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Abstract: Cardiovascular disease continues to be a major contributor to global morbidity
and mortality, with environmental and occupational factors such as air pollution, noise, and
shift work increasingly recognized as potential contributors. Using a two-sample Mendelian
randomization (MR) approach, this study investigates the causal relationships of these risk
factors with the risks of unstable angina (UA) and myocardial infarction (MI). Leveraging
single nucleotide polymorphisms (SNPs) as genetic instruments, a comprehensive MR
study was used to assess the causal influence of four major air pollutants (PM2.5, PM10, NO2,
and NOx), noise, and shift work on unstable angina and myocardial infarction. Summary
statistics were derived from large genome-wide association studies (GWASs) from the
UK Biobank and the FinnGen consortium (Helsinki, Finland), with replication using an
independent GWAS data source for myocardial infarction. The inverse-variance weighted
(IVW) approach demonstrated a significant positive correlation between shift work and
the increased risk of both unstable angina (OR with 95% CI: 1.62 [1.12–2.33], p = 0.010) and
myocardial infarction (OR with 95% CI: 1.46 [1.00–2.14], p = 0.052). MR-PRESSO analysis
identified outliers, and after correction, the association between shift work and myocardial
infarction strengthened (OR with 95% CI: 1.58 [1.11–2.27], p = 0.017). No notable causal
associations were identified for air pollution or noise with either outcome. The replication
of myocardial infarction findings using independent data supported a possible causal link
between shift work and myocardial infarction (OR with 95% CI: 1.41 [1.08–1.84], p = 0.012).
These results provide novel evidence supporting shift work as a likely causal risk factor
for unstable angina and myocardial infarction, underscoring the need for targeted public
health strategies to mitigate its cardiovascular impact. However, further investigation is
necessary to elucidate the role of air pollution and noise in cardiovascular outcomes.

Keywords: unstable angina; myocardial infarction; shift work; air pollution; Mendelian
randomization

1. Introduction
Acute coronary syndrome is one of the most prevalent and life-threatening conditions

frequently encountered in emergency and critical care settings, encompassing unstable
angina (UA) and myocardial infarction (MI) [1,2]. The pathophysiology of acute coronary
syndrome is primarily attributed to the acute occlusion of coronary arteries, which re-
sults in a compromised blood supply to the myocardium and can lead to life-threatening
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complications, such as heart failure and sudden cardiac death [3]. Recent advances in
interventional cardiology, particularly in the areas of early reperfusion techniques and
percutaneous coronary interventions, have shown promise in improving patient outcomes.
However, despite these advancements, acute coronary syndrome continues to pose signifi-
cant challenges to global health [4,5]. The persistent impact of acute coronary syndrome on
healthcare resources necessitates more research into effective prevention and management
strategies to mitigate its burden on patients and healthcare systems.

Among the various modifiable risk factors for cardiovascular diseases, increasing
attention is being paid to air pollution, environmental noise, and shift work due to their
widespread prevalence and documented adverse health effects. Air pollution, primarily
characterized by particulate matter, has been closely linked to cardiovascular diseases [6].
For instance, studies have shown that short-term exposure to air pollutants substantially
raises the risk of hospitalization for non-ST-segment elevation acute coronary syndrome,
particularly in individuals with unstable angina and hypertension [7,8]. In a retrospective
analysis of 8737 patients with unstable angina, Zhang et al. identified a significant associ-
ation between heightened exposure to PM10 and carbon monoxide and an elevated risk
of hospital readmission due to heart failure. Specifically, the study highlighted a marked
increase in risk when PM10 concentrations exceeded 112.5 µg/m3 and carbon monoxide
levels surpassed 37.5 µg/m3 [9]. In addition to air pollution, environmental noise has
emerged as a significant health concern. Chronic exposure to noise pollution is known to
lead to chronic stress responses and elevated blood pressure, triggering inflammation of
blood vessels and raising the risk of acute coronary syndrome [10]. A nationwide cohort
study conducted in Switzerland reported that individuals exposed to both air pollution
and noise experienced elevated mortality rates due to myocardial infarction [11]. More
importantly, Vienneau et al. found that the detrimental effects of road traffic and rail
noise on cardiovascular diseases began at exposure levels lower than the thresholds rec-
ommended by the World Health Organization [12]. Shift work, which disrupts biological
rhythms, is another modifiable risk factor linked to adverse cardiovascular outcomes [13].
The relationship between shift work and cardiovascular disease has also received more and
more attention from researchers, with evidence suggesting that shift work contributes to
myocardial infarction risk through pathways involving hypertension, dyslipidemia, and
metabolic disorders [14,15]. However, establishing a definitive causal relationship between
these environmental exposures and cardiovascular outcomes poses substantial challenges.
The potential for confounding variables and the risk of reverse causation inherent in tra-
ditional observational studies complicate the interpretation of these associations [16]. To
advance our understanding of these relationships, it is imperative to employ more rigorous
research methodologies, such as Mendelian randomization (MR).

Mendelian randomization offers a promising approach to addressing the challenges
associated with establishing causal relationships in observational studies. Conceptually
similar to a randomized controlled trial, MR utilizes genetic variants as instrumental vari-
ables (IVs), with randomization occurring at the point of zygote formation. This inherent
design feature enhances the robustness of MR against reverse causation and minimizes
the influence of confounding factors, making it a more reliable alternative to traditional
observational research methodologies [17]. The purpose of this study is to examine the
causal relationships between air pollution, environmental noise, and shift work, and the
risk of UA and MI, using a two-sample MR design. By leveraging genetic instruments, this
study provides novel insights into modifiable risk factors for cardiovascular disease.
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2. Materials and Methods
2.1. Study Design

The two-sample MR design relies on three fundamental principles (Figure 1) [18].
First of all, the IVs should exhibit a robust correlation with the exposure, ensuring it ef-
fectively represents the exposure being studied. Second, the IVs must be independent
of any confounding factors that could affect the association between the exposure and
the outcome, reducing potential bias. Third, the IVs must have an influence on the out-
come exclusively through the exposure of interest, without affecting the outcome through
alternative pathways. This ensures that the causal effect observed is directly mediated
by the exposure, providing a clearer basis for causal inference. The overall study design
and workflow for this comprehensive two-sample MR are illustrated in Figure 2. It is
crucial to highlight that this study conformed to the reporting standards specified in the
STROBE-MR (strengthening the reporting of observational studies in epidemiology using
Mendelian randomization) framework [19]. The checklist for STROBE-MR can be found in
the Supplementary Materials.
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2.2. Data Source

Detailed information about each dataset used in the analysis is presented in Table 1.
All GWAS summary data used in this two-sample MR study were sourced from the project
website and were publicly available. In the original studies, informed consent was obtained
from all participants. Consequently, no further ethical approval or additional consent
is required.

Table 1. Characteristics of selected GWASs in this study.

Trait
GWAS ID

/Consortium
/PMID

Ethnicity Sample Size Numbers of SNPs

Exposure
PM2.5 ukb-b-10817 European 423,796 8
PM10 ukb-b-18469 European 423,796 29
NO2 ukb-b-9942 European 456,380 8
NOx ukb-b-12417 European 456,380 8

Noise ukb-b-19490 European 456,380 13
Shift work ukb-b-1712 European 263,315 36
Outcome

Unstable angina FinnGen European 15,717 cases/402,147 controls -
Myocardial infarction FinnGen European 28,546 cases/378,019 controls -
Myocardial infarction 33532862 European ~61,000 cases/~577,000 controls -

2.3. Exposure GWAS(s)

In this study, we employed the most recent and largest GWAS summary data from
the UK Biobank, covering four major air pollutants: PM2.5, PM10, NO2, and NOx. Partic-
ulate matter (PM) was categorized into PM2.5, consisting of particles with a diameter of
2.5 µm or less, and PM10, which encompasses particles no more than 10 µm in size. NOx, a
term referring to nitrogen oxides (including NO and NO2), is primarily produced by fuel
combustion and has varying levels of toxicity [20]. The UK Biobank is a groundbreaking,
large-scale health research resource designed to advance the understanding of how genetic,
environmental, and lifestyle factors influence human health. With data from approximately
500,000 participants across the United Kingdom, the Biobank has become an invaluable
asset for studying the determinants of a wide range of diseases, including cardiovascular
conditions, cancer, diabetes, and mental health disorders [21]. The land-use regression
(LUR) model was adopted to predict pollutant concentrations. This model integrates envi-
ronmental and geographic factors, including population density, land use, traffic patterns,
and proximity to major roads or industrial areas. It has demonstrated strong predictive
performance, achieving cross-validation R2 values of 77%, 88%, 87%, and 88% for PM2.5,
PM10, NO2, and NOx, respectively, underscoring its reliability in capturing real-world pol-
lutant exposure levels [22]. We also included GWAS summary statistics for noise exposure
and shift work from the UK Biobank. Noise exposure was assessed using the “average
24-h sound level of noise pollution” metric, which provides a comprehensive measure of
daily noise levels. This metric primarily reflects the general ambient noise levels in the
living environments of the study participants. Shift work encompasses a broad range of
schedules, including regular evening or night shifts, rotating shifts, split shifts, on-call or
casual shifts, 24-h shifts, irregular schedules, and other non-standard working hours. While
definitions may vary slightly across sources, shift work is generally defined as any work
schedule that deviates from the conventional 9 am to 5 pm timeframe for an individual’s
primary job [23].
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2.4. Outcome GWAS(s)

The primary outcomes of this two-sample MR study were unstable angina and my-
ocardial infarction. We acquired GWAS summary-level statistics for these outcomes from
the FinnGen consortium R11 release data (FinnGen R11 release. https://r11.finngen.fi/
(Accessed on 10 July 2024)). The FinnGen study is an ongoing project, enriched for dis-
ease end points, that seeks to generate genomic data connected to national health registry
records for 500,000 Finnish individuals [24]. The endpoints “Unstable angina pectoris”
and “Myocardial infarction, strict” were used in this study, and the following variables
were adjusted during the analysis: age, gender, genotyping batch, and the first 10 main
components. To validate the reliability of our findings, we also used GWAS summary
statistics of myocardial infarction from a meta-analysis performed by Hartiala et al., which
included approximately 61,000 myocardial infarction patients and 577,000 healthy controls,
making it the largest dataset available to date [25].

2.5. Sample Overlap Assessment

In two-sample MR studies, it is essential that the GWAS summary statistics for both
exposure and outcome are derived from independent samples. Significant overlap between
these samples can increase the risk of type 1 errors in causal inference [26]. MR results are
considered more reliable when sample overlap is minimal, typically less than 10% [27]. To
evaluate this, an online tool (Bias and Type 1 error rate for Mendelian randomization with
sample overlap [https://sb452.shinyapps.io/overlap/ (accessed on 22 October 2024)]) can
be used. In our primary analysis, the GWAS summary statistics for exposure were sourced
from the UK Biobank, while those for the outcome were obtained from the FinnGen study,
resulting in an overlap rate of 0%, which reduces the potential for Winner’s curse bias in
our causal estimates.

2.6. Genetic Instruments Selection

For PM2.5, NO2, and NOx, independent single nucleotide polymorphisms (SNPs)
reaching genome-wide significance were selected as IVs. These SNPs were chosen according
to their genome-wide significance (p < 5 × 10−8) and their absence of linkage disequilibrium
(LD) with other genetic variants (r2 < 0.001 within the LD distance of ±5000 kb) from
the original GWAS. For the remaining exposure traits (PM10, noise exposure, and shift
work), a more lenient threshold of p < 5 × 10−6 was applied to ensure sufficient IVs,
followed by LD pruning (r2 < 0.001 across a window of 10,000 kb). A harmonization
process was subsequently performed to verify forward strand alleles and apply allele
frequencies for palindromic variants as part of the quality control. The reliability of the
MR results was contingent upon the robustness of the IVs. To evaluate the strength
of the instruments, the Cragg–Donald F-statistic was calculated based on the formula

F = (N−2)R2

1−R2 , where R2 represents the percentage of variance explained by the exposure,
and N refers to the corresponding sample size [28]. In this study, R2 for each IV was derived
using the formula R2 = ∑ 2 × β̂2 × MAF × (1 − MAF), where β̂ represents the estimated
IV-exposure association and MAF refers to the minor allele frequency associated with each
genetic variant.

2.7. Statistical Analysis

This study employed five analytical approaches within the two-sample MR frame-
work, comprising inverse-variance weighted (IVW), weighted median, and MR-Egger
regression, along with weighted mode and simple mode approaches. The primary ap-
proach for causal inference was the IVW approach, which estimates the causal effect of
each genetic instrument via the Wald ratio. These individual estimates are then pooled

https://r11.finngen.fi/
https://sb452.shinyapps.io/overlap/
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using either a fixed-effect or random-effect model to provide a reliable causal estimate
under the assumption that all SNPs are valid instruments [29]. The weighted median
method was applied as the supplementary method, which can provide reliable estimates
even if as much as 50 percent of the IVs are invalid [30]. MR-Egger regression relaxes
the third IV assumption by including an intercept term, which can indicate pleiotropy if
the intercept is significantly different from zero [31]. In addition, mode-based approaches
(both weighted and simple) offer consistency in results, even when a majority of SNPs
are invalid [32]. To further control for potential horizontal pleiotropy, the MR-PRESSO
(Mendelian randomization pleiotropy residual sum and outlier) was utilized to detect the
effects of outlier SNPs [33]. Leave-one-out analyses were also performed by removing
SNPs one by one to verify that no single SNP was driving the results. If excluding a specific
SNP significantly changes the MR estimate, this implies that this IV may have a direct
influence on the outcome, thus violating the third core assumption of MR. Additionally,
to evaluate the heterogeneity among the selected IVs, Cochran’s Q-statistic with I2 was
computed, and the existence of heterogeneity was signified by a p-value of below 0.05 [34].

We regarded the causal association as reliable if the following three conditions were
met: (1) the MR–IVW estimate for exposure showed a significant association with the
outcome; (2) the direction of the IVW estimate remained directionally consistent across
all sensitivity analyses; and (3) there was minimal evidence of horizontal pleiotropy, as
indicated by the MR-PRESSO global test or MR-Egger intercept. To account for multiple
testing across six exposures and two outcomes, a Bonferroni-corrected two-sided p-value of
<0.004 was deemed strong evidence, while p-values < 0.05 were considered suggestive evi-
dence. All statistical analyses in this study were conducted using R software (version 4.2.2,
R Foundation for Statistical Computing, Vienna, Austria) with the implementation of the
“TwoSampleMR” package (version 0.6.8), the “MRPRESSO” package (version 1.0), and the
“MendelianRandomization” package (version 0.7.0). Visualization of results, including for-
est plots and leave-one-out plots, was achieved using the “ggplot2” package (version 3.5.1)
and the “forestplot” package (version 2.0.1).

3. Results
3.1. Characteristics of Genetic Instruments

The characteristics of the IVs identified for each exposure are summarized in Table 1,
with more details provided in Table S1. Notably, of the eight independent IVs for PM2.5,
one SNP was unavailable in the outcome GWAS. Consequently, the remaining seven SNPs
were used as IVs, each showing an F-statistic greater than 10. Similarly, after screening,
28 SNPs for PM10 and 35 SNPs for shift work were retained for the MR analysis. The
estimated F-Statistics for all IVs across the exposures varied from 15 to 67, suggesting that
weak instrument bias was minimized.

3.2. Causal Effects of Air Pollution, Noise, and Shift Work on Unstable Angina

As shown in Figure 3, a significant correlation between shift work and an increasing
risk of unstable angina was revealed by the IVW approach (OR [95 %CI]: 1.62 [1.12~2.33],
p = 0.010). Directionally consistent results were also found in the other four complementary
methods, although they were not significant (all p-values > 0.05). Notably, no heterogeneity
was observed in the IVW results, as indicated by a p-value above 0.05 from Cochran’s Q
test (Table S2). Additionally, the MR-Egger regression intercept was near zero, suggesting
that horizontal pleiotropy did not materially impact the MR findings (Table S3). The MR-
PRESSO analysis corroborated the IVW results, showing similar estimates (OR [95 %CI]:
1.62 [1.14~2.29], p = 0.011, Table 2). The robustness of the overall findings was verified
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by the leave-one-out analysis because no individual SNP unduly influenced the results
(Figure S1).
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Table 2. The MR estimates from the MR-PRESSO method.

Outcome Exposure Global Test
p-Value OR 95% CI p-Value Remove SNP

Unstable angina PM2.5 0.611 0.936 0.617–1.421 0.768 0
PM10 0.034 1.144 0.646–2.027 0.648 0
NO2 0.464 0.445 0.195–1.011 0.094 0
NOx 0.367 1.017 0.425–2.430 0.972 0

Noise 0.666 0.932 0.538–1.614 0.805 0
Shift work 0.655 1.616 1.140–2.291 0.011 0

Myocardial infarction PM2.5 0.320 0.807 0.529–1.232 0.359 0
PM10 0.619 1.044 0.740–1.474 0.807 0
NO2 0.196 0.609 0.279–1.326 0.252 0
NOx 0.930 0.871 0.579–1.311 0.530 0

Noise 0.025 0.956 0.532–1.719 0.884 1
Shift work 0.005 1.584 1.108–2.265 0.017 1

In contrast, the IVW approach found no causal link between unstable angina and other
exposures, as shown using the IVW approach (PM2.5: 0.94 (0.62–1.42), p = 0.758; PM10: 1.14
(0.65–2.03), p = 0.644; NO2: 0.44 (0.19–1.03), p = 0.060; NOx: 1.02 (0.43–2.43), p = 0.971; Noise:
0.93 (0.50–1.72), p = 0.822, Figure 3).

3.3. Causal Effects of Air Pollution, Noise, and Shift Work on Myocardial Infarction

To some extent, heterogeneity (I2 = 43.27%) was found for the correlation between shift
work and myocardial infarction, so the IVW method using the random-effects model was
adopted as the main method for calculating MR estimates (Table S2). As shown in Figure 4,
there was a positive, albeit marginally significant, correlation of shift work with myocardial
infarction risk (OR [95 %CI]: 1.46 [1.00~2.14], p = 0.052), with similar trends observed in the
four additional MR methods. To further investigate potential biases, the MR-Egger intercept
test was applied, but no obvious signal of pleiotropic effects was revealed (Table S3). In
MR-PRESSO, however, one SNP (rs61844343) was identified as the outlier (global test
p = 0.005), which might have influenced the results (Table 2). After excluding this SNP, the
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MR-PRESSO method exhibited a stronger, statistically significant correlation of shift work
with an elevated myocardial infarction risk (OR [95% CI]: 1.58 [1.11–2.27], p = 0.017, Table 2).
The leave-one-out analysis corroborated the findings from the MR-PRESSO method, further
supporting the robustness of the causal estimates (Figure S2). To guarantee the consistency
and dependability of our results, we replicated the identified associations using GWAS
summary statistics of myocardial infarction from Hartiala et al. As shown in Table 3, this
replication supported a possible causal link of shift work with myocardial infarction risk
(OR [95 %CI]: 1.41 [1.08–1.84], p = 0.012), with no obvious signals of pleiotropic effects or
heterogeneity detected in the analysis, further validating the original findings.
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Table 3. Causal effects of air pollution, noise, and shift work on myocardial infarction in the validation
samples.

Exposure MR Method No. of
SNPs OR 95% CI p-Value Heterogeneity MR-Egger

Intercept Test
MR-PRESSO
Global Test

Q p-Value Intercept p-Value p-Value

Shift
work

Inverse-variance
weighted 33 1.41 1.08–1.84 0.012

42.02 0.1106 −0.0079 0.259 0.121MR-Egger 33 2.41 0.93–6.26 0.081
Weighted median 33 1.36 0.96–1.93 0.086
Weighted mode 33 1.36 0.74–2.51 0.327

Simple mode 33 1.40 0.72–2.74 0.329

4. Discussion
Using the largest GWAS summary data conducted to date, this two-sample MR was

utilized to assess the potential causal associations of air pollution, noise, and shift work
on the risks of unstable angina and myocardial infarction. Our findings suggest that shift
work may be causally correlated with an elevated risk of both unstable angina and my-
ocardial infarction, underscoring the detrimental impact of irregular work schedules on
cardiovascular health. However, no obvious causal effects were detected for air pollution
or noise exposure. These findings carry significant public health implications, particularly
for populations disproportionately affected by shift work. The results suggest an urgent
need for targeted preventive strategies aimed at mitigating cardiovascular risks in shift
workers, such as workplace interventions, health monitoring programs, and policies pro-
moting healthier work environments. By addressing the unique cardiovascular challenges
faced by individuals engaged in shift work, these measures could help reduce the inci-
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dence of unstable angina and myocardial infarction and improve long-term cardiovascular
outcomes.

The results from the present study are in line with the majority of previous observa-
tional studies, but go further by demonstrating the possible causal effects of shift work
on the risks of unstable angina and myocardial infarction. Indeed, lots of observational
studies regarding shift work and adverse cardiovascular outcomes have been explored. For
instance, a large-scale cohort study by Vyas et al. analyzed the association of shift work with
vascular events, including myocardial infarction. Their meta-analysis, which included over
two million participants, found that working in shifts was correlated with a 23% increased
risk of myocardial infarction and other cardiovascular outcomes [23]. In another systematic
review of observational studies, shift workers were observed to present a heightened risk
of angina pectoris and myocardial infarction, reinforcing concerns about the cardiovascular
consequences of irregular work schedules [35]. Similarly, an umbrella review conducted
by Wu et al., including eight eligible systematic reviews and meta-analyses, also identi-
fied strong indicative evidence for associations of shift work with myocardial infarction
(having ever vs. having never done shift work) [36]. However, given the low hierarchy of
evidence from observational studies, the nature of the associations is still less than certain.
For instance, the Kuopio ischemic heart disease risk factor study presented mixed results
regarding the relationship of diverse categories of shift work with the 20-year incidence
of myocardial infarction among individuals with and without preexisting ischemic heart
disease [37].

Inconsistent with a previous MR study, our MR results, utilizing data from the hitherto
largest GWAS, present more reliable evidence for the possible causal link between shift
work and unstable angina and myocardial infarction [38]. Using the IVW approach, we
found an obvious positive correlation between shift work and elevated risks of unstable
angina and myocardial infarction. The uniformity of our findings across four additional MR
analyses further supports the robustness of these associations. For the association between
shift work and unstable angina, no heterogeneity or directional pleiotropy was observed
in the study, and the MR-PRESSO analysis showed similar estimates to the IVW results.
Although an SNP (rs61844343) was identified as an outlier for the association between
shift work and myocardial infarction, the corrected estimate of MR-PRESSO for this outlier
SNP strengthened the link between shift work and myocardial infarction, emphasizing the
validity of our results. More importantly, replication using an independent GWAS dataset
for myocardial infarction confirmed the reliability of our findings, establishing shift work
as an important risk factor for cardiovascular diseases.

The mechanisms underlying the association of shift work and myocardial infarction
are likely related to disrupted circadian rhythms, chronic increased stress, and metabolic
dysregulation, as suggested in prior research. Disturbed sleep, a frequent complaint among
night shift workers, has been identified as an independent risk factor for myocardial in-
farction [39]. This health concern arises from the mismatch between unconventional work
hours and the body’s biological clock. A previous study highlighted that non-standard
work schedules, especially those that include night or rotating shifts, can significantly
disrupt the body’s natural circadian rhythm [40]. Such disruptions not only lead to chronic
sleep deprivation, but also trigger a cascade of physiological changes, including altered
circadian central nervous system activity, hormonal imbalances, and heightened cortisol
levels [41,42]. These changes contribute to systemic inflammation and endothelial dysfunc-
tion, both of which are critical pathways in the development of cardiovascular diseases,
including myocardial infarction [43]. Moreover, chronic stress, another common issue
faced by shift workers, can induce a range of physiological and behavioral changes that are
closely linked to cardiovascular disease [44]. Chronic stress can lead to hypertension by
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triggering the body’s stress response, which often involves elevated heart rate and vaso-
constriction that subsequently increase blood pressure [45]. This continuous elevation in
blood pressure contributes to the risk of cardiovascular diseases. In addition to these direct
physiological effects, stress can indirectly influence cardiovascular health by promoting
unhealthy behaviors. For instance, the Finnish public sector study, which included more
than 50,000 individuals, found that smokers experiencing work-related stress were 50%
more prone to smoking more than 20 cigarettes a day compared to individuals who did not
report such stress [46]. The combination of hypertension and harmful habits amplifies the
threat to cardiovascular health. Additionally, metabolic dysregulation, including insulin
resistance, elevated triglyceride levels, and obesity, further exacerbates the risk, as shift
work has been linked to poor dietary habits, physical inactivity, and abnormal melatonin
levels [47]. Together, these mechanisms provide a plausible biological explanation for
the increased incidence of myocardial infarction observed in individuals with irregular
work patterns.

The lack of significant causal associations for air pollution and noise exposure in this
study was unexpected given the well-recognized links of these environmental factors with
cardiovascular disease in observational studies. Air pollution, specifically fine particu-
late matter (PM2.5), has been shown to contribute to the development and progression
of cardiovascular and cerebrovascular diseases, such as stroke, coronary atherosclero-
sis, and myocardial infarction, through mechanisms involving oxidative stress, systemic
inflammation, and endothelial dysfunction [48]. Similarly, exposure to noise pollution, es-
pecially chronic exposure to traffic and industrial noise, has been associated with increased
risk of cardiovascular events by elevating blood pressure, promoting stress responses,
and inducing vascular inflammation [49]. However, our MR analysis suggests that these
exposures might not have a direct impact on the development of unstable angina and
myocardial infarction.

One possible explanation for this divergence could be the inherent differences be-
tween observational studies and MR analyses [50,51]. Observational studies are prone
to confounding factors that may overestimate the impact of environmental exposure on
health outcomes. In contrast, MR, by using genetic variants as IVs, minimizes confounding
and reverse causality, potentially providing a more accurate estimate of causal effects. It is
possible that, while air pollution and noise are significant contributors to cardiovascular
disease in the general population, their direct causal impact on specific outcomes like
unstable angina and myocardial infarction may be smaller than previously thought or
subject to additional moderating factors not accounted for in traditional observational stud-
ies. Another consideration is the possibility of measurement errors in the exposure data.
Although the LUR model used in this study is a widely accepted method in epidemiological
research, it may not fully capture individual variations in exposure, particularly in indoor
environments or specific occupational settings [52]. Consequently, it is essential to highlight
the potential benefits of incorporating environmental monitoring data in future studies,
as this could significantly improve the accuracy and precision of exposure assessments in
research on the health effects of air pollution. It is also worth considering that the effects of
air pollution and noise might be mediated through pathways not captured by the genetic
instruments used in this study. As a result, our findings do not completely rule out the
potential association of air pollution and noise with these cardiovascular conditions.

This study has some advantages, including the implementation of a two-sample MR
design, which minimizes bias due to reverse causation and confounding factors, and the use
of large GWAS datasets, which enhances the statistical power to detect causal associations.
More importantly, unlike several previous MR studies on air pollution and noise, this study
adhered strictly to the MR study design principles, particularly by using independent
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GWAS datasets without sample overlap for causal inference. This approach enhances the
reliability of the results by reducing the potential bias introduced by sample overlap, a
common limitation in previous MR studies [53–55]. However, there are limitations that
need to be addressed. First, although MR is robust against certain biases, it relies on
the validity of instrumental variables, and weak instrument bias could affect the results,
particularly for exposures like noise, where fewer genetic instruments were available.
Second, directional pleiotropy arising from unrecognized confounding factors could distort
the causal estimates. Nevertheless, we made efforts to minimize this bias. The consistency
of the results across various ‘pleiotropy-robust’ methods, such as MR-PRESSO and MR-
Egger regression, supports the credibility of our MR results. Lastly, the generalizability
of the study may be limited, as the GWAS data used were predominantly derived from
participants of European descent. This ethnic homogeneity may restrict the applicability of
our findings to other populations, as genetic variations and environmental exposures can
differ significantly across diverse ethnic groups. Future studies incorporating multiethnic
cohorts are essential to validate our findings and ensure broader applicability, as well as to
better understand potential genetic and environmental interactions in different populations.

5. Conclusions
In this study, we employed a two-sample Mendelian randomization design to inves-

tigate the causal relationship between shift work, air pollution, noise, and the risk of UA
and MI. Our findings provide strong evidence that shift work is a possible causal risk
factor for both UA and MI. These results underscore the need for targeted public health
interventions to mitigate the cardiovascular risks associated with irregular work schedules.
Further research is needed to explore the role of environmental factors, such as air pollution
and noise, in cardiovascular disease and to better understand the underlying biological
mechanisms through which shift work affects heart health.
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