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Abstract: Acrylamide (ACR) is a commonly used organic compound that exhibits evident
neurotoxicity in humans. Our previous studies showed that the mechanisms of ACR-
caused neurotoxicity included apoptosis, PERK-mediated endoplasmic reticulum stress,
and autophagy, but the relationships among them were still unclear. This paper investigated
the relationships among apoptosis, autophagy, and the PERK pathway to demonstrate the
mechanism of ACR neurotoxicity further. Different doses of ACR were set to value ACR
toxicity. Then, a PERK inhibitor and autophagy inhibitor, GSK2606414 and 3-methyladenine
(3-MA), were used separately to inhibit the PERK pathway and autophagy activation in
SH-SY5Y cells under ACR treatment. With the increase of ACR dose, the apoptotic rate
increased in a dose-dependent manner. After the inhibition of the PERK pathway, the
activated apoptosis and autophagosome accumulation caused by ACR were alleviated.
Under 3-MA and ACR treatment, the autophagy inhibition deteriorated apoptosis in SH-
SY5Y cells but had no significant effect on ACR-induced PERK pathway activation; thus,
PERK pathway-induced autophagy had an antiapoptotic role in this condition. This paper
provides an experimental basis for exploring potential molecular targets to prevent and
control ACR toxicity.

Keywords: acrylamide; PERK pathway; apoptosis; autophagy

1. Introduction
Acrylamide (ACR) is an extensively used organic compound in many fields, such as

mining, sewage treatment, and Western blot experiments. China, a rapidly developing
country, is one of the largest producers and consumers of ACR; thus, humans may be
exposed to ACR in the environment in several ways. In 1912, Louis Camille Maillard
found that carbohydrate-rich food becomes brown under high temperatures, which was
named the Maillard reaction. With the development of research on the Maillard reaction,
many researchers discovered that amino acids (mainly asparagine) and reducing sugars in
carbohydrate-rich food could produce ACR at high temperatures of over 120 ◦C [1]; thus,
human ACR exposure is lifelong, which has gradually attracted many researchers’ attention.
ACR causes neurotoxicity, carcinogenicity, genetic toxicity, and reproductive toxicity; these
toxicities have already been proven in laboratory animals [2], but neurotoxicity is the only
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one confirmed in humans [3], and the specific mechanisms are still obscure. Therefore, this
paper investigates the detailed mechanism of ACR neurotoxicity further.

Apoptosis is a programmed cell death mechanism controlled by genes [4]. Apop-
tosis is an important physiologic process that maintains cell populations and controls
cell quality, and it could sacrifice specific cells to obtain better benefits to the organism
during development and aging. Apoptosis is also induced as a defensive process when
cells are impaired under diseases or extracellular stress [5]. Under specific pathological
conditions, dysfunctional apoptosis could induce various diseases. Insufficient apoptosis
causes uncontrolled cell proliferation and contributes to cancer development [6]. Many
studies demonstrated that excessive apoptosis may lead to neurodegenerative diseases,
such as Alzheimer’s disease and Parkinson’s disease [7]. Apoptosis has three pathways:
the mitochondrial pathway (endogenous pathways), death receptor pathway (exogenous
pathways), and endoplasmic reticulum (ER) pathway [8]. Our previous study revealed
that ACR causes apoptosis in SH-SY5Y cells by activating the mitochondrial pathway at
2.5 mmol/L for 24 h [9], but whether ACR can also activate other pathways and its specific
mechanism are still unknown.

The ER is a crucial organelle in the cell that participates in protein synthesis, and its
homeostasis is important in maintaining cellular normal functions [10]. However, physiolog-
ical and pathological stresses could disturb the homeostasis of ER, induce the accumulation
of unfolded proteins, and lead to ERS [11]. In this process, unfolded protein response
(UPR), a conserved intracellular mechanism, is initiated to maintain ER function [12]. UPR
has three pathways: PERK-ATF4, ATF6, and IRE1-XBP1 [13]. However, when cells are
exposed to severe and/or prolonged stress, excessive UPR activation could not restore
ER homeostasis but increased the level of C/EBP homologous protein (CHOP, known
as GADD153) by activating the PERK-ATF4 pathway and activated apoptosis [14,15]. In
our previous study, the PERK-ATF4 pathway was activated in rat hippocampi exposed to
10 mg/kg of ACR for seven weeks [16], but its role is still unclear.

Macroautophagy, herein called autophagy, is an evolutionarily conserved intracellular
degradation pathway. Autophagy is a dynamic process, including induction of autophago-
somes, formation of autophagosomes, and fusion of autophagosomes and lysosomes and
their degradation. Complete autophagy is also called autophagy flux. Autophagosomes
could engulf specific cellular substrates that need to be recycled and delivered to lyso-
somes for subsequent degradation to maintain cellular homeostasis [17]. The association
between autophagy and apoptosis is complicated and has been studied widely. Under
certain conditions, autophagy could be activated to protect cells from death, but its acti-
vation could also be proapoptotic via damaging the mitochondria when the autophagy is
excessively activated under specific circumstances [18]. Our previous studies showed that
many autophagosomes were accumulated in rat cerebellum treated with 5 mg/kg of ACR
for 12 months by drinking water, which indicated that autophagy was activated, while the
fusion of autophagosome and lysosome was blocked [19], but the reason is still unclear.

ERS and autophagy are two mechanisms essential to maintaining cellular homeostasis
and could lead to apoptosis, but the relationship between them is complex. ERS not only
induces apoptosis but also activates autophagy [20], and the inhibition of the PERK path-
way can also inhibit autophagy activation [21]. Autophagy activation helps to eliminate
abnormal proteins and subsequently alleviates ERS activation [22]. Therefore, autophagy
activation might also regulate PERK pathway-mediated ERS. However, other than ER,
dysfunction of other organelles could cause autophagy, such as mitochondria and ribo-
somes [23,24], and whether ACR-induced autophagy is regulated by the PERK pathway is
still unclear.
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Our previous research revealed that ACR could cause autophagosome accumu-
lation, activate the PERK pathway, and elevate apoptosis level in rats’ cerebella and
hippocampi [16,19,25], but the relationships among them are still unknown. Therefore,
this paper aims (a) to clarify the roles of the PERK pathway and autophagy in ACR-
induced apoptosis in SH-SY5Y cells and (b) to demonstrate the relationships between
ACR-caused PERK pathway activation and autophagy in SH-SY5Y cells. This paper
investigates the neurotoxic mechanisms of ACR further and provides a potential target
to prevent its toxicity.

2. Materials and Methods
2.1. Cell Culture

Human neuroblastoma SH-SY5Y cells were obtained from the Cell Bank/Stem Cell
Bank of the Chinese Academy of Sciences and cultured at 37 ◦C with 5% CO2 in DMEM f12
medium with 1% penicillin/streptomycin and 10% fetal bovine serum. The medium was
changed every two days, and the cells were separated into new culture bottles when they
grew up to 80% of the bottle area. The SH-SY5Y cells were seeded in 96-well plates and cell
culture dishes for treatment with different reagents, and the protein expressions, apoptotic
rates, and cell viability were detected. The general toxicity test included five groups: 0, 0.63,
1.25, 2.5, and 5 mmol/L ACR. The PERK inhibition test included four groups: control group,
GSK2606414 group (0.5 µmol/L), ACR group (2.5 mmol/L), and ACR+GSK2606414 group.
The autophagy inhibition test included four groups: control group, 3-methyladenine (3-MA)
group (2 mmol/L), ACR group (2.5 mmol/L), and ACR+3-MA group. All the reagents
were directly dissolved in the medium to achieve the target concentrations. In the general
toxicity test, the cells were incubated with an ACR-dissolved medium for 24 h. In the PERK
inhibition test, the cells in the GSK2606414 group was exposed to a PERK inhibitor first for
2 h, washed gently with PBS twice, then the reagent-free medium was added. The cells in
the GSK2606414+ACR group were exposed to a medium with 2.5 mmol/L of ACR for 24 h
after washing. In the autophagy inhibition test, the cells were exposed to a medium with
different reagents for 24 h. Then, the cell viability, protein expression, and apoptotic rate
were assessed. Cell viability was evaluated via CCK8.

2.2. Western Blot Analysis

The SH-SY5Y cells were homogenized in RIPA buffer (Beyotime, Shanghai, China)
containing protein phosphatase inhibitor and PMSF. Next, the extracts were centrifuged at
the speed of 14,000× g for 15 min at 4 ◦C, and the supernatants of each sample were col-
lected. The protein concentrations of each supernatant were evaluated using a BCA protein
assay kit (Beyotime, Shanghai, China) and blended with the sample buffer subsequently at
a proportion of 4:1. Proteins were separated via SDS-PAGE. Different-concentration gels
were made to detect the expressions of diverse proteins. After transferring the proteins to
a PVDF membrane from the gels, 5% nonfat milk was used to treat the PVDF membrane
for 2 h, then different antibodies were utilized to incubate the PVDF membrane overnight
at 4 ◦C: p-PERK (1:1000, 3179, CST, Danvers, MA, USA), t-PERK (1:1000, 3192, CST),
microtubule-associated protein 1 light chain 3 (LC3) (1:1000, 12741, CST), GAPDH (1:1000,
5174, CST), Bax (1:1000, ab32503, Abcam, Cambridge, UK), ATF4 (1:1000, ab184909, Abcam),
CHOP (1:1000, ab179823, Abcam), p62 (1:1000, A11250, ABclonal, Woburn, MA, USA),
and Bcl2 (1:1000, 12789-1-AP, Proteintech, San Diego, CA, USA). Finally, the membrane
was incubated with horseradish peroxidase-conjugated antirabbit IgG (1:20,000, E030120,
EarthOx, Burlingame, CA, USA) for 2 h at room temperature and visualized with ECL
liquid in a gel imaging system (GeneSnap version 7.05.02; SynGene, Cambridge, UK). The
protein expression levels were all standardized against GAPDH intensity for data analysis.
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2.3. Flow Cytometry

The apoptotic rate was detected using a AnnexinV–FITC/PI double-staining assay
kit (KeyGEN BioTECH, Nanjing, China). The SH-SY5Y cells were harvested using trypsin
to derive the cell suspension and evaluate the apoptotic rate. The cell suspension of each
sample was washed twice with PBS, and the cells were resuspended with 500 µL of binding
buffer. After adding 5 µL of Annexin V–FITC and 5 µL of PI working solution to the
binding buffer, the samples were assessed using a FACScan flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA) for 1 h with FlowJo software (version 7.6; FlowJo LLC, Ashland,
OR, USA).

2.4. Statistical Analysis

All the data were analyzed in SPSS software version 12.0 (SPSS Inc., Chicago, IL, USA)
and displayed as means ± S.D. An ANOVA test with LSD comparison was used to examine
all of the above data. The differences were considered statistically significant when p < 0.05.

3. Results
3.1. ACR Increased Apoptosis Levels in SH-SY5Y Cells

To assess ACR toxicity under different doses, the viabilities and apoptotic rates of
the SH-SY5Y cells were measured via CCK8 and flow cytometry. The results of CCK8-
manifested cell viabilities decreased with the rise in ACR doses. Compared with the control
group, the cell viabilities of the SH-SY5Y cells were evidently reduced when the dose was
in the range of 2.5–5 mmol/L (p < 0.01, Figure 1a). The apoptotic rates consistently rose
with the elevation of the ACR doses. Compared with the control group, when the ACR
dose was in the range of 1.25–5 mmol/L, the apoptosis level was elevated significantly
(p < 0.05, Figure 1b,c). Thus, ACR caused cell death via apoptosis in the SH-SY5Y cells.
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Figure 1. ACR treatment for 24 h caused cell death in SH-SY5Y cells. The SH-SY5Y cells were exposed
to different doses of ACR for 24 h, and the cell viabilities and apoptotic rates of the SH-SY5Y cells
were assessed via CCK8 (a) and flow cytometry subsequently (b,c), n = 3. Values are means ± S.D.
* p < 0.05, ** p < 0.01, and *** p < 0.001 versus the control group. In this figure, circles, squares,
triangles, and inverted triangles represent the data (scatter plots) of the Control group, GSK2606414
group, ACR group, and ACR+GSK2606414 group, respectively.

3.2. ACR-Induced Apoptosis Was Mediated by the PERK Pathway

To determine the role of the PERK pathway in ACR-triggered apoptosis, the specific
inhibitor of PERK, namely GSK2606414, was used to impede the activation of the PERK



Toxics 2025, 13, 41 5 of 14

pathway in the SH-SY5Y cells. In this experiment, four groups were set: control group,
GSK2606414 group, ACR group, and GSK2606414+ACR group. First, the efficiency of
the PERK inhibitor was assessed. The results in Figure 2a–e display that the ratio of p-
PERK/t-PERK and the expressions of ATF4 and CHOP in the GSK2606414+ACR group
were evidently decreased compared with those of the ACR group (p < 0.05). Thus, the
inhibitor could significantly inhibit the PERK pathway.
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Figure 2. PERK-specific inhibitor, GSK2606414, inhibited ACR−induced PERK pathway activation
in SH-SY5Y cells. The efficiency of GSK2606414 was evaluated via Western blot (a), and the corre-
sponding quantitative analysis (b–e) is shown above. Values are means ± S.D., n = 3. * p < 0.05,
** p < 0.01, and *** p < 0.001. In this figure, circles, squares, triangles, and inverted triangles represent
the data (scatter plots) of the Control group, GSK2606414 group, ACR group, and ACR+GSK2606414
group, respectively.

Then, flow cytometry and Western blot were used to measure the effects of PERK
inhibition on apoptosis induced by ACR. The results of the flow cytometry indicated that
increased apoptotic rates caused by the ACR treatment were reduced significantly by
the PERK inhibitor in the GSK2606414+ACR group (p < 0.01, Figure 3a,b). The results of
the Western blot consistently manifested that ACR-induced apoptosis was inhibited by
GSK2606414, and the elevation of Bax was constrained by the PERK inhibitor (p < 0.05) but
had no significant effect on Bcl2 (p > 0.05, Figure 3c–e).

3.3. Autophagy Was Prosurvival in SH-SY5Y Cells Treated with ACR

Autophagy is an important cellular mechanism that contributes to many intracellular
processes. Autophagy plays different roles under various conditions. Therefore, to deter-
mine the role of autophagy under ACR treatment, 3-MA was used to inhibit the induction
of autophagosome. First, the efficiency of 3-MA was assessed by measuring the expressions
of autophagy-related proteins, including LC3-II and p62, which could reflect the number of
autophagosomes and the degradation level of autophagy, respectively. Compared with the
ACR group, the ratio of LC3-II/LC3-I was significantly decreased in the ACR+3-MA group,
but no evident difference in the p62 expression level between them was observed; thus,
3-MA could clearly inhibit autophagosome accumulation and autophagy activation under
ACR treatment (p < 0.05, Figure 4).
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Figure 4. 3-MA, an autophagy inhibitor, effectively inhibited ACR—caused autophagy activation
in SH−SY5Y cells. The efficiency of 3-MA was assessed via Western blot (a), and corresponding
quantitative analyses were performed subsequently (b,c). Values are means ± S.D., n = 3. * p < 0.05,
and ** p < 0.01. In this figure, circles, squares, triangles, and inverted triangles represent the data
(scatter plots) of the Control group, GSK2606414 group, ACR group, and ACR+GSK2606414
group, respectively.
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Apoptosis levels were also evaluated by subsequently using flow cytometry and
Western blotting. The apoptotic rate of the ACR+3-MA group was higher than that of
the ACR group (p < 0.001, Figure 5a,b); that is, the inhibition of autophagy aggravated
ACR-induced apoptosis. The results of the Western blot also indicated that the expression
of the proapoptotic protein, namely Bax, increased in the ACR+3-MA group compared with
the ACR group (p < 0.05), but no evident change was noted in Bcl2 expression (p > 0.05,
Figure 5c–e). Thus, under ACR treatment, autophagy plays an antiapoptotic role.
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3.4. ACR-Induced Autophagy Activation Was Controlled by PERK Pathway in SH-SY5Y Cells

The relationship between autophagy and PERK-mediated ERS is complex; thus, to de-
termine the relationship between them, the autophagy condition was checked under PERK
pathway inhibition. The Western blot results showed that the expressions of autophagy-
related protein were clearly reduced in the GSK2606414+ACR group, which indicated that
the activation of autophagy and accumulation of autophagosomes are inhibited under
PERK inhibitor treatment (p < 0.05, Figure 6).
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3.5. Autophagy Inhibition Had No Significant Effects on the ACR-Induced PERK Pathway
Activation in SH-SY5Y Cells

To determine the effects of autophagy activation on the PERK pathway under ACR
treatment, autophagy was inhibited with 3-MA, then the expression level of PERK pathway-
related proteins was detected via Western blot (Figure 7). Compared with the ACR group,
the levels of p-PERK/t-PERK, ATF4, and CHOP in the ACR+3-MA group were not sig-
nificantly changed, which further suggests that autophagy induced by ACR is mainly
regulated by the PERK pathway, whereas the inhibition of autophagy has no significant
effect on the ACR-activated PERK pathway.
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4. Discussion
ACR is an extensively used chemical compound in many fields, such as paper making,

mining, and Western blot experiments in laboratories. ACR causes neurotoxicity, carcino-
genicity, and reproductive toxicity as revealed in animal experiments, while neurotoxicity,
the only identified toxicity in humans, has been eagerly studied in populations and labo-
ratories. According to the epidemiologic study by Liu et al., four-year ACR exposure is
associated with slightly diminished cognitive ability and elevated risk of poor cognition
in nonsmoking Chinese male elders [26]. Research by Guo et al. showed noticeable body
weight loss and progressive impairment of motor function in rats exposed to 40 mg/kg
of ACR for four weeks, which may be induced by the significantly elevated levels of
TUNEL-positive cells and IL-1β and TNF-α levels in the cortex and hippocampus [27]. In
our previous experiment, 12-month ACR treatment caused abnormal gait and cognitive
dysfunction in SD rats by activating neuroinflammation mediated by the NLRP3 inflam-
masome [28], but in vitro research is needed to explore its toxicity further. In this paper,
ACR-caused elevated apoptosis levels were found in SH-SY5Y cells. In this process, the
PERK pathway was proapoptotic, whereas autophagy was antiapoptotic, and autophagy
activation was regulated by the PERK pathway.

The neuroblastoma SH-SY5Y cell line is a subline of the SK-N-SH cell line, which has
been widely used in the study of Parkinson’s disease, Alzheimer’s disease, neurotoxicity,
and ischemia [29]. Although the treatment of SH-SY5Y cells with retinoic acid can enhance
their differentiation, compared with undifferentiated SH-SY5Y cells, differentiated SH-
SY5Y cells are less susceptible to exogenous compounds [30,31]. Therefore, in this paper,
undifferentiated SH-SY5Y cells were selected to investigate the neurotoxicity of ACR.
However, due to the large difference between these cells and neurons in the brain, the
authors will use ACR to treat primary neurons in future work to explore the neurotoxic
mechanisms of ACR further.

Apoptosis is a gene-controlled process, which could help to maintain cellular ho-
moeostasis by removing impaired and/or unrequired cells in multicellular organisms.
Apoptosis could be activated in physiological and pathological conditions. In organisms,
cell division and apoptosis are balanced; once apoptosis becomes abnormal, the balance
is disrupted, and diseases occur [32]. A study showed that overexpression of lncRNA
PLP0P2 leads to colorectal cancer by suppressing apoptosis and promoting invasion and
migration [33]. Wu et al. found that manganese exposure causes Alzheimer-like cognitive
impairment, including tau hyperphosphorylation and memory deficits in male SD rats by
elevating the levels of oxidative stress and apoptosis [34]. Moreover, apoptosis contributes
to ACR neurotoxicity in vivo and in vitro. Research performed by our group showed that
ACR treatment causes apoptosis in PC12 cells and rat cerebella [19,35], but the detailed
mechanisms still need further investigation. In this paper, ACR-caused apoptosis was
mediated by the PERK pathway and autophagy. ACR activates apoptosis mainly by up-
regulating the expression levels of Bax protein, but it has no significant effect on the levels
of Bcl2. Bax and Bcl-2 are important proteins in cell apoptosis. Bax is an effector protein
that can induce apoptosis by increasing the mitochondrial outer membrane’s permeability
and releasing cytochrome c, whereas Bcl2 could bind to Bax and inhibit the effects of Bax.
ACR could increase the expression levels of Bax but had no evident effect on bcl-2, which
suggests that the change in Bax expression levels induced by ACR is not mediated by bcl-2.
Studies found that p53 can directly induce the transcription of Bax [36], and the translation
of p53 protein is regulated by the PERK pathway [37]. Okuno et al. found that ACR can also
induce p53 protein expression in SH-SY5Y cells [38]. Therefore, the authors of this paper
hypothesized that ACR might mediate the translation of p53 protein via the PERK pathway,
lead to increased levels of Bax protein, and finally activate apoptosis. To verify this hy-
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pothesis, the authors constructed p53-knockout SH-SY5Y cells to explore the relationships
among ACR-induced PERK pathway activation, cell apoptosis, and p53 protein.

The ER, a primary intracellular organelle in cells, is a closed 3D intertwined tubular
system, and its homeostatic maintenance is important to cell survival [39]. When intra-
cellular and/or extracellular conditions change, ER homeostasis is interrupted, causing
the accumulation of unfolded proteins in the ER lumen, which may lead to cellular dys-
function. To survive, ERS and UPR, self-protective mechanisms, are initiated [40]. Some
studies have shown that ERS contributes to the occurrence and development of many
clinical diseases; for example, the inhibition of the ERS-mediated apoptosis pathway could
alleviate the learning and memory ability of mice with Alzheimer’s disease [41]. UPR has
three branches, namely PERK, IRE1, and ATF6, that help eliminate abnormal proteins
and restore ER function [42]. According to Komoike, ACR activates the PERK pathway in
SH-SY5Y cells but had no evident influence on the IRE1 pathway, which indicated that
the PERK pathway plays a major role in ACR-induced ERS activation [43]. The PERK
pathway is one of the key pathways in the UPR, which could alleviate mRNA translation,
decrease protein synthesis, and help to reduce the protein load in the ER lumen, which is
already stressed [44]. Therefore, when ERS is caused by changes in the internal and external
environment, the PERK pathway could be activated in the early stage of stress. However,
prolonged, harsh ERS would elevate CHOP expression levels and transform ERS from
prosurvival to proapoptotic [45,46]. Our previous study also showed ACR activates the
PERK pathway in the rat hippocampus and cortex under 10 mg/kg of ACR treatment for
seven weeks [16]. Although ACR could activate the PERK pathway, its role is still unclear.
In this paper, the PERK-specific inhibitor GSK2606414 hindered the apoptosis caused by
ACR treatment, which indicates that the PERK pathway plays a proapoptotic role.

Autophagy is a genetically conserved lysosome-dependent mechanism in cellular
homeostatic maintenance. Autophagy is essential in discarding damaged, unnecessary
cellular components, which may protect organisms against aging, infection, and neurode-
generative diseases [47]. LC3 is an autophagy-associated protein in the cytoplasm and has
two forms: LC3-I and LC3-II. LC3-I would be modified to LC3-II to participate in growing
autophagosomes; therefore, LC3-II levels could be used to evaluate the autophagy state
and the amount of autophagosomes. However, autophagy works as a double-edged sword
in cells. Under normal circumstances, autophagy works as a cellular defense mechanism at
low basal level in all cells to update and remove abnormal proteins and organelles, and
proper intracellular and extracellular stimuli would elevate the autophagy level to protect
cells from death [48]. Liu et al. found that ROS could activate autophagy through the
ATM-CHK2-TRIM32-ATG7 axis to maintain cell homeostasis under metabolic stress [49].
However, excessive activation of autophagy causes cell damage; specifically, intensified,
chronic autophagy leads to programmed cell death, which is also known as autophagy
death or type 2 cell death [50]. Wang et al. found that autophagy is induced in PC12 cells un-
der acute ACR [51], but the role played by autophagy under this condition is still unknown.
In this paper, 3-MA was used to inhibit autophagy to moderate ACR-induced autophagy
flux blockage in SH-SY5Y cells. Autophagy inhibition aggravated ACR-induced apoptosis,
which suggests that autophagy protected the cells from apoptosis under ACR treatment.

The relationship between autophagy and ERS has been investigated many times, but
the relationship varies under diverse conditions. Many studies have demonstrated that the
PERK pathway is important in mediating the interaction between ERS and autophagy. Chen
et al. found that porcine reproductive and respiratory syndrome virus caused autophagy
to alleviate cell stress by activating the PERK pathway [52]. Moreover, many studies have
shown that autophagy activation is not only controlled by ERS but also mediated by other
factors. Wei et al. treated MIN6 cells with 4 µmol/L NaAsO2 for 24 h and observed increased
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oxidative stress level, ferroptosis, and activated MtROS-dependent autophagy [53]; this
indicated that autophagy could be activated not only by ERS but also by mitochondria
dysfunction. Not only does ERS regulate autophagy, but the activation of autophagy may
also mediate ERS [54]. In addition, recent studies found that autophagy can be involved
in regulating the activation of ERS [55]. Therefore, to determine the relationship between
PERK-mediated ERS and autophagy under ACR treatment, GSK2606414 and 3-MA were
used in this work to inhibit the PERK pathway and the formation of autophagosomes. After
inhibiting the PERK pathway, autophagy activation was significantly inhibited in vitro, but
the effects of autophagy inhibition on the PERK pathway were not significant. These results
suggest that autophagy is mediated by the PERK pathway of ERS under our experimental
conditions. However, whether the alleviation of autophagy flux blockage could affect PERK
pathway activation under ACR treatment remains unclear. In addition, ERS and autophagy
are dynamic processes and might change depending on exposure time. Therefore, in future
work, ACR will be used to treat SH-SY5Y cells for different times to explore further the
association among autophagy, apoptosis, and PERK pathway-mediated ERS induced by
ACR under varied times of treatment.

5. Conclusions
The conclusions of this paper are as follows: (a) In SH-SY5Y cells, 24 h ACR treatment

induces apoptosis, PERK-mediated ERS, and autophagy. (b) ACR-caused PERK pathway
activation is proapoptotic and could mediate autophagy activation in SH-SY5Y cells. (c) The
autophagy induced by ACR is antiapoptotic in SH-SY5Y cells. However, this paper has
limitations. The ACR treatment time was short, and acute exposure can only be mimicked
in vivo. In the future, a longer treatment time would be used to imitate chronic ACR expo-
sure in vivo to investigate ACR chronic toxicity further. In addition, whether moderation
autophagy flux blockage can alleviate ACR-caused PERK pathway activation still needs to
be explored further.
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