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Abstract: Volatile organic compounds (VOCs) are associated with obesity health risks,
while the association of mixed VOCs with visceral adiposity indicators remains unclear.
In this study, a total of 2015 adults from the National Health and Nutrition Examination
Survey (NHANES) were included. Weighted generalized linear models, restricted cubic
spline (RCS), weighted quantile sum (WQS), and Bayesian kernel machine regression
(BKMR) were adopted to assess the association of VOC metabolites (mVOCs) with the
visceral adiposity index (VAI) and lipid accumulation product (LAP). Multiple mVOCs
were positively associated with the VAI and LAP in the single-exposure model, especially
N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA) and N-acetyl-S-(N-methylcarbamoyl)-L-
cysteine (AMCC). The associations of mVOCs with VAI and LAP were more significant in
<60-year-old and non-obese individuals, with interactions of CEMA with age and AMCC
with obesity status. Nonlinear relationships between certain mVOCs and the VAI or
the LAP were also observed. In the WQS model, co-exposure to mVOCs was positively
correlated with the VAI [β (95%CI): 0.084 (0.022, 0.147)]; CEMA (25.24%) was the major
contributor. The result of the BKMR revealed a positive trend of the association between
mixed mVOCs and the VAI. Our findings suggest that VOC exposure is strongly associated
with visceral obesity indicators. Further large prospective investigations are necessary to
support our findings.

Keywords: volatile organic compounds; urinary metabolites; visceral adiposity index; lipid
accumulation product; National Health and Nutrition Examination Survey

1. Introduction
Obesity is defined as an excessive buildup of body fat. According to the World

Health Organization (WHO), more than 890 million adults worldwide were obese (16%) as
of 2022 [1]. Obesity is associated with the prevalence of many diseases, notably metabolic
diseases such as type 2 diabetes, cardiovascular disease, and hypertension [2–4]. It is
important to note that individuals with a comparable body mass index (BMI) vary in their
body fat distribution, metabolic profile, and the degree of related metabolic risk [5]. Obesity
health risks are primarily affected by body fat distribution, with visceral fat (rather than
subcutaneous fat) being a more crucial risk factor [5–7]. A previous review referred to
metabolic syndrome as “visceral adiposity syndrome”. The expansion of visceral adipose
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tissue stimulates an inflammatory response and produces cytokines that directly interfere
with insulin signaling, leading to insulin resistance, which is a key risk factor for metabolic
disorders [8]. Genetics and lifestyle (e.g., diet and physical activity) have a remarkable
effect on obesity health risk. Moreover, studies suggest that environmental pollutants are
also related to insulin resistance, glucose and lipid homeostasis, and obesity [9,10].

Volatile organic compounds (VOCs) are ubiquitous pollutants, originating primarily
from the emissions of numerous day-to-day products used in residential and commercial
applications [11]. VOCs are predominantly found in the air, especially indoors, where
multiple sources of exposure exist alongside inadequate ventilation [12]. This results in a
wider and easier VOC exposure for the general population. Previous studies suggested
that VOC exposure has adverse effects on human health and is correlated with the risk
of several diseases, such as respiratory diseases, cancers, type 2 diabetes, cardiovascular
diseases, and metabolic syndrome [11,13–16]. A recent cross-sectional study showed that
concentrations of multiple VOC metabolites (mVOCs) were associated with obesity or
abdominal obesity in adults [17]. However, conventional measurements of obesity, such as
BMI and waist circumference (WC), only provide a crude assessment of obesity and cannot
distinguish between subcutaneous and visceral fat. Epidemiological data on the association
between VOC exposure (especially mixed exposure) and visceral adiposity are still sparse.

Various measurements of obesity have been developed and used in epidemiologic
investigations. Some simple, inexpensive, and effective identifiers of visceral obesity have
attracted attention, such as the visceral adiposity index (VAI) and lipid accumulation prod-
uct (LAP). They involve the integration of anthropometric and lipid metabolic parameter
information to effectively identify visceral obesity and associated cardiometabolic risk [5].
The VAI is useful for assessing visceral fat distribution and dysfunction [18]. The LAP serves
to assess abdominal lipid accumulation status [19,20]. The identification of potential VOCs
related to the VAI or LAP can contribute to a deeper understanding of the mechanisms by
which VOCs affect obesity and its related health effects.

In this study, we aimed to systematically investigate the associations between VOC
exposure and visceral adiposity indicators (i.e., the VAI and LAP) in general adults using
data from the National Health and Nutrition Examination Survey (NHANES). Upon expo-
sure, VOCs undergo metabolic transformation and are excreted as one or more mercapturic
acids [21]. Considering that the physiological half-life of urinary mVOCs in urine is longer
than that of parent VOCs in blood and considering the specificity of most mercapturic
acid metabolites, urinary mVOCs were used as the indicator of VOC exposure in this
study [21–23]. Our findings will provide new evidence to further elucidate the complex
associations between chemical exposure and obesity.

2. Methods
2.1. Study Population

The NHANES is a large-scale, cross-sectional survey conducted in 2-year cycles to
assess the nutritional and health status of the U.S. general population. Participants all
provided informed consent to participate in the program. The population for this study
was drawn from four NHANES cycles (2011–2012, 2013–2014, 2015–2016, and 2017–2018).
Survey data were collected through household interviews, standardized body measures,
and laboratory tests [24]. Our study focused on adults (≥20 years of age, n = 22617).
Pregnant individuals (n = 247) were excluded. Figure S1 shows the flowchart of participant
screening. Finally, this study included 2015 participants.
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2.2. Measurement of Urinary VOC Metabolites

Urinary mVOCs were quantified using ultra-performance liquid chromatography–
electrospray tandem mass spectrometry (UPLC-ESI/MSMS) as outlined by Alwis et al. [22].
Detailed information and experimental protocols are available in the laboratory method
file (https://wwwn.cdc.gov/nchs/data/nhanes/public/2013/labmethods/UVOC_H_
MET.pdf) (accessed on 26 December 2024).

The lower limits of detection (LLODs) for the metabolites remained consistent across
all four survey cycles. Analyte concentrations below the LLOD were assigned a value of
LLOD divided by the square root of 2. We excluded analytes with less than 75% detection
and ultimately selected 16 mVOCs for analysis: N-acetyl-S-(2-carboxyethyl)-L-cysteine
(CEMA), N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine (HMPMA), N-acetyl-S-(4-
hydroxy-2-butenyl)-L-cysteine (MHBMA3), N-acetyl-S-(2-cyanoethyl)-L-cysteine (CYMA),
N-acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC), N-acetyl-S-(2-hydroxypropyl)-L-
cysteine (2HPMA), 2-methylhippuric acid (2MHA), N-acetyl-S-(3-hydroxypropyl)-L-
cysteine (3HPMA), 3- and 4-methylhippuric acid (3-4MHA), N-acetyl-S-(2-carbamoylethyl)-
L-cysteine (AAMA), 2-aminothiazoline-4-carboxylic acid (ATCA), N-acetyl-S-(n-propyl)-
L-cysteine (BPMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), mandelic acid
(MA), N-acetyl-S-(benzyl)-L-cysteine (BMA), and phenylglyoxylic acid (PGA). The parent
compounds, LLODs, detection rates, and concentration distributions of these metabolites
are presented in Table S1. Urine creatinine was introduced to correct mVOC levels to
account for urine dilution. Specifically, mVOC levels were corrected by dividing them by
the creatinine concentrations and ultimately expressed in ug/g creatinine (ug/g Cr).

2.3. Assessment of Outcomes

Serum samples for triglycerides (TGs) and high-density lipoprotein cholesterol (HDL-
C) testing were collected after 8–12 h of fasting. Measurements of WC and BMI were
performed by trained technicians in the Mobile Examination Center. The VAI and LAP were
calculated according to the equations established in previous studies [18,20]. The equations
are as follows:

Males: VAI =
(

WC
39.68 + 1.88 × BMI

)
×

(
TG
1.03

)
×

(
1.31

HDL − C

)
(1)

Females: VAI =
(

WC
36.58 + 1.89 × BMI

)
×

(
TG
0.81

)
×

(
1.52

HDL − C

)
(2)

Males: LAP = (WC − 65)× TG (3)

Females: LAP = (WC − 58)× TG (4)

where WC and BMI are in cm and kg/m2, respectively, and TGs and HDL-C are in mmol/L.

2.4. Assessment of Covariates

Covariates were calculated or categorized based on previous studies, including de-
mographic variables, lifestyle, and chronic diseases [23,25–29]. Specifically included were
sex, age, race, education level, poverty-to-income ratio (PIR), BMI, self-reported smoking
status, serum cotinine, average daily alcohol consumption, physical activity, Healthy Eating
Index-2015 (HEI-2015), diabetes, hypertension, and cardiovascular disease (CVD). The
HEI-2015 was calculated using the R package “dietaryindex” [30], based on the data of
total nutrient intakes from the first 24 h dietary recall interview (data file “DR1TOT”).
Additional details on covariates are provided in Text S1 of the Supplementary Materials.

https://wwwn.cdc.gov/nchs/data/nhanes/public/2013/labmethods/UVOC_H_MET.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/public/2013/labmethods/UVOC_H_MET.pdf
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2.5. Statistical Analysis

Descriptive statistics were performed to analyze the baseline characteristics of the pop-
ulation. Categorical variables were reported as counts (percentages, %) and compared using
chi-square tests. Continuous variables were reported as mean (standard deviation, SD) or
medians [interquartile range, IQR] and were compared using parametric or nonparametric
tests. Due to the right-skewed distribution, the VAI, LAP, and mVOC concentrations were
natural log transformed (ln-transformed) before formal analysis. A Pearson correlation
analysis was used to examine correlations among the mVOCs. Given the complex survey
design of NHANES, for weighted analyses, we used the strata, cluster, and environmental
subsample weight data.

2.5.1. Individual VOC Metabolite Exposure Analysis

Associations of individual mVOCs with the VAI or LAP were examined using survey-
weighted generalized linear models (WGLMs). The regression coefficient (β) was inter-
preted as the average change in the ln-transformed VAI or LAP for each unit increase in
each ln-transformed mVOC. Moreover, restricted cubic spline (RCS) models were fitted as
sensitivity analyses. RCS models can capture both linear and nonlinear relationships be-
tween exposures and outcomes. The number of RCS knots for each mVOC was determined
based on the minimum value of the Akaike information criterion to reduce the possibility of
RCS under- and over-fitting. We also stratified the analyses by sex (males or females), age
(<60 or ≥60 years of age), and obesity status (BMI < 30 kg/m2 is considered non-obesity,
≥30 kg/m2 is considered obesity). Interaction effects were analyzed by introducing inter-
action terms into the models.

2.5.2. Mixed VOC Metabolite Exposure Analysis

We used two mixed-exposure models to assess the relationship between mixed mVOCs
and the VAI or LAP. The weighted quantile sum (WQS) regression analysis assesses the
overall effect of mixed mVOCs by constructing weighted indices [31]. Parameter estimation
and significance tests for the WQS index effect of the mixture were conducted to determine
the association between the index and the outcome. The estimated weights of each mVOC
reflect its contribution to the overall effect, with weights exceeding the threshold indicating
greater contributions. The threshold is typically the inverse of the number of elements in
the mixture. Given the limitations of the WQS on detecting effect direction, both positive
and negative models were applied. Bayesian kernel machine regression (BKMR) models
were further fitted to assess the exposure–response relationship between exposure and
outcome as well as the overall effect of mixed exposures [32]. Specifically, single-exposure
response function curves reflect the univariate relationship between each mVOC and
outcome when all other mVOCs are fixed at the median. The overall effect of mVOCs was
assessed by comparing mixtures of mVOCs fixed at specific percentiles (e.g., 25th and 75th)
with those fixed at the median. Conditional posterior inclusion probability (PIP) was used
to determine the importance of mVOCs on outcome, with the threshold set at 0.5 [33].

All analyses and plots were performed using R (version 4.3.2) and GraphPad Prism
(version 10.1.0) software. Statistical significance was defined as a two-tailed p-value < 0.05.
Weighted generalized linear models, RCS, WQS, and BKMR analyses were conducted using
the R packages “survey”, “plotRCS”, “gWQS”, and “bkmr”, respectively.

3. Results
3.1. Baseline Characteristics of the Study Population

Table 1 demonstrates the survey-weighted baseline characteristics of the 2015 par-
ticipants in this study. Participants were grouped by sex and included 1057 males and
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958 females. The weighted mean (SD) age for all participants was 47.51 (16.72). The
weighted medians [IQR] for the VAI and LAP were 1.33 [0.78, 2.31] and 42.22 [21.88, 72.13],
respectively. Non-Hispanic whites (weighted percentage: 69.26%), above high school
(62.85%), and BMI ≥ 30 kg/m2 (39.29%) accounted for a higher percentage of their sub-
groups. Comparative analyses revealed statistically significant differences between males
and females in age, race, BMI, smoking, cotinine exposure, alcohol consumption, HEI-
2015, physical activity, and CVD prevalence. We also examined demographic information
stratified by VAI- or LAP-weighted tertiles (Tables S2 and S3). The results showed that the
three VAI or LAP groups differed significantly in age, PIR, race, education, BMI, alcohol
consumption, HEI-2015, and physical activity. The prevalence of hypertension, diabetes,
and CVD increased with increasing tertiles of the VAI or the LAP.

Table 1. Weighted baseline characteristics of the study population grouped by sex.

Overall Male Female p-Value

N 2015 1057 958
Age (years, mean (SD)) 47.57 (16.72) 46.09 (16.44) 49.17 (16.88) 0.007
PIR (median [IQR]) 2.95 [1.49, 4.92] 3.06 [1.59, 4.92] 2.89 [1.32, 4.92] 0.121
Race, n (%) 0.011

Hispanic 461 (13.39) 242 (14.83) 219 (11.82)
Non-Hispanic

White 817 (69.26) 432 (70.06) 385 (68.39)

Non-Hispanic
Black 443 (10.12) 229 (8.76) 214 (11.58)

Other races 294 (7.24) 154 (6.35) 140 (8.21)
Education, n (%) 0.322

High school
graduate and below 867 (37.15) 489 (38.87) 378 (35.28)

Above high school 1148 (62.85) 568 (61.13) 580 (64.72)
BMI 1 0.013

<25 kg/m2 576 (28.21) 298 (26.11) 278 (30.49)
25–30 kg/m2 649 (32.50) 390 (36.92) 259 (27.71)
≥30 kg/m2 790 (39.29) 369 (36.97) 421 (41.80)

Smoker, n (%) <0.001
No 1108 (55.50) 492 (48.68) 616 (62.90)
Yes 907 (45.50) 565 (51.32) 342 (37.10)

Cotinine, n (%) 2 0.014
<0.015 ng/mL 643 (35.01) 296 (30.60) 347 (39.78)
≥0.015 ng/mL 1372 (64.99) 761 (69.40) 611 (60.22)

Alcohol consumption
per day (drinks, median
[IQR])

0.08 [0.00, 0.57] 0.20 [0.02, 1.00] 0.03 [0.00, 0.28] <0.001

HEI-2015 (mean (SD)) 50.25 (13.86) 49.06 (13.54) 51.55 (14.10) 0.014
Physical activity, n (%) <0.001

No 479 (19.40) 215 (15.39) 264 (23.73)
Moderate 896 (45.60) 422 (39.83) 474 (51.85)
Vigorous 640 (35.01) 420 (44.78) 220 (24.42)

Hypertension, n (%) 0.190
No 1137 (61.32) 570 (59.53) 567 (63.26)
Yes 878 (38.68) 487 (40.47) 391 (36.74)

Diabetes, n (%) 0.397
No 1568 (83.11) 804 (82.12) 764 (84.18)
Yes 447 (16.89) 253 (17.88) 194 (15.82)

CVD, n (%) 0.008
No 1804 (92.09) 921 (90.31) 883 (94.01)
Yes 211 (7.91) 136 (9.69) 75 (5.99)
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Table 1. Cont.

Overall Male Female p-Value

VAI (median [IQR]) 1.33 [0.78, 2.31] 1.34 [0.76, 2.36] 1.30 [0.81, 2.25] 0.932

LAP (median [IQR]) 42.22
[21.88, 72.13]

42.96
[23.07, 72.93]

40.95
[21.45, 69.83] 0.171

1 Body mass index (BMI) was categorized into normal weight (<25 kg/m2), overweight (25–30 kg/m2), and
obesity (≥30 kg/m2); 2 serum cotinine concentration was used to determine whether an individual is tobacco-free
(<0.015 ng/mL) or tobacco-exposed (≥0.015 ng/mL). Notes: PIR, poverty-to-income ratio; HEI-2015, Healthy
Eating Index-2015; CVD, cardiovascular disease; SD, standard deviation; IQR, interquartile range; VAI, visceral
adiposity index; and LAP, lipid accumulation product.

3.2. Distribution and Correlation of Urinary VOC Metabolites

The distribution of creatinine-corrected urinary mVOC concentrations is shown in
Table S4. The weighted median level of DHBMA was the highest among the 16 mVOCs,
followed by 3-4MHA, PGA, and 3HPMA, and the lowest was CYMA. In addition, sev-
eral mVOCs (3-4MHA, AMCC, ATCA, BMA, DHBMA, MA, and PGA) were significantly
higher in females than in males, while 3HPMA was significantly higher in males. Levels of
mVOCs were also characterized according to age and obesity status. Specific information
is shown in Tables S5 and S6. Urinary concentrations of mVOCs were bivariate-correlated
with the Pearson correlation coefficients from −0.02 to 0.89 (p < 0.001 for most correlations)
(Figure 1). CYMA, 3HPMA, MHBMA3, and HMPMA were highly correlated with each
other (r = 0.70–0.89). There were also high correlations between 2MHA and 3-4MHA
(r = 0.86) and between CEMA and 3HPMA (r = 0.72). Other statistically significant cor-
relations were relatively weak or moderate, with correlation coefficients ranging from
0.06–0.69. This suggests that these mVOCs probably have similar sources or relatively
strong collinearity.
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Figure 1. Correlation matrix for urinary VOC metabolites (ln-transformed, µg/g Cr).
Notes: CEMA, N-acetyl-S-(2-carboxyethyl)-L-cysteine; HMPMA, N-acetyl-S-(3-hydroxypropyl-1-
methyl)-L-cysteine; MHBMA3, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; CYMA, N-acetyl-S-(2-
cyanoethyl)-L-cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine; 2HPMA, N-acetyl-S-(2-
hydroxypropyl)-L-cysteine; 2MHA, 2-methylhippuric acid; 3HPMA, N-acetyl-S-(3-hydroxypropyl)-L-
cysteine; 3-4MHA, 3- and 4-methylhippuric acid; AAMA, N-acetyl-S-(2-carbamoylethyl)-L-cysteine;
ATCA, 2-aminothiazoline-4-carboxylic acid; BPMA, N-acetyl-S-(n-propyl)-L-cysteine; DHBMA, N-
acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; MA, mandelic acid; BMA, N-acetyl-S-(benzyl)-L-cysteine;
and PGA, phenylglyoxylic acid.
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3.3. Association of Individual Urinary VOC Metabolites with VAI and LAP

Three weighted generalized linear models were fitted to explore univariate associa-
tions between individual mVOCs and the VAI and LAP. In all three models, AMCC, CEMA,
CYMA, MHBMA3, and HMPMA were significantly positively associated with the VAI
(Figure 2A); only AMCC and CEMA were significantly positively associated with LAP
(Figure 2B). In crude model 1, increased exposure to AAMA, BPMA, and 2HPMA were
all significantly associated with a decreased level of the LAP, and an increased level of
2HPMA was also significantly associated with a decreased level of the VAI. These negative
associations were not significant after covariate adjustment. In the fully covariate-adjusted
model 3, increased levels of 3-4MHA, AMCC, CEMA, CYMA, MHBMA3, and HMPMA
were significantly associated with increased levels of the VAI and LAP, respectively. In ad-
dition, significant positive associations of 2MHA and 3HPMA with the VAI were observed
in model 3.
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Figure 2. The association analysis between mVOCs and the VAI or the LAP: (A) for the VAI and
(B) for the LAP. Model 1 is a crude model unadjusted for any covariates. Model 2 was adjusted for sex,
age, race, education, PIR, and BMI. Model 3 was further adjusted for serum cotinine, physical activity,
HEI-2015, self-reported smoking status, average daily alcohol consumption, diabetes, hypertension,
and CVD based on model 2.

Sensitivity analyses further employed RCS models to flexibly fit and visualize lin-
ear and nonlinear relationships between mVOCs and the VAI or the LAP. As shown in
Figures S2 and S3, the RCS showed broadly similar results to the weighted generalized
linear models. Consistently, we observed that AMCC, CEMA, CYMA, 3HPMA, MHBMA3,
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and HMPMA were positively correlated with the VAI (p for overall < 0.05 for all, p for
nonlinear > 0.05 except for AMCC) and that AMCC, CYMA, and MHBMA3 were positively
correlated with the LAP (p for overall < 0.05, p for nonlinear > 0.05). The results also
revealed nonlinear correlations of AAMA, ATCA, 2HPMA, and PGA with the VAI or the
LAP (p for nonlinear < 0.05), as well as a significant overall negative trend for 2HPMA and
PGA (p for overall < 0.05).

Associations of Urinary VOC Metabolites with VAI and LAP in Stratified Analyses

Stratified subgroup analyses of sex, age, and obesity status were conducted to identify
populations sensitive to the effects of VOC exposure on the VAI or LAP. The results are sum-
marized in Figure 3. For the VAI, 2MHA, 3-4MHA, CYMA, MHBMA3, and HMPMA were
significantly and positively associated with the VAI regardless of sex subgroups. CEMA
and AMCC were positively associated with the VAI in males and females, respectively.
After stratification by age and obesity status, the majority of positive associations were
observed in the <60 years of age and non-obesity subgroups. In the subgroup of <60
years of age, 2MHA, 3-4MHA, AMCC, CEMA, CYMA, 3HPMA, MHBMA3, and HMPMA
were positively associated with the VAI, with significant interactions with age for CEMA
(p for interaction = 0.019) and 3HPMA (p for interaction = 0.046). In the subgroup of
non-obesity, 2MHA, 3-4MHA, AMCC, CEMA, CYMA, MHBMA3, and HMPMA were
positively associated with the VAI, and AMCC had a significant interaction with BMI
(p for interaction = 0.010). CEMA, CYMA, MHBMA3, and HMPMA were also associated
with the VAI in the obesity subgroup. For the LAP, similar to the VAI, multiple mVOCs
were significantly and positively associated with the LAP in both the <60 years of age and
the non-obesity subgroups. In particular, for both the VAI and LAP, CEMA and 3HPMA
showed significant interactions with age, as did AMCC with BMI. In addition, PGA was
significantly negatively associated with the VAI and LAP in the subgroup ≥ 60 years of age,
and the interaction with age was significant.

3.4. The Overall Effect of Mixed mVOCs on VAI and LAP

Since there are multiple highly correlated mVOCs, the use of traditional multivariate
regression methods may result in collinearity and variance inflation problems or may
have major limitations in the selection of relevant components. Therefore, we used the
WQS and BKMR models to assess the association of mixed exposure to VOCs with the
VAI and LAP and to identify the risk components among mVOCs. Due to the limitations
of the WQS model on the direction of association, positive and negative modeling were
performed, respectively. After adjusting for covariates, the WQS index for exposure to
mixtures of mVOCs was significantly positively correlated with VAI levels [β (95% CI): 0.084
(0.022, 0.147), p = 0.008], while the positive correlation with the LAP was not significant
(p > 0.05) (Table 2). No significant association of the WQS index with the VAI or the LAP
was observed in the negative WQS regression model. Figure 4 illustrates the WQS weight
distribution results. The threshold was set as 1/16. In the positive WQS regression model,
for both the VAI and LAP, CEMA (25.24% for the VAI and 28.32% for the LAP) and AMCC
(16.02% for VAI and 17.06% for LAP) made the greater contribution to the WQS index.

Table 2. β (95% CI) of the VAI and LAP associated with exposure to mixed mVOCs by positive and
negative weighted quantile sum (WQS) regression analyses.

Positive WQS Model Negative WQS Model

β (95% CI) p-value β (95% CI) p-value
VAI 0.084 (0.022, 0.147) 0.008 0.003 (−0.056, 0.061) 0.933
LAP 0.046 (−0.012, 0.105) 0.120 −0.029 (−0.090, 0.031) 0.342
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Figure 3. Estimated effects of urinary mVOCs on VAI and LAP grouped by sex (A for VAI, D for LAP),
age (B for VAI, E for LAP), and obesity status (C for VAI, F for LAP) based on interaction models.
Notes: *, p for interaction < 0.05; obesity status was categorized as non-obesity (BMI < 30 kg/m2) and
obesity (BMI ≥ 30 kg/m2).
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Figure 4. Weights for urinary mVOCs associated with the VAI and LAP from the weighted quantile
sum (WQS) regression model: (A) positive weights for the VAI, (B) negative weights of the VAI,
(C) positive weights for the LAP, (D) negative weights for the LAP. The red dashed line is the weight
threshold for determining the importance of an element, which was set as the inverse of the number
of elements in the mixture (i.e., 1/16).
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Figure 5. Overall relationship between the mixed mVOCs and the (A) VAI and (B) LAP estimated
by the Bayesian kernel machine regression (BKMR) model. Univariate exposure–response functions
between mVOCs and the (C) VAI and (D) LAP estimated by the BKMR model.

The BKMR models with a gaussian kernel function were further fitted to estimate the
overall effect of 16 mVOCs. Figure 5A,B demonstrate the estimates of the VAI or the LAP
when all mVOCs are fixed at different percentiles compared to when all are fixed at the 50th
percentile. Similar to the results of the WQS model, the result suggested a positive trend of
association of mixed mVOCs with the VAI and LAP, although not significant. According
to the results of the univariate exposure–response function, CEMA and AMCC showed a
positive trend with both the VAI and LAP when other mVOCs were fixed at the median
(Figure 5C,D). The PIP for mVOCs calculated by the BKMR model was used to quantify
the relative importance of mVOC exposure on outcomes, as shown in Table S7. AMCC
had the highest PIP values for the VAI and LAP, indicating that AMCC had the highest
contribution to the overall effect.

4. Discussion
To the best of our knowledge, a knowledge gap remains regarding the relationship

between the exposure to VOCs and visceral obesity. This study explored the potential
association between urinary mVOCs and the VAI and LAP. In the individual exposure anal-
yses, adjusted for different covariates, concentrations of several mVOCs (including AMCC,
CEMA, CYMA, MHBMA3, and HMPMA) were consistently associated with increased
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levels of the VAI or the LAP. Nonlinear relationships were found among some mVOCs and
the VAI or the LAP. Significant interactions were observed between CEMA and age for the
VAI and LAP and between AMCC and obesity status. In addition, there was also a positive
trend of association between mixed mVOCs and the VAI.

Several studies suggested that the blood TG levels in the presence of large WC might
be a simple and useful marker representing excess visceral adiposity [34,35]. Although
studies directly investigating the link between VOC exposure and visceral adiposity are
lacking, previous studies reported the association between VOC exposure and obesity
and blood lipid profiles. An observational study found that higher benzene metabolite
levels (t,t-MA) were associated with increased obesity and diabetes risk [16]. Similar to
our results, Lei et al. reported positive associations of mVOCs (particularly CEMA) with
obesity and abdominal obesity in the US general population [17]. Occupational exposure
to VOCs in female nail technicians was correlated to elevated TG and reduced HDL-C
levels. Meanwhile, plasma activities of AST and ALT were significantly increased in nail
technicians compared to controls, suggesting possible adverse effects of VOC exposure
on liver function, which plays a crucial role in lipid metabolism [36,37]. Another study
observed significant correlations between certain mVOCs (especially CEMA) and elevated
WC, TGs, fasting glucose, and reduced HDL-C [38]. These studies provided part of the
support for our findings. Unlike traditional obesity measurement and lipid profiles, the
VAI and LAP have higher accuracy in identifying visceral obesity and are more predictive
of multiple metabolic diseases [39–43]. The present study was based on these findings and
extended the investigation to visceral adiposity markers, filling an important research gap
in this field.

The association between VOC exposure and the VAI and LAP may be related to insulin
resistance. The expansion of visceral adipose tissue leads to inflammation and insulin
resistance, which induces or exacerbates the dysregulation of glucose and lipid homeostasis,
making individuals more susceptible to metabolic disorders [8,9,44,45]. Environmental
pollution interferes with metabolic processes that regulate lipid accumulation and increase
body adiposity [46]. Insulin resistance is more strongly related to regional adipose tissue
distribution than to total fat mass [47]. Pollutant (e.g., VOCs) exposure can lead to oxidative
stress and inflammatory responses and might result in impaired insulin signaling in insulin-
sensitive target tissues (including muscle, liver, and adipose tissue), which can in turn
trigger insulin resistance [48,49]. This probably interferes with lipid metabolism and further
induces the deposition of visceral adiposity. Previous studies suggested that VOC exposure
is associated with insulin resistance and impaired glucose and lipid homeostasis [37,50]. In
addition, oxidative stress promotes the accumulation of white adipose tissue, stimulation of
preadipocyte proliferation and differentiation, and enlargement of mature adipocytes [51].
Notably, VOCs represent a large class of pollutants, each with their unique toxicity and
combinatorial toxicity, and possibly affect visceral adiposity through different mechanisms.

The parent compound of CEMA is acrolein, an unsaturated aldehyde found in tobacco
smoke, in industrial emissions, and as a byproduct of lipid peroxidation [52]. Studies
suggest that acrolein increases cardiovascular metabolic risk by promoting oxidative stress,
inflammation, apoptosis, and systemic dyslipidemia [53,54]. Acrolein was also found to
inhibit the insulin signaling pathway and reduce glucose uptake by muscle and adipose
tissue cells [55,56]. This suggests that acrolein is a risk factor for abnormalities in glucose
and lipid metabolism, which might explain the robust positive correlation of CEMA with
the VAI and LAP. As another metabolite of acrolein, 3HPMA also showed a significant
positive correlation with the VAI in the model adjusted for covariates. The corresponding
parent compound of AMCC is N, N-dimethylformamide (DMF), and the liver is the most
sensitive target organ for its toxic effects [57]. An animal study showed that DMF exposure
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in mice can cause heart and liver injuries, and oxidative stress was involved in the toxic
effects [58]. Another in vitro study demonstrated that DMF can disrupt liver function
by causing oxidative stress, mitochondrial dysfunction, and alterations in key metabolic
pathways including N-glycan biosynthesis and bile acid metabolism, leading to lipid
deregulation in hepatocytes [59,60]. Hepatic impairment disrupts lipid metabolism, which
might lead to fat accumulation. For other mVOCs that showed positive correlations with
the VAI or the LAP, exposure to acrylonitrile (CYMA) or crotonaldehyde (HMPMA) was
reported to increase oxidative stress [61,62]. Additionally, 1,3-butadiene (MHBMA3) was
found to cause disturbances in metabolism-related enzyme activities, such as the depletion
of glutathione and saturation of oxidative metabolism [63]. This induces oxidative stress
and the impairment of liver function, probably explaining the positive correlations between
these mVOCs and the VAI or the LAP.

The positive associations of mVOCs with the VAI and LAP varied across age and
obesity status subgroups. Specifically, the associations were more significant in populations
<60 years or non-obese. Younger and non-obese individuals may be more sensitive to the
effects of mVOCs since they have higher basal metabolic rates, stronger immune responses,
and healthier patterns of fat distribution and inflammatory states. Sex-stratified analyses
revealed significant associations of CEMA and AMCC with the VAI and LAP only in males
and females, respectively, although no interaction was observed. Acrolein is abundant in
cigarette smoke, and Table 1 showed a higher proportion of male smokers and cotinine-
exposed individuals compared to females, possibly contributing to the complex exposure
profile of males. DMF interferes with the interaction of estrogen receptors with estradiol,
potentially making females more sensitive to AMCC [64,65]. Further studies are needed to
explore the specific mechanisms by which VOC exposure affects different populations and
consider developing targeted prevention and intervention strategies.

Mixed-pollutant exposure is a more realistic environmental health concern compared
to single exposure. WQS analyses revealed that exposure to mixed mVOCs was significantly
and positively correlated with the VAI, with CEMA and AMCC being the most weighted
contributors. It was generally consistent with the individual exposure analyses. A trend
of positive association of mixed exposure with the VAI and LAP was also observed in
the BKMR model. Notably, the BKMR model showed negative associations of AAMA
(acrylamide), ATCA (cyanide), 2HPMA (propylene oxide), and PGA (ethylbenzene and
styrene) with the VAI or the LAP, and similar associations were also shown in the RCS
model. Acrylamide and cyanide primarily affect the nervous system, potentially impairing
central and peripheral nerve function [66,67]. This probably disrupts appetite regulation
and stress response, indirectly affecting fat metabolism. High-dose cyanide exposure is
lethal, while lower doses might cause weight loss [67]. This partly explains our results.
In addition, several of the above VOCs were reported to have hematological effects or
carcinogenicity [68]. For instance, occupational exposure to ethylbenzene can decrease
hemoglobin levels, probably leading to anemia [69]. These disorders may be accompanied
by malnutrition and increased energy expenditure, reducing body adiposity (including
visceral adiposity) content. Further experimental validation is needed to elucidate the
specific mechanisms.

This study filled a knowledge gap regarding the association between visceral adiposity
and VOC exposure. Multiple mVOCs were found to be associated with an increased VAI
and LAP, which provides new inspiration for obesity health risk prevention. The results
of this study were derived from a large nationally representative sample. We adopted
multiple statistical models to assess the individual and combined effects of mVOCs on
the VAI and LAP to ensure the robustness of the results. This study also has several
limitations. Firstly, a causal relationship between VOC exposure and visceral adiposity
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could not be determined due to the cross-sectional study design. On the one hand, some
common VOCs (e.g., saturated and unsaturated hydrocarbons, aromatic hydrocarbons,
and aldehydes) are lipophilic [70]. A high fat content might theoretically lead to a greater
accumulation of VOCs in the body, which in turn could lead to higher levels of exposure
in obese individuals. However, due to the short half-life of VOCs in the body [22], it
is speculated that their accumulation in the body may not be obvious. On the other
hand, the accumulation of visceral fat promotes reactive oxygen species (ROS) release and
oxidative stress, and certain VOCs can be generated endogenously through the interaction
of ROS with underlying cellular components [71]. Therefore, there may be reverse causality
between certain VOCs and the VAI and LAP, and further studies are needed to clarify
the corresponding endogenous VOC biomarkers in obese individuals and to explore the
mechanisms of VOCs in fat accumulation. Secondly, although the effects of a wide range
of covariates have been considered, there may still be residual confounders that affect the
results. In addition, there is a lack of studies investigating the mechanisms by which VOC
exposure affects fat distribution in animals or humans, and the specific mechanisms are
still unclear.

5. Conclusions
Our findings revealed that multiple mVOCs are significantly positively associated with

levels of visceral adiposity markers (the VAI and LAP), especially CEMA and AMCC. These
associations were more significant in people <60 years old and in non-obese individuals.
Exposure to mixed mVOCs also showed a positive association with increased VAI levels.
In short, this study suggests an association between VOC exposure and visceral obesity.
Although the exact mechanism is unclear, we hypothesize that insulin resistance may
partially explain these relationships. Prospective studies and more experimental studies of
relevant mechanisms are needed to further confirm the conclusions of this study.
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