (1.64–74.00) 2.60–42.8 | 4.47 AB (1.11–17.96) 2.95–8.45 | 31.74 A (0.85–1192) 12.90–171 | 1.14 BC (0.17–7.55) 0.98–1.32 | 0.12 D (0.07–0.21) 2ND-0.19 |
Carboxylic acids | ||||||||||
PFOA | 0.25 BCD (0.12–0.53) 3ND 2-0.91 | 0.28 BCD (0.14–0.58) 1ND-0.55 | 0.17 CD (0.08–0.34) 3ND-0.43 | 0.12 CD (0.05–0.29) 2ND-0.18 | 0.10 D (0.08–0.13) 4ND-0.14 | 1.24 B (0.17–9.12) 0.20–3.06 | 0.44 BCD (0.15–1.31) 0.29–0.69 | 11.70 A (0.12–1142) 3.62–98.0 | 1.11 ABC (0.04–30.65) 0.85–1.44 | 0.37 BCD (0.21–0.66) 0.23–0.81 |
PFNA | 1.50 BC (0.93–2.43) 0.71–4.26 | 1.40 BC (0.58–3.35) 0.58–6.28 | 1.03 BC (0.79–1.34) 0.77–1.59 | 0.51 C (0.37–0.7) 0.44–0.57 | 0.60 C (0.29–1.21) 0.29–1.39 | 2.63 AB (0.45–15.16) 0.51–5.29 | 0.82 BC (0.46–1.46) 0.63–0.97 | 11.03 A (0.33–363) 3.71–54.0 | 1.47 BC (0.23–9.37) 1.27–1.70 | 1.02 BC (0.72–1.44) 0.74–1.45 |
PFDA | 0.81 A (0.56–1.18) 0.44–1.99 | 0.96 A (0.38–2.47) 0.37–5.18 | 0.96 A (0.47–1.94) 0.55–3.38 | 0.63 A (0.33–1.21) 0.47–0.74 | 0.62 A (0.45–0.86) 0.48–0.96 | 1.27 A (0.06–2)8.10 1ND-6.14 | 0.68 A (0.61–0.76) 0.66–0.72 | 2.39 A (0.14–41.4) 0.90–8.44 | 0.73 A (0.04–12.71) 0.58–0.91 | 0.64 A (0.44–0.93) 0.46–0.89 |
PFUnA | 1.29 A (0.99–1.68) 0.76–2.31 | 1.51 A (0.59–3.87) 0.54–7.61 | 1.05 A (0.81–1.36) 0.80–1.59 | 0.68 A (0.43–1.07) 0.55–0.79 | 0.62 A (0.42–0.90) 0.42–0.80 | 1.12 A (0.06–20.50) 1 ND-3.49 | 0.98 A (0.93–1.05) 0.96–1.0 | 2.03 A (0.15–28.2) 0.77–6.28 | 0.89 A (0.59–1.34) 0.86–0.92 | 1.35 A (0.84–2.18) 0.91–2.2 |
PFDoA | 0.61 AB 3 (0.46–0.81) 0.35–1.4 | 0.86 AB (0.30–2.47) 0.31–4.56 | 0.60 AB (0.46–0.78) 0.43–0.82 | 0.70 AB (0.44–1.12) 0.57–0.80 | 0.65 AB (0.36–1.18) 0.45–1.50 | 1.63 A (0.34–7.79) 0.49–5.48 | 0.65 AB (0.50–0.83) 0.61–0.73 | 0.88 AB (0.05–15.32) 0.34–3.17 | 0.71 AB (0.003–147.9) 0.47–1.08 | 0.51 B (0.30–0.88) 0.32–0.88 |
PFTrDA | 0.47 A (0.20–1.06) 2ND-1.33 | 1.13 A (0.49–2.61) 0.44–4.33 | 0.33 A (0.10–1.14) 2ND-0.81 | 0.33 A (0.01–8.15) 1ND-0.70 | 0.63 A (0.40–1.01) 0.42–1.08 | 1.23 A (0.34–2.86) 0.60–1.71 | 0.75 A (0.58–0.99) 0.67–0.81 | 0.64 A (0.004–108.9) 1ND-4.49 | 0.82 A (0.02–31.4) 0.61–1.09 | 0.74 A (0.36–1.54) 0.37–1.33 |
PFTeDA | 0.27 A (0.17–0.42) 1ND-0.58 | 0.29 A (0.09–0.94) 2ND-1.09 | 0.24 A (0.09–0.62) 2ND-0.63 | 0.37 A (0.17–0.84) 0.26–0.45 | 0.21 A (0.17–0.25) 0.17–0.25 | 0.61 A (0.07–5.62) 1ND-1.45 | 0.14 A (0.01–1.92) 2ND-0.48 | 0.35 A (0.005–27.24) 1ND-2.4 | 0.25 A (0.00001–519,704) 1ND-0.77 | 0.31 A (0.22–0.44) 0.25–0.43 |
Others | ||||||||||
PFDS | 0.40 AB 4 (0.29–0.55) 0.23–0.98 | 0.47 AB (0.20–1.06) 0.18–1.87 | 0.36 AB (0.25–0.52) 0.26–0.68 | 1.57 A (0.55–4.49) 1.00–2.30 | 0.26 AB (0.15–0.46) 0.18–0.54 | 0.57 AB (0.04–9.01) 1ND-5.01 | 0.16 B (0.10–0.25) 0.13–0.18 | 0.19 AB (0.003–10.41) 2ND-1.21 | 0.28 AB (0.01–7.53) 0.22–0.37 | 0.20 AB (0.09–0.43) 1ND-0.40 |
N-EtFOSE | 1.23 A (0.73–2.06) 2ND-3.32 | 2.22 A (0.55–8.96) 2ND-14 | 1.47 A (0.47–4.59) 3ND-7.27 | 0.71 A (0.30–1.65) 2ND-1.05 | 0.72 A (0.49–1.06) 3ND-1.11 | 1.75 A (0.22–13.70) 3ND-7.04 | 2.13 A (1.09–4.15) 1.5–2.66 | 2.19 A (0.03–147.7) 1ND-14.80 | 1.07 A (0.001–2383) 1ND-1.96 | 1.24 A (0.77–1.99) 0.85–2.07 |
7:3 FTCA | 4.10 AB 5 (1.26–13.31) 5NA 6; 1ND-10.2 | 15.04 AB (7.73–29.26) 2NA; 10.82–27.6 | 4.04 B (0.70–23.29) 3NA; 1ND-8.32 | 19.95 AB (4.72–84.35) 11.80–37.20 | 7.57 AB (5.74–9.98) 5.62–10.10 | 25.32 AB (3.26–197) 7.27–154 | 8.78 AB (4.27–18.06) 1NA; 8.30–9.30 | 35.89 AB (0.00001–95,716,627) 1NA; 11.2–115 | 8.12 AB (5.28–12.49) 7.85–8.40 | NA |
Total PFAS13 | 15.51 BC (11.36–21.17) 8.71–24.97 | 42.46 BC (18.27–98.71) 21.07–134 | 20.58 BC (14.42–29.38) 12.87–35.68 | 21.36 BC (17.11–26.66) 19.34–23.00 | 9.51 C (6.77–13.36) 6.63–11.88 | 157.4 AB (28.20–879) 33.29–20.55 | 100.4 AB (61.21–164.64) 87.65–126 | 534.7 A (28.85–9909) 204–1981 | 32.74 BC (8.03–133.5) 29.31–36.57 | 10.13 C (6.85–14.97) 6.62–13.54 |
Total PFAS40 | 19.84 C (14.36–27.42) 10.8–32.62 | 57.97 BC (26.0–129.25) 24.39–183 | 27.57 C (17.63–43.11) 20.52–64.62 | 45.43 BC (20.79–99.28) 33.82–63.27 | 38.19 C (8.03–181.62) 17.51–355 | 208.2 AB (41.93–1034) 53.07–598 | 109.9 AB (65.46–184.56) 95.98–140 | 600.6 A (22.03–16,373) 206–2665 | 43.52 C (10.31–183.67) 38.86–48.74 | 13.71 C (8.83–21.26) 8.24–19.23 |
Percentage 13 of 40 | 78.2 | 73.2 | 74.6 | 47.0 | 24.9 | 75.6 | 91.3 | 89.0 | 75.2 | 73.9 |
PFAS | St. Louis River | North Region | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Thomson Reservoir | Boy Scout Landing | Munger Landing | Stryker Bay | Erie Ponds | Miller Creek | ANG | Martin Road | Rice Lake North | UMD | Boulder Lake | |
n = 14 | n = 6 | n = 17 | n = 5 | n =14 | n = 5 | n = 5 | n = 5 | n = 6 | n = 1 | n = 5 | |
Sulfonates | |||||||||||
PFOS | 8.86 CD 1 (6.90–11.37) 3.29–14.30 | 12.76 BC (9.00–18.08) 8.52–18.60 | 11.63 BCD (9.97–13.56) 7.05–17.80 | 7.63 CD (5.53–10.53) 5.98–11.20 | 11.42 BCD (9.88–13.20) 8.44–19.20 | 6.08 CD (4.05–9.12) 4.08–9.80 | 36.73 AB (15.71–85.90) 17.6–109 | 82.10 A (44.89–150.1) 47.40–151 | 121.9 A (103.7–143.4) 104–155 | 3.72 D (.-.) 3.72 | 1.06 E (0.14–8.21) 1ND-2.53 |
PFHxS | 0.28 CD (0.19–0.40) 5ND 2-0.49 | 1.29 B (0.74–2.25) 0.69–2.97 | 0.55 BC (0.44–0.69) 5ND-1.01 | 5ND | 0.39 CD (0.29–0.53) 5ND-0.66 | 0.26 CD (0.20–0.33) 0.19–0.32 | 5.48 A (1.64–18.24) 1.54–21.6 | 7.00 A (5.10–9.61) 5.01–9.70 | 8.24 A (7.08–9.58) 6.93–10.5 | 0.24 CD (.-.) 0.24 | 0.17 D (0.07–0.42) 1ND-0.32 |
Carboxylic acids | |||||||||||
PFOA | 1.08 ABC (0.79–1.48) 0.38–3.37 | 0.30 CDE (0.24–0.37) 0.23–0.41 | 0.59 BC (0.48–0.72) 0.26–1.04 | 0.48 BCD (0.25–0.93) 1ND-0.75 | 0.31 CDE (0.21–0.46) 3ND-0.71 | 0.09 E (0.02–0.37) 4ND-0.68 | 1.18 AB (0.41–3.40) 0.41–3.11 | 3.81 A (1.96–7.39) 2.00–6.40 | 3.88 A (3.06–4.91) 2.95–5.59 | 0.13 DE (.-.) 0.13 | 0.76 BC (0.54–1.06) 0.49–0.97 |
PFNA | 2.05 A (1.66–2.52) 1.05–3.79 | 0.91 ABC (0.65–1.28) 0.63–1.47 | 1.12 AB (1.02–1.24) 0.79–1.69 | 0.85 ABC (0.59–1.22) 0.60–1.23 | 0.94 ABC (0.70–1.27) 0.42–2.80 | 0.44 C (0.19–0.98) 0.25–1.28 | 0.69 BC (0.46–1.05) 0.49–1.19 | 1.02 ABC (0.54–1.94) 0.64–2.03 | 1.73 A (1.28–2.32) 1.27–2.81 | 0.05 D (.-.) 1 ND | 1.40 AB (1.10–1.78) 1.10–1.68 |
PFDA | 0.53 AB (0.46–0.62) 0.32–0.75 | 0.33 AB (0.28–0.38) 0.25–0.38 | 0.42 AB (0.34–0.51) 3ND-0.67 | 0.23 B (0.15–0.36) 4ND-0.43 | 0.44 AB (0.34–0.56) 2ND-0.90 | 0.67 A (0.26–1.68) 0.31–2.15 | 0.33 AB (0.16–0.67) 0.21–0.91 | 0.39 AB (0.25–0.62) 0.25–0.62 | 0.76 A (0.59–0.98) 0.54–1.13 | 0.05 C (.-.) 1ND | 0.34 AB (0.28–0.42) 0.29–0.40 |
PFUnA | 0.57 A (0.47–0.71) 0.31–0.88 | 0.22 AB (0.10–0.47) 1ND-0.36 | 0.43 A (0.38–0.49) 1ND-0.70 | 0.31 AB (0.18–0.51) 2ND-0.45 | 0.30 AB (0.21–0.43) 4ND-0.59 | 0.08 BC (0.03–0.25) 4ND-0.42 | 0.08 BC (0.02–0.31) 4ND-0.55 | 0.05 C (.-.) 5ND | 0.24 AB (0.07–0.83) 2ND-0.72 | 0.05 C (.-.) 1ND | 0.42 A (0.34–0.53) 0.33–0.50 |
PFDoA | 0.11 ABC (0.07–0.18) 8ND-0.21 | 0.08 BC (0.05–0.11) 3ND-0.13 | 0.16 ABC (0.15–0.18) 5ND-0.21 | 5ND | 0.27 A (0.22–0.32) 5ND-0.48 | 0.17 AB (0.07–0.41) 1ND-0.36 | 0.12 ABC (0.03–0.44) 2ND-0.67 | 0.05 C (.-.) 5ND | 0.06 BC (0.04–0.09) 5ND-0.13 | 0.05 C (.-.) 1ND | 0.11 ABC (0.06–0.18) 1ND-0.15 |
Other types | |||||||||||
PFDS | 0.17 B (0.10–0.29) 5NA; 2ND-0.38 | 0.09 BC (0.06–0.14) 2ND-0.13 | 0.18 B (0.16–0.19) 5NA; 0.13–0.21 | NA | 0.57 A (0.46–0.71) 5NA; 0.33–0.88 | 0.22 AB (0.14–0.35) 0.17–0.43 | 0.09 BC (0.02–0.33) 4ND-0.60 | 0.05 C (.-.) 5ND | 0.05 C (.-.) 6ND | 0.05 C (.-.) 1ND | 0.05 C (.-.) 5ND |
N-EtFOSAA | 0.10 BC (0.05–0.18) 5NA 3; 5ND-0.48 | 0.18 B (0.13–0.26) 0.11–0.29 | 0.25 B (0.20–0.32) 5NA; 0.13–0.45 | NA | 1.08 A (0.89–1.31) 5NA; 0.75–1.63 | 0.23 B (0.08–0.67) 1ND-0.50 | 0.05 C (.-.) 5ND | 0.05 C (.-.) 5ND | 0.05 C (.-.) 6ND | 0.05 C (.-.) 1ND | 0.05 C (.-.) 5ND |
Total PFAS13 | 13.57 C (10.81–17.04) 5.50–23.49 | 16.15 C (11.59–22.51) 10.8–23.6 | 15.06 C (13.07–17.35) 9.69–22.11 | 9.40 CD (6.62–13.34) 6.87–14.03 | 14.63 C (12.66–16.91) 10.01–25.87 | 8.06 CDE (5.06–12.84) 5.66–15.01 | 45.24 B (18.75–109.1) 20.65–139.4 | 94.82 AB (52.86–170.1) 55.29–169 | 138.23 A (117.5–162.6) 116–177 | 4.09 E (.-.) 4.09 | 5.04 DE (3.80–6.69) 3.66–6.49 |
Total PFAS40 | 14.26 DE (11.53–17.65) 5.50–23.49 | 16.53 DE (11.80–23.14) 10.97–24.27 | 17.35 DE (15.23–19.77) 12.38–32.10 | 9.40 EF (6.62–13.34) 6.87–14.03 | 20.57 DE (16.80–25.17) 10.01–39.74 | 30.88 CD (25.24–37.79) 25.72–39.65 | 54.64 BC (17.35–172.1) 20.82–249.7 | 96.37 AB (54.66–169.9) 58.49–170 | 139.5 A (118.9–163.8) 117–178 | 4.09 F (.-.) 4.09 | 5.58 F (4.24–7.35) 3.88–6.81 |
Percentage 13 is of 40 | 95.1 | 97.7 | 86.8 | 100 | 71.1 | 26.1 | 82.8 | 98.4 | 99.1 | 100 | 90.3 |
Site | PFHxS | PFOS | |
---|---|---|---|
n | ng/d | ng/d | |
Reference | |||
Boulder Lake | 5 | 0.34 CD 1 | 2.70 D |
North region | |||
Rice Lake North | 6 | 8.25 A | 134.80 A |
Martin Road | 5 | 11.66 A | 130.98 A |
ANG | 5 | 7.27 A | 39.53 B |
UMD Farm | 1 | 0.16 D | 1.19 D |
St. Louis River | |||
Thomson Reservoir | 9 | 0.43 CD | 11.72 C |
Boy Scout Landing | 5 | 1.72 B | 14.35 BC |
Munger Landing | 12 | 0.89 BC | 17.16 BC |
Erie Ponds | 9 | 0.54 BC | 14.42 BC |
Miller Creek | 5 | 0.38 CD | 8.99 C |
PFAS | St. Louis River | North Region | Reference | |||||
---|---|---|---|---|---|---|---|---|
Thomson Reservoir | Boy Scout Landing | Erie Ponds | Miller Creek | ANG | Martin Road | Rice Lake North | Boulder Lake | |
Sulfonates | ||||||||
PFOS | 15.5 | 5.10 | 4.86 | 2.92 | 29.0 | 44.7 | 90.0 | 2.95 |
PFHxS | 0.29 | 0.31 | .1 | . | 3.01 | 0.54 | 1.73 | . |
Carboxylic acids | ||||||||
PFOA | 0.86 | 0.12 | 0.7 | 0.22 | 0.94 | 1.13 | 1.50 | 0.451 |
PFNA | 2.84 | 0.39 | 0.46 | 0.25 | 0.37 | 0.68 | 1.33 | 1.51 |
PFDA | 0.61 | . | . | . | . | . | 0.47 | 0.322 |
PFUnA | 0.55 | . | . | . | . | . | 0.27 | 0.283 |
6:2 FTS | . | 2.24 | 1.91 | 1.74 | . | 43.9 | 1.02 | . |
8:2 FTS | . | . | 152 | . | 0.65 | 1.03 | 0.72 | . |
Total PFAS13 | 20.6 | 5.92 | 6.02 | 3.32 | 33.3 | 47.0 | 95.30 | 5.52 |
Total PFAS40 | 20.6 | 8.15 | 160 | 5.13 | 34.0 | 92.0 | 97.0 | 5.52 |
Percentage 13 is of 40 | 100 | 72.6 | 3.8 | 66.1 | 98.1 | 51.1 | 98.2 | 100 |
Site and Year | N | Thiol | PBSH | Total GSH | Reduced GSH | GSSG | GSSG_GSH | TBARS Protein | TBARS Tissue |
---|---|---|---|---|---|---|---|---|---|
Reference | |||||||||
Boulder Lake 2021 | 6 | 38.17 AB 1 (27.43–48.91) 25.5–51.2 | 28.35 ABC (20.14–36.56) 18.3–38.2 | 16.56 AB (13.57–19.55) 13.5–20.2 | 9.82 AB 2 (7.13–12.50) 7.2–13.0 | 3.37 A (3.18–3.56) 3.2–3.6 | 0.36 A (0.28–0.44) 0.27–0.44 | 550.88 AB (229.84–871.92) 169.0–936.5 | 64.1 AB (26.28–101.95) 20.0–118.1 |
North region | |||||||||
Rice Lake North 2021 | 5 | 39.70 AB (29.94–49.46) 29.6–46.8 | 28.88 ABC (20.89–36.87) 21.8–36.6 | 17.81 A (15.37–20.25) 14.6–19.7 | 10.82 A (8.11–13.53) 7.8–13.3 | 3.49 A (2.99–4.00) 3.1–4.2 | 0.34 A (0.23–0.45) 0.24–0.44 | 327.52 AB (231.11–423.93) 246.6–436.7 | 43.68 AB (28.30–59.06) 28.2–60.9 |
Martin Road 2021 | 4 | 31.85 AB (20.34–43.36) 24.8–40.5 | 23.28 ABC (13.61–32.94) 17.5–29.2 | 15.06 AB (10.55–19.56) 12.1–18.6 | 8.59 AB (5.55–11.62) 7.3–11.3 | 3.24 A (2.30–4.17) 2.4–3.7 | 0.38 A (0.28–0.48) 0.32–0.44 | 428.1 AB (220.04–636.16) 289.0–603.3 | 49.38 AB (23.64–75.11) 30.0–69.2 |
ANG 2021 | 5 | 31.24 AB (26.19–36.29) 25.3–35.4 | 22.52 ABC (20.22–24.82) 19.8–24.9 | 14.44 AB (10.43–18.44) 10.9–18.0 | 8.75 AB (5.87–11.62) 5.6–10.9 | 2.85 A (2.07–3.63) 2.2–3.6 | 0.34 A (0.23–0.44) 0.23–0.47 | 318.76 AB (151.54–485.98) 177.2–485.5 | 32.52 AB (10.95–54.09) 15.0–59.0 |
UMD Farm 2021 | 1 | 24.00 B | 18.7 C | 9.57 B | 5.27 B | 2.15 A | 0.41 A | 115.4 B | 11.30 B |
St. Louis River | |||||||||
Thomson Reservoir 2019 | 10 | 45.35 AB (36.17–54.53) 25.6–66.1 | 36.61 ABC (28.94–44.28) 21.6–57.6 | 14.77 AB (11.66–17.88) 6.7–22.3 | 8.76 AB (6.66–10.86) 4.00–14.3 | 3.02 A (2.42–3.62) 1.40–4.00 | 0.36 A (0.31–0.41) 0.26–0.46 | 707.94 AB (499.09–916.79) 431.2–1308.4 | 84.67 AB (57.66–111.68) 53.50–173.1 |
Thomson Reservoir 2021 | 10 | 30.23 AB (22.22–38.24) 15.8–53.7 | 22.09 ABC (15.81–28.37) 12.4–41.0 | 14.56 AB (11.57–17.54) 8.3–22.4 | 8.14 AB (6.16–10.12) 3.4–12.6 | 3.21 A (2.65–3.77) 2.2–4.9 | 0.42 A (0.33–0.51) 0.31–0.74 | 830.66 A (597.76–1063.6) 304.7–1357 | 92.00 A (68.14–115.86) 33.8–157.2 |
Boy Scout Landing 2021 | 4 | 28.20 AB (6.72–49.68) 17.8–48.0 | 20.63 BC (2.66–38.59) 13.8–37.4 | 13.80 AB (6.60–21.01) 7.5–17.8 | 7.60 AB (3.29–11.91) 4.1–10.6 | 3.10 A (1.55–4.66) 1.7–3.9 | 0.415 A (0.33–0.50) 0.34–0.47 | 276.7 AB (131.59–421.81) 190.3–375.0 | 32.23 AB (14.81–49.64) 22.6–46.9 |
Munger Landing 2019 | 5 | 44.86 AB (27.20–62.52) 24.7–64.4 | 36.14 ABC (21.56–50.72) 20.5–53.2 | 14.52 AB (9.74–19.30) 8.4–19.0 | 8.72 AB (5.40–12.04) 4.2–11.2 | 2.88 A (2.06–3.70) 2.1–3.9 | 0.348 A (0.24–0.45) 0.28–0.49 | 575.42 AB (362.21–788.63) 416.7–856.6 | 59.38 AB (42.42–76.34) 41.7–76.3 |
Munger Landing 2021 | 7 | 29.27 AB (20.31–38.23) 18.3–46.8 | 21.31 ABC (13.91–28.72) 11.0–34.9 | 14.6 AB (11.18–18.02) 9.92–20.36 | 7.95 AB (5.63–10.26) 4.36–11.94 | 3.32 A (2.68–3.96) 2.11–4.21 | 0.44 A (0.34–0.54) 0.35–0.64 | 634.49 AB (464.50–804.47) 267.5–840.4 | 70.76 AB (47.66–93.86) 33.3–113.8 |
Stryker Bay 2019 | 10 | 47.85 AB (41.03–54.67) 35.2–65.6 | 38.12 AB (32.46–43.78) 28.4–52.9 | 16.90 AB (14.46–19.34) 10.9–21.1 | 9.73 AB (8.34–11.12) 6.8–12.7 | 3.58 A (2.88–4.28) 2.0–4.8 | 0.3 A (0.31–0.43) 0.28–0.53 | 477.24 AB (294.52–659.96) 204.4–988.8 | 58.29 AB (35.59–80.99) 23.1–125.9 |
Erie Ponds 2019 | 9 | 50.28 A (43.27–57.28) 37.8–62.7 | 40.544 A (34.84–46.25) 30.7–51.1 | 17.17 AB (15.14–19.19) 13.4–19.8 | 9.73 AB (8.27–11.20) 7.1–12.0 | 3.70 A (3.20–4.20) 2.6–4.5 | 0.39 A (0.33–0.45) 0.29–0.49 | 653.21 AB (571.09–735.33) 477.1–871.6 | 73.97 AB (60.87–87.06) 48.4–112.0 |
Erie Ponds 2021 | 10 | 36.74 AB (30.06–43.42) 24.3–49.1 | 26.25 ABC (21.16–31.34) 16.4–38.0 | 16.87 AB (14.65–19.09) 13.1–22.1 | 10.49 AB (8.57–12.41) 7.1–14.7 | 3.19 A (2.83–3.55) 2.5–3.8 | 0.32 A (0.26–0.38) 0.20–0.47 | 631.69 AB (400.82–862.56) 211.5–1257.4 | 71.17 AB (45.42–96.92) 27.2–143.0 |
Miller Creek 2021 | 10 | 24.21 B (17.79–30.63) 14.4–42.6 | 17.68 C (12.81–22.55) 10.1–31.6 | 12.23 AB (10.13–14.33) 8.5–17.5 | 6.55 AB (4.95–8.14) 4.02–11.0 | 2.85 A (2.55–3.14) 2.1–3.4 | 0.46 A (0.39–0.53) 0.30–0.59 | 720.55 AB (413.86–1027.2) 275.8–1549.7 | 83.3 AB (48.09–118.51) 29.7–187.2 |
p-value | <0.0001 | <0.0001 | 0.0584 | 0.0386 | 0.2027 | 0.0780 | 0.0035 | 0.0074 |
Site and Year | Immune Responses | Thyroid Levels | EROD | Percent CV | |||||
---|---|---|---|---|---|---|---|---|---|
N | PIT54 | IgY | T3 Plasma | T4 Plasma | T3 Thyroid gland | T4 Thyroid gland | |||
Reference | |||||||||
Boulder Lake 2021 | 6 | 0.17 A 1 (0.14–0.20) 0.11–0.20 | 111.17 A (75.68–146.65) 86.9–174.2 | NA 2 | NA | 2.63 AB (2.05–3.21) 2.0–3.5 | 318.75 ABC (208.8–428.7) 188.1–459.7 | 17.78 B (11.16–24.39) 11.8–28.6 | 1.78 A (0.81–2.75) 0.4–2.8 |
North region | |||||||||
Rice Lake North 2021 | 5 | 0.14 A (0.12–0.16). 0.13–0.16 | 76.40 A (47.95–104.85) 41.3–96.9 | NA | NA | 3.30 A (2.76–3.84) 2.8–3.8 | 346.98 AB (271.2–422.8) 296.9–447.0 | 18.49 B (11.30–25.69) 8.75–23.38 | 2.52 A (1.60–3.44) 1.5–3.3 |
Martin Road 2021 | 4 | 0.13 A (0.08–0.19) 0.08–0.16 | 61.49 A (19.61–103.36) 33.9–91.4 | NA | NA | 1.68 AB (1.15–2.20) 1.3–2.0 | 225.58 ABCD (41.29–409.9) 59.6–317.0 | 9.79 B (4.79–14.79) 5.7–12.4 | 2.45 A (1.33–3.57) 1.7–3.1 |
ANG 2021 | 5 | 0.15 A (0.12–0.17) 0.12–0.18 | 103.06 A (61.40–144.72) 69.9–153.2 | NA | NA | 1.34 AB (0.241–2.44) 0.8–2.9 | 120.8 CD (0.257–241.3) 32.8–271.5 | 17.62 B (-1.39–36.63) 7.47–43.96 | 2.20 A (1.40–3.00) 1.5–3.0 |
UMD Farm 2021 | 1 | NA | 48.6 A | NA | NA | 0.9 B | 42.1 D | 5.05 B | 3.5 A |
St. Louis River | |||||||||
Thomson Reservoir 2019 | 10 | NA | NA | 0.60 A (0.38–0.81) 0.3–1.2 | 13.17 A (10.55–15.79) 7.5–19.7 | 3.04 A (2.66–3.43) 2.2–3.7 | 403.82 A (352.97–454.67) 273.8–494.6 | 31.66 AB (16.35–46.96) 8.6–69.7 | 2.36 A (1.62–3.10) 0.8–3.5 |
Thomson Reservoir 2021 | 10 | 0.13 A (0.11–0.15) 0.09–0.17 | 61.17 A (50.11–72.23) 39.0–85.9 | NA | NA | 2.57 AB (1.62–3.52) 1.5–6.0 | 357.9 AB (253.9–461.9) 177.1–651.8 | 13.50 B (9.25–17.75) 6.1–22.6 | 2.06 A (1.25–2.87) 0.6–3.9 |
Boy Scout Landing 2021 | 4 | 0.13 A (0.11–0.15) 0.11–0.14 | 72.66 A (33.02–112.30) 55.0–109.0 | NA | NA | 2.23 AB (1.61–2.84) 2.0–2.8 | 256.2 ABC (213.6–298.7) 221.3–279.9 | 12.54 B (5.21–19.86) 8.5–9.1 | 2.03 A (0.98–3.07) 1.2–2.8 |
Munger Landing 2019 | 5 | NA | NA | 0.572 A (0.34–0.81) 0.42–0.9 | 13.06 A (10.79–15.33) 10.4–15 | 2.844 AB (0.57–5.12) 1.23–4.98 | 222.8 ABCD (97.27–348.33) 120.4–349.2 | 98.50 A (-11.88–208.9) 27.72–243.41 | 3.06 A (1.40–4.72) 1.1–4.6 |
Munger Landing 2021 | 7 | 0.152 A (0.12–0.19) 0.091–0.199 | 76.132 A (49.44–102.83) 37.7–125.8 | NA | NA | 2.157 AB (1.70–2.61) 1.5–3 | 276.7 ABC (201.3–352.0) 215.6–439.8 | 21.622 B (13.81–29.43) 8.14–32.21 | 2.014 A (1.26–2.77) 1.1–3.5 |
Stryker Bay 2019 | 10 | NA | NA | 0.557 A (0.45–0.66) 0.3–0.78 | 15.58 A (13.12–18.04) 9.2–20.1 | 2.715 AB (2.05–3.38) 1.56–4.23 | 199.69 ABCD (134.45–264.93) 126.8–434.5 | 35.447 AB (26.73–44.16) 10.49–53.52 | 3.03 A (2.44–3.62) 1.6–4 |
Erie Ponds 2019 | 9 | NA | NA | 0.47 A (0.37–0.57) 0.33–0.68 | 11.411 A (9.35–13.48) 7.9–16 | 2.226 AB (1.86–2.60) 1.44–2.78 | 181.066 BCD (132.85–229.29) 81.5–286.2 | 62.638 AB (17.91–107.37) 10.75–186.59 | 2.3 A (1.65–2.95) 1.4–4.1 |
Erie Ponds 2021 | 10 | 0.145 A (0.13–0.16) 0.112–0.193 | 88.105 A (63.44–112.77) 38.4–134.7 | NA | NA | 2.57 AB (1.91–3.23) 1.7–4.7 | 296.76 ABC (263.0–330.6) 233.5–385.3 | 37.083 AB (30.65–43.52) 21.18–50.11 | 2.38 A (1.73–3.03) 0.8–3.4 |
Miller Creek 2021 | 10 | 0.119 A (0.10–0.14) 0.068–0.179 | 86.445 A (57.24–115.65) 34.45–188.8 | NA | NA | 2.25 AB (1.81–2.69) 1.4–3.6 | 139.64 CD (105.8–173.5) 80.1–215.3 | 27.182 B (18.43–35.94) 11.42–58.68 | 2.5 A (1.48–3.52) 0.5–5.3 |
p-value | 0.1193 | 0.0807 | 0.6068 | 0.0555 | 0.0128 | <0.0001 | <0.0001 | 0.4584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custer, C.M.; Dummer, P.M.; Etterson, M.A.; Haselman, J.T.; Schultz, S.; Karouna-Renier, N.; Matson, C. Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources. Toxics 2024, 12, 660. https://doi.org/10.3390/toxics12090660
Custer CM, Dummer PM, Etterson MA, Haselman JT, Schultz S, Karouna-Renier N, Matson C. Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources. Toxics. 2024; 12(9):660. https://doi.org/10.3390/toxics12090660
Chicago/Turabian StyleCuster, Christine M., Paul M. Dummer, Matthew A. Etterson, Jonathan T. Haselman, Sandra Schultz, Natalie Karouna-Renier, and Cole Matson. 2024. "Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources" Toxics 12, no. 9: 660. https://doi.org/10.3390/toxics12090660
APA StyleCuster, C. M., Dummer, P. M., Etterson, M. A., Haselman, J. T., Schultz, S., Karouna-Renier, N., & Matson, C. (2024). Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources. Toxics, 12(9), 660. https://doi.org/10.3390/toxics12090660