Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms
Abstract
:1. Introduction
2. Review Scope and Methodology
3. Sources and Methods of Human Exposure to PFAS
4. Metabolic Pathways of PFAS in Humans
5. The Effect of PFAS Exposure on the Reproductive Health of Females of Childbearing Age
5.1. Reproductive Endocrine Disruption
5.1.1. Ovarian Dysfunction
5.1.2. Polycystic Ovary Syndrome (PCOS)
5.2. Effect of PFAS Exposure on Female Reproductive Tract
5.2.1. Endometriosis
5.2.2. Reproductive Tract Tumors
6. The Association between PFAS and In Vitro Fertilization (IVF) Outcomes
7. Effect of PFAS Exposure on Maternal Health during Pregnancy
7.1. Gestational Diabetes Mellitus (GDM)
7.2. Hypertensive Disorders of Pregnancy (HDP)
7.3. Abnormal Thyroid Function
7.4. Other Pregnancy Complications
8. Adverse Pregnancy Outcome
8.1. Preterm Birth
8.2. Pregnancy Loss
8.3. Low Birth Weight
8.4. Fetal/Neonatal Thyroid Dysfunction
8.5. Neurodevelopmental Disorder
9. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Correction Statement
Abbreviations
References
- Spyrakis, F.; Dragani, T.A. The EU’s Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. Toxics 2023, 11, 721. [Google Scholar] [CrossRef]
- Buck, R.C.; Korzeniowski, S.H.; Laganis, E.; Adamsky, F. Identification and Classification of Commercially Relevant Per- and Poly-Fluoroalkyl Substances (PFAS). Integr. Environ. Assess. Manag. 2021, 17, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Harlow, S.D.; Randolph, J.F.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) and Their Effects on the Ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Pulster, E.L.; Wichterman, A.E.; Snyder, S.M.; Fogelson, S.; Da Silva, B.F.; Costa, K.A.; Aufmuth, J.; Deak, K.L.; Murawski, S.A.; Bowden, J.A. Detection of Long Chain Per- and Polyfluoroalkyl Substances (PFAS) in the Benthic Golden Tilefish (Lopholatilus Chamaeleonticeps) and Their Association with Microscopic Hepatic Changes. Sci. Total Environ. 2022, 809, 151143. [Google Scholar] [CrossRef]
- Wen, Z.-J.; Wei, Y.-J.; Zhang, Y.-F.; Zhang, Y.-F. A Review of Cardiovascular Effects and Underlying Mechanisms of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS). Arch. Toxicol. 2023, 97, 1195–1245. [Google Scholar] [CrossRef]
- Liang, L.; Pan, Y.; Bin, L.; Liu, Y.; Huang, W.; Li, R.; Lai, K.P. Immunotoxicity Mechanisms of Perfluorinated Compounds PFOA and PFOS. Chemosphere 2022, 291, 132892. [Google Scholar] [CrossRef]
- Xu, B.; Liu, S.; Zhou, J.L.; Zheng, C.; Weifeng, J.; Chen, B.; Zhang, T.; Qiu, W. PFAS and Their Substitutes in Groundwater: Occurrence, Transformation and Remediation. J. Hazard. Mater. 2021, 412, 125159. [Google Scholar] [CrossRef]
- Liu, J.; Gao, X.; Wang, Y.; Leng, J.; Li, J.; Zhao, Y.; Wu, Y. Profiling of Emerging and Legacy Per-/Polyfluoroalkyl Substances in Serum among Pregnant Women in China. Environ. Pollut. 2021, 271, 116376. [Google Scholar] [CrossRef]
- Barrett, E.S.; Chen, C.; Thurston, S.W.; Haug, L.S.; Sabaredzovic, A.; Fjeldheim, F.N.; Frydenberg, H.; Lipson, S.F.; Ellison, P.T.; Thune, I. Perfluoroalkyl Substances and Ovarian Hormone Concentrations in Naturally Cycling Women. Fertil. Steril. 2015, 103, 1261–1270.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tan, R.; Pan, R.; Xiong, J.; Tian, Y.; Wu, J.; Chen, L. Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Premature Ovarian Insufficiency in Chinese Women. J. Clin. Endocrinol. Metab. 2018, 103, 2543–2551. [Google Scholar] [CrossRef]
- Heffernan, A.L.; Cunningham, T.K.; Drage, D.S.; Aylward, L.L.; Thompson, K.; Vijayasarathy, S.; Mueller, J.F.; Atkin, S.L.; Sathyapalan, T. Perfluorinated Alkyl Acids in the Serum and Follicular Fluid of UK Women with and without Polycystic Ovarian Syndrome Undergoing Fertility Treatment and Associations with Hormonal and Metabolic Parameters. Int. J. Hyg. Environ. Health 2018, 221, 1068–1075. [Google Scholar] [CrossRef]
- Schmidt, S. A Sharper Focus: Clarifying the PFAS-Preeclampsia Association by Analyzing Disease Subtypes. Environ. Health Perspect. 2022, 130, 14002. [Google Scholar] [CrossRef] [PubMed]
- Deji, Z.; Liu, P.; Wang, X.; Zhang, X.; Luo, Y.; Huang, Z. Association between Maternal Exposure to Perfluoroalkyl and Polyfluoroalkyl Substances and Risks of Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Sci. Total Environ. 2021, 783, 146984. [Google Scholar] [CrossRef]
- Gao, X.; Ni, W.; Zhu, S.; Wu, Y.; Cui, Y.; Ma, J.; Liu, Y.; Qiao, J.; Ye, Y.; Yang, P.; et al. Per- and Polyfluoroalkyl Substances Exposure during Pregnancy and Adverse Pregnancy and Birth Outcomes: A Systematic Review and Meta-Analysis. Environ. Res. 2021, 201, 111632. [Google Scholar] [CrossRef]
- Kashino, I.; Sasaki, S.; Okada, E.; Matsuura, H.; Goudarzi, H.; Miyashita, C.; Okada, E.; Ito, Y.M.; Araki, A.; Kishi, R. Prenatal Exposure to 11 Perfluoroalkyl Substances and Fetal Growth: A Large-Scale, Prospective Birth Cohort Study. Environ. Int. 2020, 136, 105355. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, R.; Jin, F.; Lou, H.; Mao, Y.; Zhu, W.; Zhou, W.; Zhang, P.; Zhang, J. Perfluoroalkyl Substances and Endometriosis-Related Infertility in Chinese Women. Environ. Int. 2017, 102, 207–212. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Q.; Zhang, J.; Chen, X.; Zhao, H.; Lu, H.; Ma, B.; Wang, Z.; Wu, C.; Ying, C.; et al. Exposure to Elevated Per- and Polyfluoroalkyl Substances in Early Pregnancy Is Related to Increased Risk of Gestational Diabetes Mellitus: A Nested Case-Control Study in Shanghai, China. Environ. Int. 2020, 143, 105952. [Google Scholar] [CrossRef]
- Liao, Q.; Tang, P.; Song, Y.; Liu, B.; Huang, H.; Liang, J.; Lin, M.; Shao, Y.; Liu, S.; Pan, D.; et al. Association of Single and Multiple Prefluoroalkyl Substances Exposure with Preterm Birth: Results from a Chinese Birth Cohort Study. Chemosphere 2022, 307, 135741. [Google Scholar] [CrossRef]
- Borghese, M.M.; Walker, M.; Helewa, M.E.; Fraser, W.D.; Arbuckle, T.E. Association of Perfluoroalkyl Substances with Gestational Hypertension and Preeclampsia in the MIREC Study. Environ. Int. 2020, 141, 105789. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-M.; Bennett, D.H.; Calafat, A.M.; Tancredi, D.; Hertz-Picciotto, I. Modeled Prenatal Exposure to Per- and Polyfluoroalkyl Substances in Association with Child Autism Spectrum Disorder: A Case-Control Study. Environ. Res. 2020, 186, 109514. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Luo, J.; Nohr, E.A.; Bech, B.H.; Bossi, R.; Arah, O.A.; Olsen, J. Maternal Plasma Perfluoroalkyl Substances and Miscarriage: A Nested Case-Control Study in the Danish National Birth Cohort. Environ. Health Perspect. 2020, 128, 47007. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Raza, M.; Pollack, A.Z. Perfluoroalkyl Substances and Endometriosis in US Women in NHANES 2003–2006. Reprod. Toxicol. 2016, 65, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Omoike, O.E.; Pack, R.P.; Mamudu, H.M.; Liu, Y.; Wang, L. A Cross-Sectional Study of the Association between Perfluorinated Chemical Exposure and Cancers Related to Deregulation of Estrogen Receptors. Environ. Res. 2021, 196, 110329. [Google Scholar] [CrossRef]
- Wikström, S.; Lindh, C.H.; Shu, H.; Bornehag, C.-G. Early Pregnancy Serum Levels of Perfluoroalkyl Substances and Risk of Preeclampsia in Swedish Women. Sci. Rep. 2019, 9, 9179. [Google Scholar] [CrossRef]
- Meng, Q.; Inoue, K.; Ritz, B.; Olsen, J.; Liew, Z. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes; An Updated Analysis from the Danish National Birth Cohort. Int. J. Environ. Res. Public Health 2018, 15, 1832. [Google Scholar] [CrossRef]
- Darrow, L.A.; Howards, P.P.; Winquist, A.; Steenland, K. PFOA and PFOS Serum Levels and Miscarriage Risk. Epidemiology 2014, 25, 505–512. [Google Scholar] [CrossRef]
- Louis, G.M.B.; Peterson, C.M.; Chen, Z.; Hediger, M.L.; Croughan, M.S.; Sundaram, R.; Stanford, J.B.; Fujimoto, V.Y.; Varner, M.W.; Giudice, L.C.; et al. Perfluorochemicals and Endometriosis: The ENDO Study. Epidemiology 2012, 23, 799–805. [Google Scholar] [CrossRef]
- Zhang, C.; Sundaram, R.; Maisog, J.; Calafat, A.M.; Barr, D.B.; Buck Louis, G.M. A Prospective Study of Prepregnancy Serum Concentrations of Perfluorochemicals and the Risk of Gestational Diabetes. Fertil. Steril. 2015, 103, 184–189. [Google Scholar] [CrossRef]
- Jensen, T.K.; Andersen, L.B.; Kyhl, H.B.; Nielsen, F.; Christesen, H.T.; Grandjean, P. Association between Perfluorinated Compound Exposure and Miscarriage in Danish Pregnant Women. PLoS ONE 2015, 10, e0123496. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, W.; Wu, S.; Liang, F.; Li, Y.; Zhang, J.; Cui, L.; Feng, Y.; Wang, Y. Perfluoroalkyl Substances Exposure and Risk of Polycystic Ovarian Syndrome Related Infertility in Chinese Women. Environ. Pollut. 2019, 247, 824–831. [Google Scholar] [CrossRef]
- Liao, Q.; Tang, P.; Pan, D.; Song, Y.; Lei, L.; Liang, J.; Liu, B.; Lin, M.; Huang, H.; Mo, M.; et al. Association of Serum Per- and Polyfluoroalkyl Substances and Gestational Anemia during Different Trimesters in Zhuang Ethnic Pregnancy Women of Guangxi, China. Chemosphere 2022, 309, 136798. [Google Scholar] [CrossRef]
- Nian, M.; Huo, X.; Zhang, J.; Mao, Y.; Jin, F.; Shi, Y.; Zhang, J. Association of Emerging and Legacy Per- and Polyfluoroalkyl Substances with Unexplained Recurrent Spontaneous Abortion. Ecotoxicol. Environ. Saf. 2022, 239, 113691. [Google Scholar] [CrossRef]
- Ragnarsdóttir, O.; Abdallah, M.A.-E.; Harrad, S. Dermal Uptake: An Important Pathway of Human Exposure to Perfluoroalkyl Substances? Environ. Pollut. 2022, 307, 119478. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Jones, B.; Koekkoek, J.; Bignert, A.; Lamoree, M.H. Per- and Polyfluoroalkyl Substances (PFASs) in Swedish Household Dust and Exposure of Pet Cats. Environ. Sci. Pollut. Res. Int. 2021, 28, 39001–39013. [Google Scholar] [CrossRef] [PubMed]
- Franko, J.; Meade, B.J.; Frasch, H.F.; Barbero, A.M.; Anderson, S.E. Dermal Penetration Potential of Perfluorooctanoic Acid (PFOA) in Human and Mouse Skin. J. Toxicol. Environ. Health A 2012, 75, 50–62. [Google Scholar] [CrossRef]
- Schwanz, T.G.; Llorca, M.; Farré, M.; Barceló, D. Perfluoroalkyl Substances Assessment in Drinking Waters from Brazil, France and Spain. Sci. Total Environ. 2016, 539, 143–152. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Guardian, M.G.E.; Boongaling, E.G.; Bernardo-Boongaling, V.R.R.; Gamonchuang, J.; Boontongto, T.; Burakham, R.; Arnnok, P.; Aga, D.S. Prevalence of Per- and Polyfluoroalkyl Substances (PFASs) in Drinking and Source Water from Two Asian Countries. Chemosphere 2020, 256, 127115. [Google Scholar] [CrossRef]
- Bečanová, J.; Melymuk, L.; Vojta, Š.; Komprdová, K.; Klánová, J. Screening for Perfluoroalkyl Acids in Consumer Products, Building Materials and Wastes. Chemosphere 2016, 164, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhao, Y.; Sun, H.; Chang, S.; Zhu, L.; Alder, A.C.; Kannan, K. Per- and Polyfluoroalkyl Substances (PFASs) in Indoor Air and Dust from Homes and Various Microenvironments in China: Implications for Human Exposure. Environ. Sci. Technol. 2018, 52, 3156–3166. [Google Scholar] [CrossRef] [PubMed]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Boiteux, V.; Colin, A.; Hemard, J.; Sagres, V.; Rosin, C.; Munoz, J.-F. The Impact of Two Fluoropolymer Manufacturing Facilities on Downstream Contamination of a River and Drinking Water Resources with Per- and Polyfluoroalkyl Substances. Environ. Sci. Pollut. Res. Int. 2017, 24, 4916–4925. [Google Scholar] [CrossRef]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop-Livestock Systems: Environmental Exposure and Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 12550. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef]
- Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [Google Scholar] [CrossRef]
- Ramírez Carnero, A.; Lestido-Cardama, A.; Vazquez Loureiro, P.; Barbosa-Pereira, L.; Rodríguez Bernaldo de Quirós, A.; Sendón, R. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef] [PubMed]
- Bangma, J.; Guillette, T.C.; Bommarito, P.A.; Ng, C.; Reiner, J.L.; Lindstrom, A.B.; Strynar, M.J. Understanding the Dynamics of Physiological Changes, Protein Expression, and PFAS in Wildlife. Environ. Int. 2022, 159, 107037. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, M.; Zhao, X.; Li, Y.; Sun, J.; Zhao, W.; Ruan, Y.; Leung, K.M.Y.; Wu, F. Insight into the Binding Model of Per- and Polyfluoroalkyl Substances to Proteins and Membranes. Environ. Int. 2023, 175, 107951. [Google Scholar] [CrossRef]
- Naumann, A.; Alesio, J.; Poonia, M.; Bothun, G.D. PFAS Fluidize Synthetic and Bacterial Lipid Monolayers Based on Hydrophobicity and Lipid Charge. J. Environ. Chem. Eng. 2022, 10, 107351. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, C.-H.; Snajdr, S.I.; Nabb, D.L.; Mingoia, R.T. Uptake of Perfluorooctanoate in Freshly Isolated Hepatocytes from Male and Female Rats. Toxicol. Lett. 2008, 181, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, H.; Qin, X.; Gan, Z.; Kannan, K. PFOS and PFOA in Paired Urine and Blood from General Adults and Pregnant Women: Assessment of Urinary Elimination. Environ. Sci. Pollut. Res. Int. 2015, 22, 5572–5579. [Google Scholar] [CrossRef] [PubMed]
- Kudo, N.; Suzuki, E.; Katakura, M.; Ohmori, K.; Noshiro, R.; Kawashima, Y. Comparison of the Elimination between Perfluorinated Fatty Acids with Different Carbon Chain Length in Rats. Chem. Biol. Interact. 2001, 134, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, K.; Kudo, N.; Katayama, K.; Kawashima, Y. Comparison of the Toxicokinetics between Perfluorocarboxylic Acids with Different Carbon Chain Length. Toxicology 2003, 184, 135–140. [Google Scholar] [CrossRef]
- Lorber, M.; Eaglesham, G.E.; Hobson, P.; Toms, L.-M.L.; Mueller, J.F.; Thompson, J.S. The Effect of Ongoing Blood Loss on Human Serum Concentrations of Perfluorinated Acids. Chemosphere 2015, 118, 170–177. [Google Scholar] [CrossRef]
- Wong, F.; MacLeod, M.; Mueller, J.F.; Cousins, I.T. Enhanced Elimination of Perfluorooctane Sulfonic Acid by Menstruating Women: Evidence from Population-Based Pharmacokinetic Modeling. Environ. Sci. Technol. 2014, 48, 8807–8814. [Google Scholar] [CrossRef]
- Upson, K.; Shearston, J.A.; Kioumourtzoglou, M.-A. An Epidemiologic Review of Menstrual Blood Loss as an Excretion Route for Per- and Polyfluoroalkyl Substances. Curr. Environ. Health Rep. 2022, 9, 29–37. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Tong, C.; Fang, F.; Zhao, S.; Tian, Y.; Tao, Y.; Zhang, J. Shanghai Birth Cohort Study Plasma Perfluoroalkyl and Polyfluoroalkyl Substances Concentration and Menstrual Cycle Characteristics in Preconception Women. Environ. Health Perspect. 2017, 125, 067012. [Google Scholar] [CrossRef]
- Szilagyi, J.T.; Avula, V.; Fry, R.C. Perfluoroalkyl Substances (PFAS) and Their Effects on the Placenta, Pregnancy, and Child Development: A Potential Mechanistic Role for Placental Peroxisome Proliferator-Activated Receptors (PPARs). Curr. Environ. Health Rep. 2020, 7, 222–230. [Google Scholar] [CrossRef]
- Mogensen, U.B.; Grandjean, P.; Nielsen, F.; Weihe, P.; Budtz-Jørgensen, E. Breastfeeding as an Exposure Pathway for Perfluorinated Alkylates. Environ. Sci. Technol. 2015, 49, 10466–10473. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Bennett, D.H.; Tancredi, D.J.; Calafat, A.M.; Schmidt, R.J.; Hertz-Picciotto, I.; Shin, H.-M. Longitudinal Changes in Maternal Serum Concentrations of Per- and Polyfluoroalkyl Substances from Pregnancy to Two Years Postpartum. Environ. Sci. Technol. 2022, 56, 11449–11459. [Google Scholar] [CrossRef] [PubMed]
- Aylward, L.L.; Hays, S.M.; Kirman, C.R.; Marchitti, S.A.; Kenneke, J.F.; English, C.; Mattison, D.R.; Becker, R.A. Relationships of Chemical Concentrations in Maternal and Cord Blood: A Review of Available Data. J. Toxicol. Environ. Health B Crit. Rev. 2014, 17, 175–203. [Google Scholar] [CrossRef] [PubMed]
- Pastore, L.M.; Christianson, M.S.; Stelling, J.; Kearns, W.G.; Segars, J.H. Reproductive Ovarian Testing and the Alphabet Soup of Diagnoses: DOR, POI, POF, POR, and FOR. J. Assist. Reprod. Genet. 2018, 35, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Man, L.; Lustgarten Guahmich, N.; Vyas, N.; Tsai, S.; Arazi, L.; Lilienthal, D.; Schattman, G.; Rosenwaks, Z.; James, D. Ovarian Reserve Disorders, Can We Prevent Them? A Review. Int. J. Mol. Sci. 2022, 23, 15426. [Google Scholar] [CrossRef]
- Shen, H.; Gao, M.; Li, Q.; Sun, H.; Jiang, Y.; Liu, L.; Wu, J.; Yu, X.; Jia, T.; Xin, Y.; et al. Effect of PFOA Exposure on Diminished Ovarian Reserve and Its Metabolism. Reprod. Biol. Endocrinol. 2023, 21, 16. [Google Scholar] [CrossRef]
- Du, G.; Hu, J.; Huang, Z.; Yu, M.; Lu, C.; Wang, X.; Wu, D. Neonatal and Juvenile Exposure to Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS): Advance Puberty Onset and Kisspeptin System Disturbance in Female Rats. Ecotoxicol. Environ. Saf. 2019, 167, 412–421. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Cao, X.; Xia, Y.; Zhou, R.; Chen, L. Chronic Exposure of Female Mice to an Environmental Level of Perfluorooctane Sulfonate Suppresses Estrogen Synthesis through Reduced Histone H3K14 Acetylation of the StAR Promoter Leading to Deficits in Follicular Development and Ovulation. Toxicol. Sci. 2015, 148, 368–379. [Google Scholar] [CrossRef]
- Yang, M.; Lee, Y.; Gao, L.; Chiu, K.; Meling, D.D.; Flaws, J.A.; Warner, G.R. Perfluorooctanoic Acid Disrupts Ovarian Steroidogenesis and Folliculogenesis in Adult Mice. Toxicol. Sci. 2022, 186, 260–268. [Google Scholar] [CrossRef]
- Zhou, Y.-T.; Li, R.; Li, S.-H.; Ma, X.; Liu, L.; Niu, D.; Duan, X. Perfluorooctanoic Acid (PFOA) Exposure Affects Early Embryonic Development and Offspring Oocyte Quality via Inducing Mitochondrial Dysfunction. Environ. Int. 2022, 167, 107413. [Google Scholar] [CrossRef]
- Norman, R.J.; Dewailly, D.; Legro, R.S.; Hickey, T.E. Polycystic Ovary Syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Badeghiesh, A.; Suarthana, E.; Baghlaf, H.; Dahan, M.H. Polycystic Ovary Syndrome as an Independent Risk Factor for Gestational Diabetes and Hypertensive Disorders of Pregnancy: A Population-Based Study on 9.1 Million Pregnancies. Hum. Reprod. 2020, 35, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Badeghiesh, A.; Suarthana, E.; Baghlaf, H.; Dahan, M.H. Associations between Polycystic Ovary Syndrome and Adverse Obstetric and Neonatal Outcomes: A Population Study of 9.1 Million Births. Hum. Reprod. 2020, 35, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Riestenberg, C.; Jagasia, A.; Markovic, D.; Buyalos, R.P.; Azziz, R. Health Care-Related Economic Burden of Polycystic Ovary Syndrome in the United States: Pregnancy-Related and Long-Term Health Consequences. J. Clin. Endocrinol. Metab. 2022, 107, 575–585. [Google Scholar] [CrossRef]
- Vagi, S.J.; Azziz-Baumgartner, E.; Sjödin, A.; Calafat, A.M.; Dumesic, D.; Gonzalez, L.; Kato, K.; Silva, M.J.; Ye, X.; Azziz, R. Exploring the Potential Association between Brominated Diphenyl Ethers, Polychlorinated Biphenyls, Organochlorine Pesticides, Perfluorinated Compounds, Phthalates, and Bisphenol A in Polycystic Ovary Syndrome: A Case-Control Study. BMC Endocr. Disord. 2014, 14, 86. [Google Scholar] [CrossRef]
- Stener-Victorin, E.; Deng, Q. Epigenetic Inheritance of Polycystic Ovary Syndrome—Challenges and Opportunities for Treatment. Nat. Rev. Endocrinol. 2021, 17, 521–533. [Google Scholar] [CrossRef]
- Chaparro-Ortega, A.; Betancourt, M.; Rosas, P.; Vázquez-Cuevas, F.G.; Chavira, R.; Bonilla, E.; Casas, E.; Ducolomb, Y. Endocrine Disruptor Effect of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) on Porcine Ovarian Cell Steroidogenesis. Toxicol. Vitr. 2018, 46, 86–93. [Google Scholar] [CrossRef]
- Søderstrøm, S.; Lille-Langøy, R.; Yadetie, F.; Rauch, M.; Milinski, A.; Dejaegere, A.; Stote, R.H.; Goksøyr, A.; Karlsen, O.A. Agonistic and Potentiating Effects of Perfluoroalkyl Substances (PFAS) on the Atlantic Cod (Gadus Morhua) Peroxisome Proliferator-Activated Receptors (Ppars). Environ. Int. 2022, 163, 107203. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yanase, T.; Morinaga, H.; Mu, Y.-M.; Nomura, M.; Okabe, T.; Goto, K.; Harada, N.; Nawata, H. Activation of Peroxisome Proliferator-Activated Receptor-Gamma and Retinoid X Receptor Inhibits Aromatase Transcription via Nuclear Factor-kappaB. Endocrinology 2005, 146, 85–92. [Google Scholar] [CrossRef]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Macer, M.L.; Taylor, H.S. Endometriosis and Infertility: A Review of the Pathogenesis and Treatment of Endometriosis-Associated Infertility. Obstet. Gynecol. Clin. North. Am. 2012, 39, 535–549. [Google Scholar] [CrossRef]
- Du, G.; Hu, J.; Huang, H.; Qin, Y.; Han, X.; Wu, D.; Song, L.; Xia, Y.; Wang, X. Perfluorooctane Sulfonate (PFOS) Affects Hormone Receptor Activity, Steroidogenesis, and Expression of Endocrine-Related Genes In Vitro and In Vivo. Environ. Toxicol. Chem. 2013, 32, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Matta, K.; Lefebvre, T.; Vigneau, E.; Cariou, V.; Marchand, P.; Guitton, Y.; Royer, A.-L.; Ploteau, S.; Le Bizec, B.; Antignac, J.-P.; et al. Associations between Persistent Organic Pollutants and Endometriosis: A Multiblock Approach Integrating Metabolic and Cytokine Profiling. Environ. Int. 2022, 158, 106926. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.-M.; Hauzenberger, I.; Hartmann, C.; et al. Consideration of Pathways for Immunotoxicity of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Health 2023, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Suba, Z. Amplified Crosstalk Between Estrogen Binding and GFR Signaling Mediated Pathways of ER Activation Drives Responses in Tumors Treated with Endocrine Disruptors. Recent. Pat. Anticancer Drug Discov. 2018, 13, 428–444. [Google Scholar] [CrossRef] [PubMed]
- Gogola-Mruk, J.; Hoffmann-Młodzianowska, M.; Kamińska, K.; Ptak, A. Mixtures of Persistent Organic Pollutants Increase Ovarian Granulosa Tumor Cell Line Migration and Spheroid Invasion by Upregulating MMP2 Expression and Activity via IGF1R. Toxicology 2021, 452, 152715. [Google Scholar] [CrossRef]
- Gogola, J.; Hoffmann, M.; Ptak, A. Persistent Endocrine-Disrupting Chemicals Found in Human Follicular Fluid Stimulate the Proliferation of Granulosa Tumor Spheroids via GPR30 and IGF1R but Not via the Classic Estrogen Receptors. Chemosphere 2019, 217, 100–110. [Google Scholar] [CrossRef]
- Li, X.; Bao, C.; Ma, Z.; Xu, B.; Ying, X.; Liu, X.; Zhang, X. Perfluorooctanoic Acid Stimulates Ovarian Cancer Cell Migration, Invasion via ERK/NF-κB/MMP-2/-9 Pathway. Toxicol. Lett. 2018, 294, 44–50. [Google Scholar] [CrossRef]
- Kim, Y.R.; White, N.; Bräunig, J.; Vijayasarathy, S.; Mueller, J.F.; Knox, C.L.; Harden, F.A.; Pacella, R.; Toms, L.-M.L. Per- and Poly-Fluoroalkyl Substances (PFASs) in Follicular Fluid from Women Experiencing Infertility in Australia. Environ. Res. 2020, 190, 109963. [Google Scholar] [CrossRef]
- Governini, L.; Orvieto, R.; Guerranti, C.; Gambera, L.; De Leo, V.; Piomboni, P. The Impact of Environmental Exposure to Perfluorinated Compounds on Oocyte Fertilization Capacity. J. Assist. Reprod. Genet. 2011, 28, 415–418. [Google Scholar] [CrossRef]
- Zeng, X.-W.; Bloom, M.S.; Wei, F.; Liu, L.; Qin, J.; Xue, L.; Wang, S.; Huang, G.; Teng, M.; He, B.; et al. Perfluoroalkyl Acids in Follicular Fluid and Embryo Quality during IVF: A Prospective IVF Cohort in China. Environ. Health Perspect. 2023, 131, 27002. [Google Scholar] [CrossRef] [PubMed]
- McCoy, J.A.; Bangma, J.T.; Reiner, J.L.; Bowden, J.A.; Schnorr, J.; Slowey, M.; O’Leary, T.; Guillette, L.J.; Parrott, B.B. Associations between Perfluorinated Alkyl Acids in Blood and Ovarian Follicular Fluid and Ovarian Function in Women Undergoing Assisted Reproductive Treatment. Sci. Total Environ. 2017, 605–606, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Cui, L.; Chen, L.; Zhang, J.; Zhang, X.; Kang, Q.; Jin, F.; Ye, Y. Parental Plasma Concentrations of Perfluoroalkyl Substances and In Vitro Fertilization Outcomes. Environ. Pollut. 2021, 269, 116159. [Google Scholar] [CrossRef]
- Petro, E.M.L.; D’Hollander, W.; Covaci, A.; Bervoets, L.; Fransen, E.; De Neubourg, D.; De Pauw, I.; Leroy, J.L.M.R.; Jorssen, E.P.A.; Bols, P.E.J. Perfluoroalkyl Acid Contamination of Follicular Fluid and Its Consequence for in Vitro Oocyte Developmental Competence. Sci. Total Environ. 2014, 496, 282–288. [Google Scholar] [CrossRef]
- Melchior, H.; Kurch-Bek, D.; Mund, M. The Prevalence of Gestational Diabetes. Dtsch. Arztebl. Int. 2017, 114, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Landon, M.B.; Spong, C.Y.; Thom, E.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M.; et al. A Multicenter, Randomized Trial of Treatment for Mild Gestational Diabetes. N. Engl. J. Med. 2009, 361, 1339–1348. [Google Scholar] [CrossRef]
- Zhang, T.-N.; Huang, X.-M.; Zhao, X.-Y.; Wang, W.; Wen, R.; Gao, S.-Y. Risks of Specific Congenital Anomalies in Offspring of Women with Diabetes: A Systematic Review and Meta-Analysis of Population-Based Studies Including over 80 Million Births. PLoS Med. 2022, 19, e1003900. [Google Scholar] [CrossRef]
- Farahvar, S.; Walfisch, A.; Sheiner, E. Gestational Diabetes Risk Factors and Long-Term Consequences for Both Mother and Offspring: A Literature Review. Expert. Rev. Endocrinol. Metab. 2019, 14, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Liu, H.; Li, Y.; Zheng, T.-Z.; Xu, S.; Xia, W.; Sheng, X. Association of Exposure to Per- and Polyfluoroalkyl Substances with Hemoglobin and Hematocrit during Pregnancy. Ecotoxicol. Environ. Saf. 2022, 248, 114319. [Google Scholar] [CrossRef]
- Matilla-Santander, N.; Valvi, D.; Lopez-Espinosa, M.-J.; Manzano-Salgado, C.B.; Ballester, F.; Ibarluzea, J.; Santa-Marina, L.; Schettgen, T.; Guxens, M.; Sunyer, J.; et al. Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts. Environ. Health Perspect. 2017, 125, 117004. [Google Scholar] [CrossRef]
- Preston, E.V.; Rifas-Shiman, S.L.; Hivert, M.-F.; Zota, A.R.; Sagiv, S.K.; Calafat, A.M.; Oken, E.; James-Todd, T. Associations of Per- and Polyfluoroalkyl Substances (PFAS) With Glucose Tolerance during Pregnancy in Project Viva. J. Clin. Endocrinol. Metab. 2020, 105, e2864–e2876. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, J.; Du, H.; Xu, L.; Liu, S.; Yi, J.; Qian, X.; Chen, Y.; Jiang, Q.; He, G. Perfluoroalkyl Substances, Glucose Homeostasis, and Gestational Diabetes Mellitus in Chinese Pregnant Women: A Repeat Measurement-Based Prospective Study. Environ. Int. 2018, 114, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.M.; Hoffman, K.; Shin, H.-M.; Weinberg, J.M.; Webster, T.F.; Fletcher, T. Perfluorooctanoic Acid Exposure and Cancer Outcomes in a Contaminated Community: A Geographic Analysis. Environ. Health Perspect. 2013, 121, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Behr, A.-C.; Plinsch, C.; Braeuning, A.; Buhrke, T. Activation of Human Nuclear Receptors by Perfluoroalkylated Substances (PFAS). Toxicol. Vitr. 2020, 62, 104700. [Google Scholar] [CrossRef]
- Botta, M.; Audano, M.; Sahebkar, A.; Sirtori, C.R.; Mitro, N.; Ruscica, M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int. J. Mol. Sci. 2018, 19, 1197. [Google Scholar] [CrossRef]
- Duan, X.; Sun, W.; Sun, H.; Zhang, L. Perfluorooctane Sulfonate Continual Exposure Impairs Glucose-Stimulated Insulin Secretion via SIRT1-Induced Upregulation of UCP2 Expression. Environ. Pollut. 2021, 278, 116840. [Google Scholar] [CrossRef]
- Qin, W.-P.; Cao, L.-Y.; Li, C.-H.; Guo, L.-H.; Colbourne, J.K.; Ren, X.-M. Perfluoroalkyl Substances Stimulate Insulin Secretion by Islet β Cells via G Protein-Coupled Receptor 40. Environ. Sci. Technol. 2020, 54, 3428–3436. [Google Scholar] [CrossRef] [PubMed]
- Davey, D.; MacGillivray, I.; Roberts, J.M.; Lilford, R.J. Classification of Hypertensive Disorders of Pregnancy. Lancet 1989, 1, 935–936. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, Q.; Zhang, L.; Li, W.; Yin, S.; Li, F.; Xu, C. In Utero Exposure to Per-/Polyfluoroalkyl Substances (PFASs): Preeclampsia in Pregnancy and Low Birth Weight for Neonates. Chemosphere 2023, 313, 137490. [Google Scholar] [CrossRef]
- Rylander, L.; Lindh, C.H.; Hansson, S.R.; Broberg, K.; Källén, K. Per- and Polyfluoroalkyl Substances in Early Pregnancy and Risk for Preeclampsia: A Case-Control Study in Southern Sweden. Toxics 2020, 8, 43. [Google Scholar] [CrossRef]
- Savitz, D.A.; Stein, C.R.; Bartell, S.M.; Elston, B.; Gong, J.; Shin, H.-M.; Wellenius, G.A. Perfluorooctanoic Acid Exposure and Pregnancy Outcome in a Highly Exposed Community. Epidemiology 2012, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Chen, Q.; Zhang, L.; Luo, K.; Chen, L.; Zhao, S.; Feng, L.; Zhang, J. Prenatal Exposure to Perfluoroalkyl and Polyfluoroalkyl Substances and the Risk of Hypertensive Disorders of Pregnancy. Environ. Health 2019, 18, 5. [Google Scholar] [CrossRef]
- Preston, E.V.; Hivert, M.-F.; Fleisch, A.F.; Calafat, A.M.; Sagiv, S.K.; Perng, W.; Rifas-Shiman, S.L.; Chavarro, J.E.; Oken, E.; Zota, A.R.; et al. Early-Pregnancy Plasma per- and Polyfluoroalkyl Substance (PFAS) Concentrations and Hypertensive Disorders of Pregnancy in the Project Viva Cohort. Environ. Int. 2022, 165, 107335. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.; Turco, M.Y.; Burton, G.J.; Moffett, A. Investigation of Human Trophoblast Invasion in Vitro. Hum. Reprod. Update 2020, 26, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, H.; Xu, H.; An, P.; Ma, B.; Lu, H.; Zhou, Q.; Li, X.; Xiong, Y. Perfluorooctane Sulfonate Exposure Induces Preeclampsia-like Syndromes by Damaging Trophoblast Mitochondria in Pregnant Mice. Ecotoxicol. Environ. Saf. 2022, 247, 114256. [Google Scholar] [CrossRef]
- Poteser, M.; Hutter, H.-P.; Moshammer, H.; Weitensfelder, L. Perfluoroctanoic Acid (PFOA) Enhances NOTCH-Signaling in an Angiogenesis Model of Placental Trophoblast Cells. Int. J. Hyg. Environ. Health 2020, 229, 113566. [Google Scholar] [CrossRef]
- Perlman, B.E.; Merriam, A.A.; Lemenze, A.; Zhao, Q.; Begum, S.; Nair, M.; Wu, T.; Wapner, R.J.; Kitajewski, J.K.; Shawber, C.J.; et al. Implications for Preeclampsia: Hypoxia-Induced Notch Promotes Trophoblast Migration. Reproduction 2021, 161, 681–696. [Google Scholar] [CrossRef]
- Poppe, K. MANAGEMENT OF ENDOCRINE DISEASE: Thyroid and Female Infertility: More Questions than Answers?! Eur. J. Endocrinol. 2021, 184, R123–R135. [Google Scholar] [CrossRef]
- Preston, E.V.; Webster, T.F.; Oken, E.; Claus Henn, B.; McClean, M.D.; Rifas-Shiman, S.L.; Pearce, E.N.; Braverman, L.E.; Calafat, A.M.; Ye, X.; et al. Maternal Plasma Per- and Polyfluoroalkyl Substance Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth Cohort: Project Viva (USA). Environ. Health Perspect. 2018, 126, 027013. [Google Scholar] [CrossRef]
- Sarzo, B.; Ballesteros, V.; Iñiguez, C.; Manzano-Salgado, C.B.; Casas, M.; Llop, S.; Murcia, M.; Guxens, M.; Vrijheid, M.; Marina, L.S.; et al. Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-Sectional Study. Environ. Sci. Technol. 2021, 55, 11144–11154. [Google Scholar] [CrossRef] [PubMed]
- Aimuzi, R.; Luo, K.; Huang, R.; Huo, X.; Nian, M.; Ouyang, F.; Du, Y.; Feng, L.; Wang, W.; Zhang, J.; et al. Perfluoroalkyl and Polyfluroalkyl Substances and Maternal Thyroid Hormones in Early Pregnancy. Environ. Pollut. 2020, 264, 114557. [Google Scholar] [CrossRef] [PubMed]
- Webster, G.M.; Venners, S.A.; Mattman, A.; Martin, J.W. Associations between Perfluoroalkyl Acids (PFASs) and Maternal Thyroid Hormones in Early Pregnancy: A Population-Based Cohort Study. Environ. Res. 2014, 133, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Araki, A.; Miyashita, C.; Yamazaki, K.; Goudarzi, H.; Minatoya, M.; Ait Bamai, Y.; Kobayashi, S.; Okada, E.; Kashino, I.; et al. Association between Perfluoroalkyl Substance Exposure and Thyroid Hormone/Thyroid Antibody Levels in Maternal and Cord Blood: The Hokkaido Study. Environ. Int. 2019, 133, 105139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rogan, W.J.; Chen, P.-C.; Lien, G.-W.; Chen, H.-Y.; Tseng, Y.-C.; Longnecker, M.P.; Wang, S.-L. Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study. Environ. Health Perspect. 2014, 122, 529–534. [Google Scholar] [CrossRef]
- Yu, W.-G.; Liu, W.; Jin, Y.-H. Effects of Perfluorooctane Sulfonate on Rat Thyroid Hormone Biosynthesis and Metabolism. Environ. Toxicol. Chem. 2009, 28, 990–996. [Google Scholar] [CrossRef]
- Mortensen, Å.-K.; Mæhre, S.; Kristiansen, K.; Heimstad, E.S.; Gabrielsen, G.W.; Jenssen, B.M.; Sylte, I. Homology Modeling to Screen for Potential Binding of Contaminants to Thyroid Hormone Receptor and Transthyretin in Glaucous Gull (Larus hyperboreus) and Herring Gull (Larus argentatus). Comput. Toxicol. 2020, 13, 100120. [Google Scholar] [CrossRef]
- Behnisch, P.A.; Besselink, H.; Weber, R.; Willand, W.; Huang, J.; Brouwer, A. Developing Potency Factors for Thyroid Hormone Disruption by PFASs Using TTR-TRβ CALUX® Bioassay and Assessment of PFASs Mixtures in Technical Products. Environ. Int. 2021, 157, 106791. [Google Scholar] [CrossRef]
- Conti, A.; Strazzeri, C.; Rhoden, K.J. Perfluorooctane Sulfonic Acid, a Persistent Organic Pollutant, Inhibits Iodide Accumulation by Thyroid Follicular Cells in Vitro. Mol. Cell Endocrinol. 2020, 515, 110922. [Google Scholar] [CrossRef]
- Mitro, S.D.; Sagiv, S.K.; Rifas-Shiman, S.L.; Calafat, A.M.; Fleisch, A.F.; Jaacks, L.M.; Williams, P.L.; Oken, E.; James-Todd, T.M. Per- and Polyfluoroalkyl Substance Exposure, Gestational Weight Gain, and Postpartum Weight Changes in Project Viva. Obesity 2020, 28, 1984–1992. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Morisset, A.-S.; Fisher, M.; Bouchard, M.F.; Shapiro, G.D.; Ettinger, A.S.; Monnier, P.; Dallaire, R.; et al. Maternal and Neonatal Levels of Perfluoroalkyl Substances in Relation to Gestational Weight Gain. Int. J. Environ. Res. Public Health 2016, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, Regional, and National Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Chin, H.B. Environmental Chemicals and Preterm Birth: Biological Mechanisms and the State of the Science. Curr. Epidemiol. Rep. 2017, 4, 56–71. [Google Scholar] [CrossRef]
- Kolan, A.S.; Hall, J.M. Association of Preterm Birth and Exposure to Endocrine Disrupting Chemicals. Int. J. Mol. Sci. 2023, 24, 1952. [Google Scholar] [CrossRef]
- Yu, Y.; Qin, X.-D.; Bloom, M.S.; Chu, C.; Dai, X.; Li, Q.-Q.; Chen, Z.-X.; Kong, M.-L.; Xie, Y.-Q.; Meng, W.-J.; et al. Associations of Prenatal Exposure to Perfluoroalkyl Substances with Preterm Birth: A Family-Based Birth Cohort Study. Environ. Res. 2022, 214, 113803. [Google Scholar] [CrossRef]
- Chen, M.-H.; Ha, E.-H.; Wen, T.-W.; Su, Y.-N.; Lien, G.-W.; Chen, C.-Y.; Chen, P.-C.; Hsieh, W.-S. Perfluorinated Compounds in Umbilical Cord Blood and Adverse Birth Outcomes. PLoS ONE 2012, 7, e42474. [Google Scholar] [CrossRef]
- Huo, X.; Zhang, L.; Huang, R.; Feng, L.; Wang, W.; Zhang, J. Shanghai Birth Cohort Perfluoroalkyl Substances Exposure in Early Pregnancy and Preterm Birth in Singleton Pregnancies: A Prospective Cohort Study. Environ. Health 2020, 19, 60. [Google Scholar] [CrossRef]
- Manzano-Salgado, C.B.; Casas, M.; Lopez-Espinosa, M.-J.; Ballester, F.; Iñiguez, C.; Martinez, D.; Costa, O.; Santa-Marina, L.; Pereda-Pereda, E.; Schettgen, T.; et al. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes in a Spanish Birth Cohort. Environ. Int. 2017, 108, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Darrow, L.A.; Stein, C.R.; Steenland, K. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005–2010. Environ Health Perspect 2013, 121, 1207–1213. [Google Scholar] [CrossRef]
- Green, E.S.; Arck, P.C. Pathogenesis of Preterm Birth: Bidirectional Inflammation in Mother and Fetus. Semin. Immunopathol. 2020, 42, 413–429. [Google Scholar] [CrossRef]
- Vadillo-Ortega, F.; Osornio-Vargas, A.; Buxton, M.A.; Sánchez, B.N.; Rojas-Bracho, L.; Viveros-Alcaráz, M.; Castillo-Castrejón, M.; Beltrán-Montoya, J.; Brown, D.G.; O’Neill, M.S. Air Pollution, Inflammation and Preterm Birth: A Potential Mechanistic Link. Med. Hypotheses 2014, 82, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Q.; Liu, T.; Yang, S.; Sun, L.; Zhao, Z.-Y.; Li, L.-Y.; She, Y.-C.; Zheng, Y.-Y.; Ye, X.-Y.; Bao, Q.; et al. Perfluoroalkyl Substance Pollutants Activate the Innate Immune System through the AIM2 Inflammasome. Nat. Commun. 2021, 12, 2915. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Wang, B.; Xu, F.; Pang, Y.; Zhang, L.; Zhang, Y.; Jin, L.; Li, Z.; Ren, A. Does Low Maternal Exposure to Per- and Polyfluoroalkyl Substances Elevate the Risk of Spontaneous Preterm Birth? A Nested Case-Control Study in China. Environ. Sci. Technol. 2020, 54, 8259–8268. [Google Scholar] [CrossRef] [PubMed]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage Matters: The Epidemiological, Physical, Psychological, and Economic Costs of Early Pregnancy Loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef]
- La, X.; Wang, W.; Zhang, M.; Liang, L. Definition and Multiple Factors of Recurrent Spontaneous Abortion. Adv. Exp. Med. Biol. 2021, 1300, 231–257. [Google Scholar] [CrossRef] [PubMed]
- Smarr, M.M.; Mirzaei Salehabadi, S.; Boyd Barr, D.; Buck Louis, G.M.; Sundaram, R. A Multi-Pollutant Assessment of Preconception Persistent Endocrine Disrupting Chemicals and Incident Pregnancy Loss. Environ. Int. 2021, 157, 106788. [Google Scholar] [CrossRef]
- Wuri, L.; Arosh, J.A.; Wu, J.Z.; Banu, S.K. Exposure to Hexavalent Chromium Causes Infertility by Disrupting Cytoskeletal Machinery and Mitochondrial Function of the Metaphase II Oocytes in Superovulated Rats. Toxicol. Rep. 2022, 9, 219–229. [Google Scholar] [CrossRef]
- Sclowitz, I.K.T.; Santos, I.d.S. dos Risk factors for repetition of low birth weight, intrauterine growth retardation, and prematurity in subsequent pregnancies: A systematic review. Cad. Saude Publica 2006, 22, 1129–1136. [Google Scholar] [CrossRef]
- Nakano, Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. J. Atheroscler. Thromb. 2020, 27, 397–405. [Google Scholar] [CrossRef]
- Xu, C.; Yin, S.; Liu, Y.; Chen, F.; Zhong, Z.; Li, F.; Liu, K.; Liu, W. Prenatal Exposure to Chlorinated Polyfluoroalkyl Ether Sulfonic Acids and Perfluoroalkyl Acids: Potential Role of Maternal Determinants and Associations with Birth Outcomes. J. Hazard. Mater. 2019, 380, 120867. [Google Scholar] [CrossRef]
- Eryasa, B.; Grandjean, P.; Nielsen, F.; Valvi, D.; Zmirou-Navier, D.; Sunderland, E.; Weihe, P.; Oulhote, Y. Physico-Chemical Properties and Gestational Diabetes Predict Transplacental Transfer and Partitioning of Perfluoroalkyl Substances. Environ. Int. 2019, 130, 104874. [Google Scholar] [CrossRef] [PubMed]
- Manea, S.; Salmaso, L.; Lorenzoni, G.; Mazzucato, M.; Russo, F.; Mantoan, D.; Martuzzi, M.; Fletcher, T.; Facchin, P. Exposure to PFAS and Small for Gestational Age New-Borns: A Birth Records Study in Veneto Region (Italy). Environ. Res. 2020, 184, 109282. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Qu, A.; Li, Z.; Wang, W.; Liu, R.; Wang, X.; Nie, Y.; Sun, S.; Zhang, X.; Liu, X. The Relationship between Maternal Perfluoroalkylated Substances Exposure and Low Birth Weight of Offspring: A Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 67053–67065. [Google Scholar] [CrossRef]
- Chen, L.; Tong, C.; Huo, X.; Zhang, J.; Tian, Y. Shanghai Birth Cohort Prenatal Exposure to Perfluoroalkyl and Polyfluoroalkyl Substances and Birth Outcomes: A Longitudinal Cohort with Repeated Measurements. Chemosphere 2021, 267, 128899. [Google Scholar] [CrossRef]
- Derakhshan, A.; Peeters, R.P.; Taylor, P.N.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Chen, L.; Knight, B.A.; Ghafoor, F.; et al. Association of Maternal Thyroid Function with Birthweight: A Systematic Review and Individual-Participant Data Meta-Analysis. Lancet Diabetes Endocrinol. 2020, 8, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Forhead, A.J.; Fowden, A.L. Thyroid Hormones in Fetal Growth and Prepartum Maturation. J. Endocrinol. 2014, 221, R87–R103. [Google Scholar] [CrossRef]
- Fisher, D.A. Thyroid System Immaturities in Very Low Birth Weight Premature Infants. Semin. Perinatol. 2008, 32, 387–397. [Google Scholar] [CrossRef]
- Long, M.; Ghisari, M.; Bonefeld-Jørgensen, E.C. Effects of Perfluoroalkyl Acids on the Function of the Thyroid Hormone and the Aryl Hydrocarbon Receptor. Environ. Sci. Pollut. Res. Int. 2013, 20, 8045–8056. [Google Scholar] [CrossRef]
- Kim, S.O.; Albrecht, E.D.; Pepe, G.J. Estrogen Promotes Fetal Skeletal Muscle Myofiber Development Important for Insulin Sensitivity in Offspring. Endocrine 2022, 78, 32–41. [Google Scholar] [CrossRef]
- Zou, Z.; Harris, L.K.; Forbes, K.; Heazell, A.E.P. Placental Expression of Estrogen-Related Receptor Gamma Is Reduced in Fetal Growth Restriction Pregnancies and Is Mediated by Hypoxia. Biol. Reprod. 2022, 107, 846–857. [Google Scholar] [CrossRef]
- Gundacker, C.; Audouze, K.; Widhalm, R.; Granitzer, S.; Forsthuber, M.; Jornod, F.; Wielsøe, M.; Long, M.; Halldórsson, T.I.; Uhl, M.; et al. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. Toxics 2022, 10, 684. [Google Scholar] [CrossRef]
- Polak, M. Human Fetal Thyroid Function. Endocr. Dev. 2014, 26, 17–25. [Google Scholar] [CrossRef]
- Munoz, J.L. Fetal Thyroid Disorders: Pathophysiology, Diagnosis and Therapeutic Approaches. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 231–233. [Google Scholar] [CrossRef]
- Léger, J.; Delcour, C.; Carel, J.-C. Fetal and Neonatal Thyroid Dysfunction. J. Clin. Endocrinol. Metab. 2022, 107, 836–846. [Google Scholar] [CrossRef]
- Köhrle, J.; Frädrich, C. Thyroid Hormone System Disrupting Chemicals. Best. Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101562. [Google Scholar] [CrossRef]
- Preston, E.V.; Webster, T.F.; Claus Henn, B.; McClean, M.D.; Gennings, C.; Oken, E.; Rifas-Shiman, S.L.; Pearce, E.N.; Calafat, A.M.; Fleisch, A.F.; et al. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Maternal and Neonatal Thyroid Function in the Project Viva Cohort: A Mixtures Approach. Environ. Int. 2020, 139, 105728. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K.; Ji, K.; Seo, J.; Kho, Y.; Park, J.; Kim, S.; Park, S.; Hwang, I.; Jeon, J.; et al. Trans-Placental Transfer of Thirteen Perfluorinated Compounds and Relations with Fetal Thyroid Hormones. Environ. Sci. Technol. 2011, 45, 7465–7472. [Google Scholar] [CrossRef]
- Yao, Q.; Vinturache, A.; Lei, X.; Wang, Z.; Pan, C.; Shi, R.; Yuan, T.; Gao, Y.; Tian, Y. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Fetal Thyroid Hormones, and Infant Neurodevelopment. Environ. Res. 2022, 206, 112561. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Wang, Z.; Zhang, L.; Qi, X.; Zhang, Y.; Chang, X.; Wu, C.; Zhou, Z. Umbilical Cord Serum Perfluoroalkyl Substance Mixtures in Relation to Thyroid Function of Newborns: Findings from Sheyang Mini Birth Cohort Study. Chemosphere 2021, 273, 129664. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; Miao, M.; Tian, Y.; Zhou, Y.; Wen, S.; Chen, Y.; Sun, X.; Yuan, W. Prenatal Exposure to Perfluoroalkyl Substances and Thyroid Hormone Concentrations in Cord Plasma in a Chinese Birth Cohort. Environ. Health 2020, 19, 127. [Google Scholar] [CrossRef]
- Cao, Z.; Li, J.; Yang, M.; Gong, H.; Xiang, F.; Zheng, H.; Cai, X.; Xu, S.; Zhou, A.; Xiao, H. Prenatal Exposure to Perfluorooctane Sulfonate Alternatives and Associations with Neonatal Thyroid Stimulating Hormone Concentration: A Birth Cohort Study. Chemosphere 2023, 311, 136940. [Google Scholar] [CrossRef]
- Weiss, J.M.; Andersson, P.L.; Lamoree, M.H.; Leonards, P.E.G.; van Leeuwen, S.P.J.; Hamers, T. Competitive Binding of Poly- and Perfluorinated Compounds to the Thyroid Hormone Transport Protein Transthyretin. Toxicol. Sci. 2009, 109, 206–216. [Google Scholar] [CrossRef]
- Kim, S.; Stroski, K.M.; Killeen, G.; Smitherman, C.; Simcik, M.F.; Brooks, B.W. 8:8 Perfluoroalkyl Phosphinic Acid Affects Neurobehavioral Development, Thyroid Disruption, and DNA Methylation in Developing Zebrafish. Sci. Total Environ. 2020, 736, 139600. [Google Scholar] [CrossRef]
- Kjeldsen, L.S.; Bonefeld-Jørgensen, E.C. Perfluorinated Compounds Affect the Function of Sex Hormone Receptors. Environ. Sci. Pollut. Res. Int. 2013, 20, 8031–8044. [Google Scholar] [CrossRef]
- Kjaergaard, A.D.; Marouli, E.; Papadopoulou, A.; Deloukas, P.; Kuś, A.; Sterenborg, R.; Teumer, A.; Burgess, S.; Åsvold, B.O.; Chasman, D.I.; et al. Thyroid Function, Sex Hormones and Sexual Function: A Mendelian Randomization Study. Eur. J. Epidemiol. 2021, 36, 335–344. [Google Scholar] [CrossRef]
- Raja, G.L.; Subhashree, K.D.; Kantayya, K.E. In Utero Exposure to Endocrine Disruptors and Developmental Neurotoxicity: Implications for Behavioural and Neurological Disorders in Adult Life. Environ. Res. 2022, 203, 111829. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.; Cui, Q.; Yao, B.; Wang, J.; Dai, J. Penetration of PFASs Across the Blood Cerebrospinal Fluid Barrier and Its Determinants in Humans. Environ. Sci. Technol. 2018, 52, 13553–13561. [Google Scholar] [CrossRef]
- Mamsen, L.S.; Björvang, R.D.; Mucs, D.; Vinnars, M.-T.; Papadogiannakis, N.; Lindh, C.H.; Andersen, C.Y.; Damdimopoulou, P. Concentrations of Perfluoroalkyl Substances (PFASs) in Human Embryonic and Fetal Organs from First, Second, and Third Trimester Pregnancies. Environ. Int. 2019, 124, 482–492. [Google Scholar] [CrossRef]
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental Disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef]
- Luo, F.; Chen, Q.; Yu, G.; Huo, X.; Wang, H.; Nian, M.; Tian, Y.; Xu, J.; Zhang, J.; Zhang, J.; et al. Exposure to Perfluoroalkyl Substances and Neurodevelopment in 2-Year-Old Children: A Prospective Cohort Study. Environ. Int. 2022, 166, 107384. [Google Scholar] [CrossRef]
- Oh, J.; Schmidt, R.J.; Tancredi, D.; Calafat, A.M.; Roa, D.L.; Hertz-Picciotto, I.; Shin, H.-M. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Cognitive Development in Infancy and Toddlerhood. Environ. Res. 2021, 196, 110939. [Google Scholar] [CrossRef]
- Varsi, K.; Torsvik, I.K.; Huber, S.; Averina, M.; Brox, J.; Bjørke-Monsen, A.-L. Impaired Gross Motor Development in Infants with Higher PFAS Concentrations. Environ. Res. 2022, 204, 112392. [Google Scholar] [CrossRef]
- Vuong, A.M.; Yolton, K.; Xie, C.; Dietrich, K.N.; Braun, J.M.; Webster, G.M.; Calafat, A.M.; Lanphear, B.P.; Chen, A. Prenatal and Childhood Exposure to Poly- and Perfluoroalkyl Substances (PFAS) and Cognitive Development in Children at Age 8 Years. Environ. Res. 2019, 172, 242–248. [Google Scholar] [CrossRef]
- Skogheim, T.S.; Weyde, K.V.F.; Aase, H.; Engel, S.M.; Surén, P.; Øie, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Brantsæter, A.L.; Haug, L.S.; et al. Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Associations with Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder in Children. Environ. Res. 2021, 202, 111692. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, B.-N.; Lee, Y.A.; Shin, C.H.; Hong, Y.-C.; Døssing, L.D.; Hildebrandt, G.; Lim, Y.-H. Association between Early-Childhood Exposure to Perfluoroalkyl Substances and ADHD Symptoms: A Prospective Cohort Study. Sci. Total Environ. 2023, 879, 163081. [Google Scholar] [CrossRef]
- Itoh, S.; Yamazaki, K.; Suyama, S.; Ikeda-Araki, A.; Miyashita, C.; Ait Bamai, Y.; Kobayashi, S.; Masuda, H.; Yamaguchi, T.; Goudarzi, H.; et al. The Association between Prenatal Perfluoroalkyl Substance Exposure and Symptoms of Attention-Deficit/Hyperactivity Disorder in 8-Year-Old Children and the Mediating Role of Thyroid Hormones in the Hokkaido Study. Environ. Int. 2022, 159, 107026. [Google Scholar] [CrossRef]
- Lien, G.-W.; Huang, C.-C.; Shiu, J.-S.; Chen, M.-H.; Hsieh, W.-S.; Guo, Y.-L.; Chen, P.-C. Perfluoroalkyl Substances in Cord Blood and Attention Deficit/Hyperactivity Disorder Symptoms in Seven-Year-Old Children. Chemosphere 2016, 156, 118–127. [Google Scholar] [CrossRef]
- Quaak, I.; de Cock, M.; de Boer, M.; Lamoree, M.; Leonards, P.; van de Bor, M. Prenatal Exposure to Perfluoroalkyl Substances and Behavioral Development in Children. Int. J. Environ. Res. Public Health 2016, 13, 511. [Google Scholar] [CrossRef]
- Liew, Z.; Ritz, B.; von Ehrenstein, O.S.; Bech, B.H.; Nohr, E.A.; Fei, C.; Bossi, R.; Henriksen, T.B.; Bonefeld-Jørgensen, E.C.; Olsen, J. Attention Deficit/Hyperactivity Disorder and Childhood Autism in Association with Prenatal Exposure to Perfluoroalkyl Substances: A Nested Case-Control Study in the Danish National Birth Cohort. Environ. Health Perspect. 2015, 123, 367–373. [Google Scholar] [CrossRef]
- Skogheim, T.S.; Villanger, G.D.; Weyde, K.V.F.; Engel, S.M.; Surén, P.; Øie, M.G.; Skogan, A.H.; Biele, G.; Zeiner, P.; Øvergaard, K.R.; et al. Prenatal Exposure to Perfluoroalkyl Substances and Associations with Symptoms of Attention-Deficit/Hyperactivity Disorder and Cognitive Functions in Preschool Children. Int. J. Hyg. Environ. Health 2020, 223, 80–92. [Google Scholar] [CrossRef]
- Dalsager, L.; Jensen, T.K.; Nielsen, F.; Grandjean, P.; Bilenberg, N.; Andersen, H.R. No Association between Maternal and Child PFAS Concentrations and Repeated Measures of ADHD Symptoms at Age 2½ and 5 Years in Children from the Odense Child Cohort. Neurotoxicol Teratol. 2021, 88, 107031. [Google Scholar] [CrossRef] [PubMed]
- Forns, J.; Verner, M.-A.; Iszatt, N.; Nowack, N.; Bach, C.C.; Vrijheid, M.; Costa, O.; Andiarena, A.; Sovcikova, E.; Høyer, B.B.; et al. Early Life Exposure to Perfluoroalkyl Substances (PFAS) and ADHD: A Meta-Analysis of Nine European Population-Based Studies. Environ. Health Perspect. 2020, 128, 57002. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Yau, V.M.; Hansen, R.; Kharrazi, M.; Yoshida, C.K.; Calafat, A.M.; Windham, G.; Croen, L.A. Prenatal Maternal Serum Concentrations of Per- and Polyfluoroalkyl Substances in Association with Autism Spectrum Disorder and Intellectual Disability. Environ. Health Perspect. 2018, 126, 017001. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, F.; Zhang, Y.; Yang, X.; Zhang, S.; Zhang, J.; Tian, Y.; Zheng, L. Prenatal Exposure to Perfluoroalkyl Substances and Child Intelligence Quotient: Evidence from the Shanghai Birth Cohort. Environ. Int. 2023, 174, 107912. [Google Scholar] [CrossRef]
- Goodman, C.V.; Till, C.; Green, R.; El-Sabbagh, J.; Arbuckle, T.E.; Hornung, R.; Lanphear, B.; Seguin, J.R.; Booij, L.; Fisher, M.; et al. Prenatal Exposure to Legacy PFAS and Neurodevelopment in Preschool-Aged Canadian Children: The MIREC Cohort. Neurotoxicol Teratol. 2023, 98, 107181. [Google Scholar] [CrossRef] [PubMed]
- Spratlen, M.J.; Perera, F.P.; Lederman, S.A.; Rauh, V.A.; Robinson, M.; Kannan, K.; Trasande, L.; Herbstman, J. The Association between Prenatal Exposure to Perfluoroalkyl Substances and Childhood Neurodevelopment. Environ. Pollut. 2020, 263, 114444. [Google Scholar] [CrossRef]
- Cao, Y.; Ng, C. Absorption, Distribution, and Toxicity of per- and Polyfluoroalkyl Substances (PFAS) in the Brain: A Review. Environ. Sci. Process Impacts 2021, 23, 1623–1640. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Y.; Liu, W.; Wang, F.; Hao, S. Possible Mechanism of Perfluorooctane Sulfonate and Perfluorooctanoate on the Release of Calcium Ion from Calcium Stores in Primary Cultures of Rat Hippocampal Neurons. Toxicol. Vitr. 2011, 25, 1294–1301. [Google Scholar] [CrossRef]
- Di Nisio, A.; Pannella, M.; Vogiatzis, S.; Sut, S.; Dall’Acqua, S.; Rocca, M.S.; Antonini, A.; Porzionato, A.; De Caro, R.; Bortolozzi, M.; et al. Impairment of Human Dopaminergic Neurons at Different Developmental Stages by Perfluoro-Octanoic Acid (PFOA) and Differential Human Brain Areas Accumulation of Perfluoroalkyl Chemicals. Environ. Int. 2022, 158, 106982. [Google Scholar] [CrossRef]
- Long, Y.; Wang, Y.; Ji, G.; Yan, L.; Hu, F.; Gu, A. Neurotoxicity of Perfluorooctane Sulfonate to Hippocampal Cells in Adult Mice. PLoS ONE 2013, 8, e54176. [Google Scholar] [CrossRef]
- Pizzurro, D.M.; Seeley, M.; Kerper, L.E.; Beck, B.D. Interspecies Differences in Perfluoroalkyl Substances (PFAS) Toxicokinetics and Application to Health-Based Criteria. Regul. Toxicol. Pharmacol. 2019, 106, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Jane L Espartero, L.; Yamada, M.; Ford, J.; Owens, G.; Prow, T.; Juhasz, A. Health-Related Toxicity of Emerging per- and Polyfluoroalkyl Substances: Comparison to Legacy PFOS and PFOA. Environ. Res. 2022, 212, 113431. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Enright, E.A.; Geiger, S.D.; Dzwilewski, K.L.C.; DeMicco, E.; Smith, S.; Park, J.-S.; Aguiar, A.; Woodruff, T.J.; Morello-Frosch, R.; et al. Associations of Maternal Stress, Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFAS), and Demographic Risk Factors with Birth Outcomes and Offspring Neurodevelopment: An Overview of the ECHO.CA.IL Prospective Birth Cohorts. Int. J. Environ. Res. Public Health 2021, 18, 742. [Google Scholar] [CrossRef] [PubMed]
- McAdam, J.; Bell, E.M. Determinants of Maternal and Neonatal PFAS Concentrations: A Review. Environ. Health 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Widnes, C.; Flo, K.; Acharya, G. Exploring Sexual Dimorphism in Placental Circulation at 22-24 Weeks of Gestation: A Cross-Sectional Observational Study. Placenta 2017, 49, 16–22. [Google Scholar] [CrossRef]
- Clifton, V.L. Review: Sex and the Human Placenta: Mediating Differential Strategies of Fetal Growth and Survival. Placenta 2010, 31, S33–S39. [Google Scholar] [CrossRef]
Chemical Name | Geographical Origin | Design | Studied Population | Measured or Estimated PFAS Concentrations | Potential Effects | 95% CI |
---|---|---|---|---|---|---|
Legacy PFAS | ||||||
PFBS | China | Case–control study | 157 surgically confirmed endometriosis cases and 178 controls seeking infertility treatment because of male reproductive dysfunction | Plasma concentrations [median (IQR)] Cases 0.091 (0.088, 0.097) ng/mL, Controls 0.089 (0.085, 0.095) ng/mL | endometriosis-related infertility [18] | 3.74 (2.04, 6.84) |
Shanghai, China | Nested case–control study | 165 GDM cases and 330 paired controls | Maternal serum concentrations [median (IQR)] Cases 0.17 (0.09, 0.26) ng/mL, Controls 0.13 (0.07, 0.024) ng/mL | GDM [19] | 2.02 (1.04, 3.79) | |
Guangxi, China | Birth cohort study | 122 PTB pregnant women and 1221 normal pregnant omen | Maternal serum concentrations in all study population [median (IQR)] 1.260 (0.375, 3.806) ng/mL | Preterm birth [20] | 1.666 (1.033, 2.686) | |
PFHxS | Nanjing, China | Case–control study | 120 Chinese women with overt POI and 120 healthy control subjects | Plasma concentrations [median (IQR)] Cases 0.38 (0.29, 0.67) ng/mL, Controls 0.29 (0.22, 0.37) ng/mL | POI [12] | 6.63 (3.22, 13.65) |
Canadian | Longitudinal Canadian pregnancy cohort study | 127 developed gestational hypertension (without preeclampsia), 49 developed preeclampsia, and 1563 normotensive control women | Maternal plasma concentrations [median (IQR)] Gestational hypertension 1.1 (0.8, 1.8) ng/mL, Preeclampsia 1.5 (1.0, 2.0) ng/mL, Normotensive 1.0 (0.7, 1.6) ng/mL | Preeclampsia [21] | 1.32 (1.03, 1.70) | |
California | Population-based nested case–control study of children born | 239 children diagnosed with ASD and 214 general population controls | Prenatal serum concentrations [median (5th–95th)] ASD 0.50 (0.20, 1.63) ng/mL, Controls 0.40 (0.12, 1.18) ng/mL | ASD [22] | 1.95 (1.02, 3.72) | |
PFHpS | Danish | Case–control study nested within the birth cohort | 220 cases ending in miscarriage during weeks 12–22 and 220 controls ending in singleton live births | Maternal plasma concentrations [median (IQR)] Cases 0.39 (0.29, 0.49) ng/mL, Controls 0.36 (0.28, 0.45) ng/mL | Miscarriage [23] | 1.8 (1.0, 3.2) |
PFHpA | Guangxi, China | Birth cohort study | 122 PTB pregnant women and 1221 normal pregnant women | Maternal serum concentrations in all study population [median (IQR)] 1.412 (0.470, 2.945) ng/mL | Preterm birth [20] | 1.338 (1.047, 1.709) |
PFOS | Nanjing, China | Case–control study | 120 Chinese women with overt POI and 120 healthy control subjects | Plasma concentrations [median (IQR)] Cases 8.18 (5.50, 13.51) ng/mL, Controls 6.02 (4.24, 9.11) ng/mL | POI [12] | 2.81 (1.46, 5.41) |
U.S. | Cross-sectional study (National Health and Nutrition Examination Survey) | 54 women with endometriosis and 699 women without endometriosis | serum concentrations [Geometric Mean (95%CI)] Cases 16.28 (14.09, 18.81) ng/mL, Controls 13.36 (12,18. 14.66) ng/mL | Endometriosis [24] | 16.28 (14.09, 18.81) | |
U.S. | Cross-sectional study (National Health and Nutrition Examination Survey) | 11 women with ovarian cancer and 6641 healthy control subjects | Serum concentrations in all study population [median (IQR)] 11.40 (6.45, 19.68) ng/mL | Ovarian cancer [25] | 1.011 (1.011, 1.011) | |
Swedish | Pregnancy cohort study | 64 pregnant women developed preeclampsia and 1709 normal pregnant women | Serum concentrations in all study population [median (IQR)] 5.39 (3.95, 7.61) ng/mL | Preeclampsia [26] | 2.68 (1.17, 6.12) | |
Guangxi, China | Birth cohort study | 122 PTB pregnant women and 1221 normal pregnant women | Maternal serum concentrations in all study population [median (IQR)] 0.892 (0.488, 1.392) ng/mL | Preterm birth [20] | 1.831 (1.116, 3.005) | |
Denmark | Prospective birth cohort study | 112 PTB pregnant women and 3410 normal pregnant women | No concentrations are provided. | Preterm birth [27] | 1.9 (1.0, 3.5) | |
Ohio and West Virginia | Prospective cohort study | 304 miscarriages and 1134 live births | Maternal serum concentrations [Geometric Mean] Miscarriages cases 15.0 ng/mL Controls 14.3 ng/mL | Miscarriage [28] | 1.34 (1.02, 1.76) | |
PFOA | California | Population-based nested case–control study of children born | 239 children diagnosed with ASD and 214 general population controls | Prenatal serum concentrations [median (5th–95th)] ASD 1.15 (0.37, 3.43) ng/mL, Controls 1.07 (0.37, 3.43) ng/mL | ASD [22] | (1.02, 3.72) |
Nanjing, China | Case–control study | 120 Chinese women with overt POI and 120 healthy control subjects | Plasma concentrations [median (IQR)] Cases 11.10 (7.60, 14.45) ng/mL, Controls 8.35 (6.27, 11.31) ng/mL | POI [12] | 3.80 (1.92, 7.49) | |
Salt Lake City or San Francisco | Case–control study | 190 women with endometriosis and 283 women without endometriosis | Serum concentrations [Geometric Mean (95%CI)] endometriosis cases 2.65 (2.44, 2.89) ng/mL Controls 2.15 (1.96, 2.35) ng/mL | Endometriosis [29] | 1.89 (1.17, 3.06) | |
U.S. | Cohort study (National Health and Nutrition Examination Survey) | 54 women with endometriosis and 699 women without endometriosis | Serum concentrations [Geometric Mean (95%CI)] Cases 3.48 (2.95, 4.11) ng/mL, Controls 2.84 (2.59, 3.13) ng/mL | Endometriosis [24] | 3.48 (2.95, 4.11) | |
U.S. | Cross-sectional study (National Health and Nutrition Examination Survey) | 11 women with ovarian cancer and 6641 healthy control subjects | Serum concentrations in all study population [median (IQR)] 3.20 (2.00, 4.90) ng/mL | Ovarian cancer [25] | 1.02 (1.01, 1.02) | |
Michigan and Texas, U.S. | Prospective cohort with longitudinal follow-up | 28 pregnant women reported GDM during follow-up and 230 pregnant women without GDM | Serum concentrations [Geometric Mean (95%CI)] Cases 3.94 (3.15–4.93) ng/mL Controls 3.07 (2.83–3.12) ng/mL | GDM [30] | 1.86 (1.14, 3.02) | |
Denmark | Prospective birth cohort study | 112 PTB pregnant women and 3410 normal pregnant women | No concentrations are provided. | Preterm birth [27] | 1.9 (1.0, 3.6) | |
PFNA | Salt Lake City or San Francisco | Case–control study | 190 women with endometriosis and 283 women without endometriosis | Serum concentrations [Geometric Mean (95%CI)] endometriosis cases 0.69 (0.63, 0.77) ng/mL Controls 0.58 (0.53, 0.63) ng/mL | Endometriosis [29] | 2.20 (1.02, 4.75) |
U.S. | Cross-sectional study (National Health and Nutrition Examination Survey) | 11 women with ovarian cancer and 6641 healthy control subjects | Serum concentrations in all study population [median (IQR)] 1.10 (0.74, 1.65) ng/mL | Ovarian cancer [25] | 1.031 (1.030, 1.033) | |
Danish | Case–control study within a population-based, prospective cohort | 51 women with miscarriage and 204 women with full-term delivery | Serum concentrations [median (95%CI)] cases 1.16 (0.63, 2.46) ng/mL controls 0.68 (0.31, 1.35) | Miscarriage [31] | 16.5 (7.4–36.6) | |
PFDA (PFDeA) | Danish | Case–control study within a population-based, prospective cohort | 51 women with miscarriage and 204 women with full-term delivery | Serum concentrations [median (95%CI)] cases 0.33 (0.17, 0.66) ng/mL controls 0.26 (0.15, 0.56) | Abortion [31] | 2.67 (1.31–5.44) |
PFUnDA (PFUdA, PFUnA, PFUA) | Guangxi, China | Birth cohort study | 122 PTB pregnant women and 1221 normal pregnant women | Maternal serum concentrations in all study population [median (IQR)] 0.422 (0.274, 0.660) ng/mL | Preterm birth [20] | 0.621 (0.395, 0.977) |
PFDOA (PFDoDA, PFDDA) | Shandong, China | Case–control study | 180 infertile PCOS cases and 187 healthy controls | Plasma concentrations [median (IQR)] Cases 0.23 (0.21, 0.27) ng/mL, Controls 0.24 (0.20, 0.28) ng/mL | PCOS related infertility [32] | 2.36 (1.12, 4.99) |
Shanghai, China | Nested case–control study | 165 GDM cases and 330 paired controls | Maternal serum concentrations [median (IQR)] Cases 0.19 (0.04, 0.33) ng/mL, Controls 0.08 (0.02, 0.28) ng/mL | GDM [19] | 2.49 (1.07, 3.72) | |
Guangxi, China | Birth cohort study | 145 anemia pregnant women and 676 normal pregnant women | Serum concentrations in all study population [median (IQR)] Cases 0.116 (0.084,0.158) ng/mL Controls 0.108 (0.078,0.146) ng/mL | Gestational anemia [33] | 1.576 (1.107, 2.442) | |
Emerging PFAS | ||||||
6:2 Cl-PFESA | Shanghai, China | Case–control study | 464 URSA cases who had at least 2 unexplained miscarriages and 440 normal controls | Plasma concentrations [median (IQR)] Cases 2.92 (1.41, 6.83) ng/mL, Controls 2.27 (1.00, 5.77) ng/mL | RSA [34] | 1.18 (1.00, 1.39) |
HFPO-DA (GENX) | Shanghai, China | Case–control study | 464 URSA cases who had at least 2 unexplained miscarriages and 440 normal controls | Plasma concentrations [median (IQR)] Cases 0.03 (0.02, 0.04) ng/mL, Controls 0.03 (0.01, 0.04) ng/mL | RSA [34] | 1.35 (1.15, 1.59) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, R.; Wang, J.; Li, X.; Zhang, Y.; Yin, T.; Yang, P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics 2024, 12, 678. https://doi.org/10.3390/toxics12090678
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics. 2024; 12(9):678. https://doi.org/10.3390/toxics12090678
Chicago/Turabian StyleQu, Rui, Jingxuan Wang, Xiaojie Li, Yan Zhang, Tailang Yin, and Pan Yang. 2024. "Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms" Toxics 12, no. 9: 678. https://doi.org/10.3390/toxics12090678
APA StyleQu, R., Wang, J., Li, X., Zhang, Y., Yin, T., & Yang, P. (2024). Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics, 12(9), 678. https://doi.org/10.3390/toxics12090678