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Abstract: The global prevalence and burden of anxiety disorders (ADs) are increasing.
However, findings on the acute effects of air pollution on ADs remain inconclusive. We
evaluated the effects of short-term exposure to ambient air pollutants, including fine
particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide (NO2),
carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3), on daily hospital visits for
ADs. A generalized additive model was used to perform a time-series analysis on data
from a Southern China city’s medical insurance system between 1 March 2021, and 31
July 2023. Although the daily levels of most pollutants (PM10, SO2, CO, NO2 and O3)
were consistently below China and WHO’s Ambient Air-Quality Standards, significant
associations were observed between daily hospital visits for ADs and all six air pollutants.
Each interquartile range increase in concentrations resulted in the largest odds ratios of 1.08
(95% CI: 1.01, 1.16) at lag1 for PM2.5, 1.19 (95% CI: 1.05, 1.34) at lag07 for NO2, 1.14 (95% CI:
1.05, 1.23) at lag02 for CO, 1.12 (95% CI: 1.01, 1.25) at lag07 for PM10, 1.06 (95% CI: 1.01, 1.12)
at lag7 for SO2 and 1.08 (95% CI: 1.01, 1.15) at lag7 for O3, respectively. The effects of NO2

and CO remained robust across subgroup analyses and sensitivity analyses. Females and
middle-aged individuals showed stronger associations than other subgroups. The findings
underscore the necessity for public health efforts to alleviate the impact of air pollution on
mental health, even in low-concentration settings.

Keywords: air pollution; anxiety disorder; time-series analysis; health effect

1. Introduction
Anxiety disorders (ADs) are characterized by symptoms of fear, nervousness, and

worry, in addition to physical symptoms [1]. According to the latest Global Burden of
Disease study, ADs are a leading cause of disability worldwide. Between 2010 and 2021,
ADs experienced the largest rise in age-standardized disability-adjusted life years (DALYs)
rates, with an increase of 16.7% (14.0–19.8) [2]. As of 2021, there were approximately
359 million people suffering from ADs worldwide, and 53 million were suffering in China
alone [3]. The increasing burden of ADs highlights the urgent need to identify risk factors
that contribute to this rise, as it represents a pressing public health concern.
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There has been an increasing focus on the relationship between ambient air pollution
and mental disorders in recent years. Mechanistically, exposure to air pollutants has been
demonstrated to negatively impact the nervous system, leading to neuroinflammation
and oxidative stress, which may result in neurodevelopmental disorders [4–7]. Current
population-based studies, albeit limited, also support the negative impact of air pollution
on ADs. A study conducted in the United Kingdom suggests that long-term exposure to ni-
trogen dioxide (NO2) and fine particulate matter (PM2.5) may increase the risk of anxiety [8].
These findings mirror those reported in the United States [9] and Korea [10]. However,
studies investigating short-term effects of air pollutants on ADs are limited. Although
several researchers have reported that short-term exposure to PM2.5, NO2, inhalable par-
ticulate matter (PM10), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) may
increase the risks of hospital admissions or outpatient visits for ADs, the evidence remains
inconclusive [11–14]. For instance, Ji et al. [13] found a significant association between PM10

and ADs in Qingdao, China, but these findings could not be replicated by Muhsin and
colleagues [14] in Sweden. Nonetheless, it is worth noting that the research regarding the
impact of air pollution on specific subtypes of mental disorders, especially ADs, remains
limited. And most studies do not use a diagnosis of an AD as the outcome, instead choosing
to focus on anxiety symptoms. Furthermore, most studies focused on areas with high air
pollution concentrations [12,13]; research in regions with low pollution concentrations is
relatively scarce. Additionally, much of the existing literature has focused on particulate
matter, without comprehensively analyzing the effects of other gaseous pollutants. This
raises important questions regarding the impact of acute exposure to multiple air pollutants
on severe anxiety episodes, particularly those resulting in hospital visits.

To address these knowledge gaps, we assessed the short-term effects of ambient air
pollution (PM2.5, PM10, NO2, SO2, CO and O3) on daily hospital visits for ADs in a typical
city in southern China where the pollution concentrations are relatively low.

2. Materials and Methods
2.1. Study Settings and Participants

Qingyuan City is located in Guangdong Province, China, and has a total land area of
19,000 square kilometers. It has a subtropical monsoon climate and, in this area, summer is
the longest season of the year. Qingyuan City exhibits a diverse topography, characterized
by extensive plains in the southeast and a preponderance of mountains and hills in the
north and central regions [15], which underscores Qingyuan’s representativeness within
the southern region of China. As of 2023, it had nearly 4 million residents, and 3.92 million
people had enrolled in basic medical insurance (coverage rate: 98.5%) [15]. Daily data on
hospital visits for ADs from 1 March 2021 to 31 July 2023 were obtained from the basic
medical insurance system of Qingyuan City, which collects medical records, including
inpatient and outpatient information, for all insurance enrollees in the city. Individuals
diagnosed with ADs were included in this study. According to the International Classification
of Diseases, 10th version (ICD-10), the disease codes were F40 and F41 [16]. The information
we collected included patients’ gender, age, visit date, end date, disease diagnoses and
hospital’s name and address. Patients who were hospitalized outside Qingyuan City were
excluded because their previous exposure to air pollution could not be confirmed. The data
used in this study were approved by the Biomedical Research Ethics Review Committee of
the School of Public Health, Sun Yat-sen University [No.(2020)029].

2.2. Air-Quality Data

Daily 24 h mean concentrations of PM2.5, PM10, NO2, SO2, and CO and daily max-
imum 8 h average concentrations of O3 were obtained from the National Air-Quality
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Monitoring System, consistent with previous studies [17]. Daily mean concentrations of
all air pollutants were determined by averaging all valid monitoring measurements [13].
There are four air monitoring stations in Qingyuan City, primarily located in the most
densely populated districts and counties, which adequately represent the exposure levels
for the majority of the population. Additionally, these stations are positioned away from
pollution sources such as roads and factories [18], ensuring that the data collected from
these locations accurately reflect the overall air pollution levels in the city [19].

2.3. Covariates

To account for potential confounding variables, we obtained daily meteorological data
for Qingyuan City from the China Meteorological Administration Land Data Assimilation
System (CLDAS version 2.0) within the National Weather Data-Sharing System of China.
For every grid in Qingyuan, we extracted the daily average values of surface air pressure,
precipitation, wind speed, specific humidity, and air temperature. The following formulas
were used to estimate the relative humidity [20]:

Saturation vapor pressure = 6.112 × e17.67× air temperature
air temperature+243.5 (1)

Actual vapor pressure =
specific humidity × airpressure

0.378 × specific humdity + 0.622
(2)

Relative humidity =
actual vapor pressure

saturation vapor pressure
× 100 (3)

In addition, information on the day of the week when the hospital was visited and
on public holidays was collected. Furthermore, since the study period coincided with the
COVID-19 pandemic, the impact of COVID-19 lockdown was also included in the analysis.

2.4. Statistical Analyses

Time-series analysis and a generalized additive model (GAM) were utilized to explore
the acute effects of air pollution on daily hospital visits for ADs. This method accommodates
the temporal variations in the data and enables the repeated examination of the same
population under different exposure conditions. Air pollutant concentration data were
matched with daily patient count data for ADs by date. Given that the daily patient counts
exhibited a quasi-Poisson distribution, we performed an over-dispersed GAM [21]. GAM
can simultaneously assess both linear and nonlinear correlations between environmental
factors and health effects while adjusting for various confounding variables [22].

Based on previous research [13,17,21] and the minimum generalized cross-validation
(GCV), we chose the following covariates in the main model:

(1) A natural spline function of calendar time with 5 degrees of freedom (d f ) per year to
account for unmeasured time and seasonal trends;

(2) A natural spline functions with 2 d f for daily mean temperature and 2 d f for daily
relative humidity to control weather confounders;

(3) An indicator variable for the visit day of week (DOW) to address potential differences
between weekdays and weekends (1 = weekends and 0 = weekdays);

(4) An indicator variable for public holidays to accommodate potential holiday-related
variations (1 = holidays and 0 = non-holidays);

(5) An indicator variable for the COVID-19 pandemic to accommodate potential changes
related to COVID-19 lockdown measures (1 = before 8 January 2023 and 0 = after 8
January 2023). We chose 8 January 2023 as the truncated time point because, after this
date, COVID-19 was treated as a Category B infectious disease in China, which meant
that there were no more lockdowns [23].
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The GAM is as follows:

log E(Yt) = α + β ∗ Zt + ns(time, d f ) + ns(temperature, d f )
+ns(relative humidity, d f ) + DOW + Holiday + COVID-19

(4)

where E(Yt) refers to the expected number of patients seeking treatment for ADs per day
at day t; Zt denotes the concentrations of a single air pollutant at day t; β indicates the
coefficient for Zt; d f represents degrees of freedom; ns refers to a natural spline function;
and α is the intercept. The outcomes were presented as odds ratios (ORs) with 95%
confidence intervals (CIs) for anxiety disorder-related hospital visits, corresponding to each
interquartile range (IQR) increase in air pollutants per day.

Short-term exposure to pollutants was defined based on the pollutant levels on the
day of the hospital visit and up to the preceding 7 days [11,16]. Based on prior findings
about the lagged impacts of air pollution on health [24], we constructed both single-day
lag models (lag0–lag7) and moving average lag models (lag01–lag07) to assess cumulative
effects. In the single-day lag models, lag0 indicates the current day’s concentration, and
lag7 indicates the concentration seven days prior. In the moving average lag models, lag01
represents the average pollutant concentration over the current and previous day, and
lag07 represents the average concentration of the current day and the previous seven days.
By including a natural spline function with three degrees of freedom for each pollutant
in the aforementioned GAM, we were able to plot exposure–response (E–R) relationship
curves [25,26].

Additionally, we performed subgroup analyses to investigate potential modifications by

age (<45, 45–64, ≥65) and gender (female, male). Moreover, (Q1 − Q2)± 1.96
√

SE2
1 + SE2

2 was
used to examine the differences between each two subgroups, where Q1, Q2 represented effect
estimates of two subgroups and SE1 and SE2 were their corresponding standard errors [27,28].

We performed three sensitivity studies to confirm the model’s stability. First, we
used varying degrees of freedom (d f = 3 to 7) to correct for seasonal and long-term trends.
Secondly, we added co-pollutants with a Spearman’s correlation coefficient less than 0.7 to
the main model in order to fit two-pollutant models [29]. For each air pollutant, the lag
period with the largest impact was chosen. Thirdly, we analyzed data collected only before
8 January 2023.

We used R software version 4.3.2 to complete the analysis, and the p value < 0.05 was
considered statistically significant.

3. Results
3.1. General Characteristics

A total of 2784 hospital visits for ADs, including inpatients and outpatients, were
observed between 1 March 2021 and 31 July 2023. An average of 3.15 patients were admitted
every day. The mean age of the patients was 52.54 (standard deviation = 14.94 years old).
(Table 1). A time-series plot of the number of daily hospital visits for ADs is shown in
Figure S1 of the Supplementary Materials.

As shown in Table 2, the daily concentrations of six air pollutants in Qingyuan City
were all below China’s Ambient Air-Quality Standards. Additionally, except for PM2.5, the
others were also below the World Health Organization 2021 Global Air-Quality Guidelines.
At the same time, the daily average temperature and relative humidity were 21.03 ◦C and
78.17%. Concentrations of air pollutants, except for O3, were higher in winter and lower in
summer (see Supplementary Figure S2).
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Table 1. Descriptive statistics for daily anxiety disorders visits during the study period.

N (%) Mean SD

Overall 2784 (100) 3.15 2.70
Gender

Male 823 (29.56) 0.93 1.12
Female 1961 (70.44) 2.22 2.07

Age, years
<45 830 (29.81) 0.94 1.16

45–64 1345 (48.31) 1.52 1.71
≥65 609 (21.88) 0.69 0.94

Year of hospital visits
2021 1162 (41.74) 3.80 2.46
2022 1391 (49.96) 3.81 2.93
2023 231 (8.3) 1.09 1.12

Levels of Hospital
Tertiary hospitals 540 (19.40) 0.61 0.86

Secondary hospitals 1934 69.47) 2.19 2.20
Primary hospitals 310 (11.13) 0.31 0.67

Type of hospital visit
Outpatient visits 2195 (78.84) 2.49 2.62
Hospitalization 589 (21.16) 0.67 0.89

Abbreviations: SD, standard deviation; primary hospitals refer to community-level healthcare facilities, which
primarily focus on basic healthcare services; secondary hospitals are regional healthcare facilities serving multiple
communities; and tertiary hospitals are comprehensive medical, teaching, and research centers with advanced
technical capabilities.

Table 2. Descriptive statistics for daily concentrations of air pollutants, and meteorological factors.

Mean SD Min P25 P50 P75 Max IQR CHINA WHO

Air pollutant concentration
PM2.5 (µg/m3) 21.67 12.18 0.00 13.00 19.00 29.00 76.00 16.00 75 15
PM10 (µg/m3) 36.04 20.27 0.00 22.00 32.00 47.00 145.00 25.00 150 45
SO2 (µg/m3) 6.81 1.81 3.00 6.00 7.00 8.00 14.00 2.00 150 40
NO2 (µg/m3) 19.32 8.80 4.00 13.00 18.00 23.50 57.00 10.50 80 25
CO (mg/m3) 0.70 0.19 0.20 0.60 0.70 0.80 1.50 0.20 4 4
O3 (µg/m3) 96.48 45.42 3.00 63.00 96.48 128.00 261.00 65.00 160 100

Meteorological measure
Mean temperature (°C) 21.03 6.77 3.79 15.81 22.25 26.92 30.83 11.11 - -
Relative humidity (%) 78.17 11.43 32.45 72.30 79.29 87.28 95.08 14.98 - -

Surface air pressure (hpa) 973.1 5.89 958.4 968.6 972.6 977.5 989.0 8.93 - -
Precipitation (mm) 5.65 10.71 0.00 0.01 0.82 6.27 83.23 6.26 - -
Wind speed (m/s) 0.94 0.32 0.50 0.71 0.85 1.05 2.76 0.34 - -

Abbreviations: PM2.5—fine particulate matter; PM10—inhalable particulate matter; NO2—nitrogen dioxide;
CO—carbon monoxide; SO2—sulfur dioxide; O3—ozone; P25, P50, P75—the 25th, 50th, and 75th percentile;
Min—minimum; Max—maximum; SD—standard deviation; IQR—interquartile range; CHINA—China’s
Ambient Air-Quality Standards [30]; WHO—the World Health Organization 2021 Global Air-Quality Guide-
lines [31].

The Spearman correlation coefficients among all air pollutants were significant, except
for those of CO and SO2. A strong correlation (r = 0.95) was observed between PM2.5 and
PM10 (see Supplementary Table S1).

3.2. Single-Pollutant Model Results for Hospital Visits for Anxiety Disorders

Overall, short-term exposure to PM2.5, PM10, SO2, NO2, CO, and O3 was positively
correlated with the daily hospital visits for ADs (Figure 1). PM2.5 was significant at lag1
day, with each IQR increase corresponding to an OR of 1.08 (95% CI: 1.01, 1.16). PM10

was significant at lag7 day and lag07 day, with the strongest effect observed at lag07 day
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(OR = 1.12, 95% CI: 1.00, 1.25). SO2 was significant at lag7 day (OR = 1.06, 95% CI: 1.00, 1.12).
NO2 showed statistical significance at lag3–4 day and lag03–07 day, with the strongest
effect at lag07 day (OR = 1.19, 95% CI: 1.05, 1.34). CO was significant at lag0–2 day and
lag01–05 day, with the strongest effect observed at lag02 day (OR = 1.14, 95% CI: 1.05, 1.23).
O3 was significant at lag7 day (OR = 1.08, 95% CI: 1.01, 1.15) (see Supplementary Table S2).
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Figure 1. Impact of PM2.5, PM10, NO2, CO, SO2, and O3 on daily anxiety-related hospital visits at
different lag days (red line means an OR = 1).

Exposure–response curves for PM10, NO2, SO2 and O3 were linear, with no signif-
icant thresholds identified. The curves of PM2.5 and CO exhibited steep slopes at low
concentrations and became flat at higher concentrations (see Supplementary Figure S3).

3.3. Subgroup Analyses
3.3.1. Effect by Gender

As shown in Figure 2, the results for females were similar to those for the whole
population. PM2.5 was significant at lag1, lag7, and lag07 day. PM10 was statistically
significant at lag7 and lag07 day. NO2 was statistically significant at lag4 and lag04–07 day.
SO2 and O3 were significant at lag7 day. CO was significant at lag0–2 and lag01–07 day. On
the contrary, the correlations in males were insignificant. NO2 was statistically significant
only at lag3 day, with an OR of 1.16 (95% CI: 1.04,1.29) (see Supplementary Table S3).
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Overall, females exhibited greater associations than males, although gender differences
were significant only at lag0 day for CO (see Supplementary Table S4).

3.3.2. Effect by Age

As shown in Figure 3, in the younger group (<45 years old), only CO showed a positive
correlation at lag7 day with an OR of 1.14 (95% CI: 1.01, 1.28). In the middle-aged group
(45–64 years old), significant correlations were observed at lag2 day for PM2.5; at lag2, lag7,
lag04, and lag07 day for PM10; at lag2 and lag4 day for SO2; at lag2–4 and lag03–07 day for
NO2; and at lag0–2 and lag01–05 day for CO, respectively. In the older group (≥65 years old),
none of the air pollutants showed statistical significance (see Supplementary Table S5).

Overall, the middle-aged group showed greater associations than other age groups.
However, the differences between the younger group and the older group were not signifi-
cant. The effects of CO and SO2 on ADs showed significant differences between the younger
group and the middle-aged group, with stronger associations observed in the middle-aged
group. The effect of PM10 on ADs differed significantly between the middle-aged group
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and the older group, and the association was slightly stronger in the middle-aged group
(see Supplementary Tables S6–S8).
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3.4. Sensitivity Analyses

The effect estimates of CO and NO2 were robust under different df values of calen-
dar time, while other estimated effects changed slightly (see Supplementary Table S9).
In addition, the two-pollutant models indicated that the associations for CO and NO2

remained robust after all other pollutants were added. PM2.5 became nonsignificant only
after the addition of CO. PM10 remained significant only after the addition of O3. SO2 and
O3 maintained significance only after the addition of CO (see Supplementary Table S10).
Restricting the analysis to data obtained before 8 January 2023 ensured that the models
produced similar results (see Supplementary Table S11).

4. Discussion
This study explored the association between short-term air pollution exposure and

hospital visits for ADs in a city in Southern China, where the daily concentrations of most
pollutants (PM10, SO2, NO2, CO, and O3) were consistently below China and the WHO’s
Ambient Air-Quality Standards. Our results suggested that even at relatively low pollution
levels, short-term exposure to these pollutants, particularly NO2 and CO, increased the risk
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of hospital visits for ADs. In subgroup analyses, females and individuals aged 45–64 years
were more susceptible to air pollutants, although most differences between subgroups were
not significant. Our study addressed the inadequate information regarding acute effects of
air pollutants on the hospital visits for ADs in areas with low pollution concentrations.

Previous studies have often analyzed the effects of air pollution in regions with high
pollutant concentrations, particularly in Northern China or industrialized countries where
pollution levels exceed recommended thresholds. For example, studies conducted in cities
like Shenyang and Qingdao have primarily focused on higher pollution levels, which may
yield stronger associations with anxiety-related outcomes [12,13]. In contrast, our study
was conducted in a region with low ambient pollution, providing insight into the effects
of air pollutants even when concentrations are below health guidelines. This adds an
important dimension to the growing body of literature by showing that the health risks
posed by air pollution can persist at lower levels, which is critical for shaping public health
interventions in regions with improving air quality. In addition, the exposure–response
curves for most pollutants are linear, indicating no clear threshold. This suggests that it is
crucial to reduce pollution sources, rather than merely lowering pollutant concentrations
below a certain level. Moreover, although the ozone concentration in our study was below
the WHO’s guideline, at 96.48 µg/m3, this level remains relatively high. In recent years,
ozone pollution has become an increasingly prominent issue. Jin et al. [32] and Xu et al. [33]
have also found that ozone is associated with an increased risk of ADs, though current
evidence remains insufficient. Ozone, as a potent oxidizing agent, can cause oxidative
damage and activate pro-inflammatory molecules [34]. Additionally, ozone may increase
the release of stress hormones and glucocorticoids by activating the hypothalamic–pituitary–
adrenal (HPA) axis [35]. Both of these factors play critical roles in the pathophysiology
of mental disorders. Therefore, further research is needed to explore the impact of ozone
on ADs and other mental health issues. Overall, our observed associations may provide
additional insights into the effects of ambient pollutants in low-concentration sites.

Unlike most longitudinal design studies that examined long-term air pollution expo-
sure [8–10,36,37], we focused on short-term effect and anxiety disorder-related hospital
visits. Existing evidence suggests that acute increases in ambient air pollution levels are
associated with the occurrence of acute health events. For instance, Muhsin et al. found that
acute exposure to air pollution resulted in a significant deterioration in mental health [14].
Acute increases in ambient air pollution may exacerbate symptoms in individuals who
are already experiencing anxiety, potentially leading to an increased likelihood of hospital
visits. Some evidence is available to support the effects of short-term exposures, particularly
with regard to depression [17], but fewer studies have focused on anxiety and the findings
are inconsistent [11,13,16,38]. In addition, some studies have shown that the short-term
effects of air pollution on ADs are delayed. For example, Yue et al. reported a positive
correlation between PM2.5, PM10, and hospital admissions for ADs at lag2–lag6, as well as
at lag01 and lag05 [16]. Ma et al. observed that SO2 was significantly associated with an
increased risk of daily hospital admissions for ADs at lag0, lag1, lag4–7, and lag01–07 [11].
Similarly, our study also identified lagged effects of air pollution on hospital visits for ADs.
One possible explanation is that patients exhibiting symptoms often delay seeking medical
attention, opting to wait and see whether their condition improves spontaneously [39].
Moreover, most hospital visits for ADs are non-urgent. In China, it is common to schedule
appointments before visiting the hospital, typically resulting in a delay of several days. The
biological mechanisms underlying this lagged association require further investigation.

Our study showed that PM2.5, PM10, NO2, CO, SO2, and O3 have adverse effects on
ADs. A multicity study conducted in China supported our findings, although it concen-
trated on only particulate matter [16]. Another study in Qingdao also found that short-term
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exposure to PM2.5, PM10, NO2 and CO increased the risk of daily anxiety hospitaliza-
tions [13]. However, another multi-city study in China identified significant associations
between NO2, SO2, and anxiety admissions, while no notable correlations were found
with PM2.5, PM10, CO, and O3 [11]. A study in Shenyang found that only SO2 and CO
had significant effects on outpatients visits related to anxiety [38]. This discrepancy could
be attributed to several factors. First, variations may arise due to differences in study
locations and populations. Hu et al. reported that the infiltration and exposure levels of air
pollutants were greater in southern China compared to northern China [40]. Second, the
toxicity of air pollutants may primarily depend on their chemical composition. According
to prior research, the health impacts of particle compositions may outweigh the negative
effects associated with their concentrations [41]. Therefore, further research is necessary to
investigate the impact of particle compositions on ADs.

Notably, our results found that gaseous pollutants (NO2 and CO) remained robust
in both subgroup analysis and sensitivity analysis. Therefore, CO and NO2 may be key
air pollutants that contribute to an increased risk of ADs. CO is primarily generated by
anthropogenic activities, including tailpipe emissions. NO2, which is mainly produced
via fossil fuel combustion, contributes to the formation of environmentally harmful O3.
Both CO and NO2, along with other air pollutants, have toxic effects on the brain, lead-
ing to neuroinflammation, neurodegeneration, and cerebral vascular damage [42]. An
experimental study found that inhalation of NO2 altered the expression of related genes,
inducing anxiety-like mental disorders in adult mice [43]. Additionally, CO and NO2 are
pro-oxidants, potentially increasing oxidative stress levels upon prolonged exposure, which
may contribute to heightened anxiety and depression-like behaviors [44].

In subgroup analyses, for the gender-stratified result, we found that the number
of females with ADs was twice that of males, aligning with previous studies [12,13].
Additionally, females exhibited higher ORs for PM2.5 and CO exposure than males, with this
gender difference being statistically significant for CO. This discrepancy may be attributed
to variations in hormone levels [45], neurobiological processes [46], and variation in lung
structure and reactivity, which affect airway resistance and exposure differences [47]. Kim
et al. reported that the pulmonary deposition of particulate matter was significantly higher
in females than in males [48], which may contribute to the increased sensitivity observed
in females. Additionally, indoor burning of fossil fuels for cooking significantly elevates
PM2.5 and CO concentrations in kitchens [49], and females in China typically engage in
more cooking than males, leading to higher exposure levels. Furthermore, behavioral
studies have shown that males are generally less willing than females to seek help for
mental health-related issues [50]. In terms of age-stratified results, the 45–64 years age
group had a higher rate of hospital visits for ADs than other age groups, and there was a
stronger correlation between ADs and air pollutants in this group. Our results are partially
supported by previous studies. Cao et al. demonstrated a significant association between
PM2.5 and ADs in individuals aged over 45 [51]. Additionally, Ma et al. documented a
stronger correlation between SO2 and anxiety-related hospitalizations in patients under
65 years old [11]. However, two studies reported no significant variations in different age
groups [12,16]. Further research is necessary to incorporate additional influencing factors,
including educational attainment, economic status, and the presence of chronic diseases.
Overall, the subgroup results could aid in identifying vulnerable populations and support
targeted disease prevention efforts related to environmental exposures.

Our study has several limitations. Firstly, we utilized averaged exposure data from
monitoring stations within the city, which may lead to inaccuracies in exposure-level as-
sessments. For example, monitoring stations are primarily located in densely populated
districts and counties, where pollution levels are commonly higher than remote areas,
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potentially leading to exposure being overestimated for some individuals. Secondly, in
this study, we were unable to precisely match exposure levels based on residential lo-
cations, as the individual’s home address was not provided in the authorized medical
insurance data. Thirdly, the number of hospital visits for ADs is limited. Nevertheless, a
quasi-Poisson-distributed GAM can accommodate small counts [52], thereby mitigating
the impact of sample size to some extent. Additionally, several potential confounders,
such as comorbidities, were not included in this study, and these should be investigated
further in the future. However, this study also has some advantages. Firstly, most prior
research has been limited to large hospitals or hospitals specializing in psychiatry, which
restricts their representativeness in the general population. Our study used basic medical
insurance data covering 3.92 million people, with a coverage rate of 98.5%, providing better
representativeness. In addition, the anxiety-disorder patients we included were diagnosed
by doctors, avoiding the inaccuracies associated with self-reported questionnaires.

5. Conclusions
Our study indicates that short-term exposure to ambient air pollutants, particularly

gaseous pollutants (NO2 and CO), is associated with a heightened risk of hospital visits for
ADs in a Southern China city with low pollution concentrations. The effects appear stronger
in females and in adults aged 45–64. These findings further confirm that air pollution is a
risk factor for ADs. Given the increasing burden of ADs and the fact that air pollution is
modifiable, there is a need to prevent ADs by reducing the levels of these pollutants.
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