
Academic Editor: Dirk W.

Lachenmeier

Received: 9 December 2024

Revised: 25 December 2024

Accepted: 8 January 2025

Published: 9 January 2025

Citation: Zhang, J.; Naveed, H.;

Chen, K.; Chen, L. Toxicity of Per- and

Polyfluoroalkyl Substances and Their

Substitutes to Terrestrial and Aquatic

Invertebrates—A Review. Toxics 2025,

13, 47. https://doi.org/10.3390/

toxics13010047

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Toxicity of Per- and Polyfluoroalkyl Substances and Their
Substitutes to Terrestrial and Aquatic Invertebrates—A Review
Jiaxin Zhang 1, Hassan Naveed 1,2 , Keping Chen 1 and Liang Chen 1,*

1 School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; jiaxinzhang2022@163.com (J.Z.);
hassan.naveed88@outlook.com (H.N.); kpchen@ujs.edu.cn (K.C.)

2 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
* Correspondence: oochen@ujs.edu.cn; Tel.: +86-511-88788933

Abstract: Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life
but they cause certain impacts on the environment due to their unique carbon–fluorine
chemical bonds that are difficult to degrade in the environment. Toxicological studies on
PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and
aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of
the food chain play a crucial role in the whole ecological chain, it is necessary to investigate
the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies
on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and
the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity
and toxicity to reproduction and development are summarized. This provides a reference
to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their
alternatives, promotes further research on PFASs in invertebrates, and provides valuable
recommendations for the use and regulation of alternatives to PFASs.

Keywords: perfluoroalkyl substances; polyfluoroalkyl substances; invertebrates; toxicity;
oxidative stress; neurobehavioral toxicity; developmental toxicity; reproductive toxicity

1. Introduction
With the rapid development of modern industry, the number of pollutants is increasing,

constantly threatening environmental safety, and PFASs are one of the new persistent
organic pollutants. Per- and polyfluoroalkyl substances (PFASs) are organic compounds
that contain at least one perfluorinated carbon atom. PFASs were born in the 1930s and
include perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and many other
compounds. PFAS molecules have chains of carbon and fluorine atoms attached to the
molecule, and because the carbon–fluorine bond is one of the strongest chemical bonds,
they are chemically inert and resistant to high temperatures [1], which makes their products
hydrophilic and lipophobic. They are widely used in consumer and industrial products
that require grease or water repellency or surfactant action [2]. PFAS-related products
include food packaging, non-stick cookware, cosmetics, water- and stain-resistant textiles
and carpets, aqueous film-forming foams used to fight fires as part of the process, as well
as corrosion inhibitors in aircraft hydraulic fluids, surfactants for electronic etching baths,
photographic emulsifiers, waxes, paints, and adhesives [3–5].

The widespread use of PFASs has led to the ubiquitous presence of these chemicals
in the environment, including rivers, soil, air [6], house dust, food, and drinking water
from surface and groundwater sources [7]. PFASs are not readily degradable, and are often
discharged directly into water bodies after use, further contaminating the soil. A variety of
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PFASs exist in the environment since PFASs are environmentally persistent, bioaccumula-
tive, and biodegradation-resistant due to their strong carbon–fluorine bonds [8], and PFAS
are able to disperse over long distances, even reaching the Antarctic and the Arctic [9–12].
They likewise bioaccumulate and amplify through the food chain [13–17], with significant
implications for the safety of humans and wildlife. Various PFASs have been reported in
human tissues and organs, blood [18], breast milk [19,20], etc., and they have been found to
cause a variety of adverse effects on human health, which continue to increase (Figure 1).
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Figure 1. Map of the natural circulation of PFASs. PFASs have multiple dispersal pathways in
the natural environment, such as industrial processes, wastewater treatment discharges, landfills,
contaminated soils or water sources used in agriculture, and the redistribution of PFASs through
volatilization, deposition, and leaching to air, soil, and water sources. These pathways can lead to
long-term exposure of animals and humans to PFASs. In addition, PFASs accumulate through the
food chain and are harmful to all organisms in the food chain.

Currently, PFASs are listed as hazardous under the Stockholm Convention on Persis-
tent Organic Pollutants (POPs); therefore, short-chain PFASs such as perfluorobutanoic
acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorobutane sulfonic acid (PFBS) and
perfluorohexanesulfonic acid (PFHxS) are no longer produced in many countries. PFHxS
has emerged as a favorable alternative to PFOA and PFOS and has been widely used;
however, the toxicological and epidemiological data are lacking, and there is evidence
that new alternatives can lead to a variety of undesirable effects, such as lethality, growth
inhibition, and reduced lifespan toxicity in invertebrates. Some substitutes are even more
toxic than the original long-chain PFASs, and their mechanisms of action have not been
clarified. Organisms are exposed to complex mixtures of PFASs in nature but most of
the experimental results obtained so far have been obtained from exposure to a single
contaminant, which may lead to some bias in assessing their overall risk. Intrinsic factors
(gender, genetics, etc.) may contribute to differences in the toxicity of PFASs on organisms,
and the interaction of PFASs with other factors in the environment, such as heavy metals,
salinity, etc., may also modify adverse health outcomes. The safety of substitutes needs to
be further investigated to obtain data for toxicity studies in different organisms.
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Invertebrates are ubiquitous in natural ecosystems, where they are often at the bot-
tom of the food chain and play a key role in material flow and energy cycling. Some
invertebrates have become endangered due to the rise in human activities that have in-
creased environmental pollution. Any decrease in invertebrate biomass will reduce the
multifunctionality of ecosystems [21] and is crucial to studying the toxicity of PFASs in
the environment.

To date, studies on PFASs have mainly focused on vertebrates but in recent years
studies on invertebrates, especially terrestrial invertebrates, have been carried out. The
aim of this paper is to summarize the toxicity of PFASs and their alternatives on inverte-
brates by means of a literature review, which will help to provide a more comprehensive
understanding of PFASs in the natural world, and to more holistically assess the toxicity of
PFASs and their alternatives.

2. Methods
A literature search was performed on PubMed and Google Scholar by the follow-

ing keywords: perfluoroalkyl acids (PFAAs), perfluorinated compounds (PFC), Per- and
polyfluoroalkyl substances (PFASs), perfluorooctanoic acid (PFOA), perfluorooctane sul-
fonate (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perflu-
orododecanoic acid (PFDoA; PFDoDA), perfluorodecanesulfonic acid (PFDS), perfluo-
robutane sulfonic acid (PFBS), perfluoropentanoic acid (PFBA), perfluoroundecanoic acid
(PFUnA; PFUnDA), perfluoro octanesulfonamide (PFOSA), perfluoroethylcyclohexane
sulfonic acid (PFECH), 6:2 fluorotelomer sulfonic acid (6:2FTSA), perfluorohexanoic acid
(PFHxA), perfluorohexanesulfonic acid (PFHxS), perfluorotridecanoate acid (PFTriDA),
perfluorotetradecanoic acid (PFTeDA), aqueous film-forming foams (AFFFs), ammonium
perfluorooctanoic acid ammonium salt (APFO), 6:2 chlorinated polyfluorinated ether sul-
fonate acid (F-53B), perfluoro acetic acid (cC6O4). In addition, keywords of some terms
used to describe toxicity include oxidative stress, reproductive toxicity, genotoxicity, de-
velopmental toxicity, immunotoxicity, lifespan effects, behavioral toxicity, neurotoxicity,
and mixed toxicity were searched for. A review of the screened references resulted in the
selection of 137 articles, of which 28 were published before 2014 and the rest were published
from 2014 to present.

3. Factors Contributing to the Accumulation of PFASs in Invertebrates
Researchers have demonstrated that PFASs are bioaccumulative [22] and that they

can bioaccumulate and biomagnify at higher nutrient levels [23,24]. The bioaccumulation
of PFASs is directly related to the carbon chain length, and long-chain PFASs are more
easily accumulated than short-chain [25,26]. The long-chain PFASs have longer carbon
chains and functional group differences to increase their hydrophobicity, which results
in higher bioaccumulation. Therefore, PFASs with sulfonate groups may be more toxic
than PFASs with carboxyl groups. Interestingly, it was found that long-chain PFASs inhibit
the bioaccumulation of short-chain PFASs in tissues, probably because long-chain PFASs
compete for transporter proteins and protein binding sites [27]. On the other hand, carbon
chain length is also an important factor affecting the toxicity of PFASs. Long-chain PFASs are
generally more toxic than short-chain PFASs, and they have stronger bioaccumulation and
greater potential for biomagnification [28]. For example, Eisenia fetida was exposed to PFBS,
PFHxS, 6:2 fluorotelomer sulfonic acid (6:2FTSA), and PFOS for 56 days, and the results
showed the difference in toxicity between them to be 6:2FTSA < PFBS < PFOS < PFHxS.
Molecular experiments and transcriptomic analyses revealed that 6:2FTSA, unlike PFOS,
PFBS, and PFHxS, does not cause significant changes in antioxidant enzyme activities at
the molecular level; additionally, Eisenia fetida exposed to 6:2FTSA did not produce adverse
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transcriptomic effects, which suggests that 6:2FTSA is the least toxic [29]. Interestingly,
the exposure of Brachionus calyciflorus to short-chain PFASs resulted in a decrease in body
size compared to the long-chain, which increased body size [30]. Bioaccumulation is also
related to the type of contaminant, salt concentration, biological species differences, and
the presence of metal ions [31,32].

Researchers studied PFASs in fish, crabs, gastropods, and bivalves collected from
Korea, and they found that PFOA and PFOS had the largest bioconcentration factor (BCF)
values in crabs, in fish it was PFOS and perfluorodecanoic acid (PFDA), and in gastropods
and bivalves it was PFHxS. This confirms a species-dependent bioaccumulation of PFASs,
which may be caused by differences in food sources, feeding objects, uptake and excretion
rates, and metabolism between species [31,33]. Taylor examined PFOS, PFOA, and PFHxS
in Dusky Flathead (Platycephalus fuscus), Mulloway (Argyrosomus japonicus), and Giant Mud
Crab (Scylla serrata), and found the highest mean concentration of PFOS accumulation; this
demonstrated that PFAS concentrations were negatively correlated with animal size [34].

Salt concentration largely affects the accumulation of PFASs. On the one hand, high salt
concentration affects the physicochemical properties of PFOS and increases the partitioning
ratio of PFOS between sediment–water, which leads to an increase in the adsorption
of PFOS in the sediment [35], while benthic macroinvertebrates live in and around the
sediment, which can interact with the sediment and related pollutants [36]. Therefore,
high salt concentrations increase the uptake of contaminants by aquatic organisms and
indirectly increase the accumulation of PFOS in aquatic organisms. On the other hand, the
bioavailability of pollutants to aquatic organisms varies with changes in salt concentration.
Under 30 salinity unit incubation conditions, sea urchins exhibited the shedding of spines,
oxidative stress, and DNA methylation [32]. It has also been shown that changes in salinity
levels after PFOS exposure largely affect the hemolymph hemocyanin content and the
activity of the gill respiratory metabolic enzyme cytochrome C oxidase (CCO) in Eriocheir
sinensis [37]. Exposure of oysters living at different salt concentrations to PFOS, PFOA,
PFDA, and perfluoroundecanoic acid (PFUnDA) revealed that PFUnDA had the highest
bioaccumulation in oysters and PFOA had the lowest. The accumulation of PFASs increased
with increasing salt concentration, suggesting that the carbon chain length of PFASs as well
as salinity affect the bioaccumulation of PFASs in the Pacific oyster [38].

Additionally, the level of contaminants in the soil, soil characteristics, and the duration
of exposure can affect the bioaccumulation of some terrestrial invertebrates. Earthworms
(Eisenia fetida) were tested using five different soils that differed in pH, organic carbon
content, soil texture, and contaminant content. Bioaccumulation factors (BAFs) were found
to be significantly higher in industrially impacted soils, urban soils, and AFFF soils exposed
for 28 days than in control soils. In addition, they found that all BAFs of earthworms from
PFAA-affected soils were greater than 1, except for PFDS in industrial-affected soils. This
implies that contamination of soil with PFASs not only enters the terrestrial food chain but
also bioaccumulates to higher concentrations in earthworms [39].

It was also found that cations can affect the partition ratio of PFASs in the en-
vironment through cation bridging effects, electrostatic interactions, and metal–ligand
bonding interactions, which in turn affect the extent of bioaccumulation of PFASs in the
environment [40–42]. The BAFs of PFASs in Daphnia magna showed a linear decreasing
trend with increasing Ca2+ and Na+ concentrations. This may be due to the fact that the
concentrations of Ca2+ and Na+ affect the partition coefficient (Kp) of PFASs between
proteins and water; the higher the Kp value, the lower the concentration of freely soluble
PFASs, and the lower the bioaccumulation coefficient of PFASs in Daphnia magna [43]. It
has also been shown that the partitioning of PFASs to sediments increased when Mg2+ and
Ca2+ concentrations were elevated, which increased the bioaccumulation of Lumbriculus
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variegatus, Elliptio complanata, and Physella acuta. This may be due to the fact that cations
in water neutralize the negative charges associated with the sediment surface, reducing
the electrostatic repulsion between the anionic PFASs and the negatively charged sediment
and promoting the adsorption of PFASs through electrostatic interactions [44].

4. Toxicity Studies of PFASs in Invertebrates
Currently, toxicity studies in invertebrates have been partially conducted, not only

limited to epigenetic characterization but also delving into their genetic changes in an
attempt to explore the mechanisms of toxicity of PFASs. To this end, we have summarized
them through toxicity classifications (Figure 2).
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Figure 2. Schematic of the mechanism of toxicity of PFASs to organisms. PFASs cause oxidative stress,
resulting in DNA breaks and reduced GSH activity, causing damage to nerve cells. PFAS exposure
also affects genes related to nerve cell development and embryonic development. Reproductive
organs and the generation and apoptosis of germ cells were also affected by the toxicity of PFASs. In
addition, PFASs disrupt the function of blood cells and downregulate immune-related genes. The
red up arrow indicates the gene is up-regulated, and the green down arrow indicates the gene is
down-regulated.

4.1. Invertebrate Lethal Concentration 50/Effect Concentration (LC50/EC50) for PFASs and
Their Substitutes

The LC50/EC50 is used as an important parameter to measure the magnitude of
toxicity of a toxicant to mammals and even humans. For this reason, this paper compiles
the LC50/EC50 of PFASs on invertebrate studies in recent years (Table 1). From the
results of this study, the LC50/EC50 values of different invertebrates exposed to the same
pollutants for the same period of time varied greatly, which may be due to their different
living environments and feeding patterns, etc. The LC50/EC50 values of the long-chained
PFOA and PFOS were generally smaller than those of the short-chained PFBS, PFBA, etc.,
which indicated that the toxicity of long-chained PFAS was stronger, with PFOS being the
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most toxic. The LC50/EC50 values of long chains such as PFOS were generally smaller
than those of short chains such as PFBS and PFBA, indicating that the toxicity of long-chain
PFAS was stronger, with PFOS being the most toxic. This is worthy of attention because
although the concentrations of pollutants in the experiment were much higher than those
detected in the natural environment, the results caused by PFASs will be unpredictable
with the prolongation of exposure time and the accumulation of food chain transmission.
Both aquatic and terrestrial invertebrates have been poisoned by PFASs, not only limited to
oxidative stress, reproductive toxicity, etc., but even death, which is a devastating blow to
invertebrates and poses a great danger to the ecosystem.

Table 1. EC50/LC50 values for target PFASs and some alternatives.

Species PFAS Type LC50/EC50 (95% Confidential
Interval) Test Duration Reference

Aquatic invertebrate

Brachionus calyciflorus
PFOS 61.8 mg/L 24 h–LC50

[30]
PFOA 150 mg/L 24 h–LC50

Chironomus dilutus PFOS
0.0075 (0.0066–0.0085) mg/L 16 d–LC50

[45]
20 (15–26) mg/L 6 d–LC50

Chydorus sphaericu

PFBA 462.32 (443.06–481.37) mg/mL 48 h–EC50

[46]

PFOA 116.77 (50.52–142.85) mg/mL 48 h–EC50

PFNA 27.84 (21.81–32.49) mg/mL 48 h–EC50

PFDA 45.24 (26.22–63.75) mg/mL 48 h–EC50

PFUnA 19.18 (12.41–23.69) mg/mL 48 h–EC50

PFDoA 28.25 (20.88–49.74) mg/mL 48 h–EC50

Daphnia magna

PFBA 181.5 (180–183.21) mg/mL 48 h–EC50

[46]

PFOA 211.59 (184.68–255.48) mg/mL 48 h–EC50

PFNA 151.29 130.46–181) mg/mL 48 h–EC50

PFDA 163.48 (143–177.36) mg/mL 48 h–EC50

PFUnA 133.13 (91.95–184.46) mg/mL 48 h–EC50

PFDoA 79.22 (60.18–98.26) mg/mL 48 h–EC50

PFBS 2183 (1707–3767) mg/L 48 h–LC50 [47]

PFNA 43.42 mg/L 48 h–EC50
[48]

PFOS 23.41 mg/L 48 h–EC50

PFOA 476.5 (375.72–577.72) mg/L 48 h–EC50 [49]

PFBA 5251 (3889–6614) mg/L 48 h–EC50

[50]PFHxA 1048 (802–1294) mg/L 48 h–EC50

PFOA 239 (190–287) mg/L 48 h–EC50

PFOS 8.8 (6.4–11.6) mg/L 48 h–LC50
[51]

PFOA 78.2 (54.9–105) mg/L 48 h–LC50

Dugesia japonica

PFOS

34 (30–38) mg/L 24 h–LC50

[52]

27 (24–31) mg/L 48 h–LC50

26 (23–29) mg/L 72 h–LC50

23 (20–25) mg/L 96 h–LC50

PFOA

352 (331–374) mg/L 24 h–LC50

345 (325–366) mg/L 48 h–LC50

343 (324–364) mg/L 72 h–LC50

337 (318–357) mg/L 96 h–LC50
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Table 1. Cont.

Species PFAS Type LC50/EC50 (95% Confidential
Interval) Test Duration Reference

Hyalella azteca
PFOA

113 (103–124) mg/L 7 d–LC50

[53]

87.8 (79.8–96.5) mg/L 14 d–LC50

70.2 (63.6–77.5) mg/L 21 d–LC50

57.5 (51.3–64.5) mg/L 28 d–LC50

55.1 (49.0–62.0) mg/L 35 d–LC50

51.5 (45.6–58.1) mg/L 42 d–LC50

PFOS 15 (13– 18) mg/L 42 d–LC50 [45]

Lampsilis siliquoidea

PFOS
16.5 (8.0–33.9) mg/L 24 h–EC50

[54]

17.7 (7.2–43.5) mg/L 48 h–EC50

PFOA
164.4 (116.0–232.8) mg/L 24 h–EC50

162.6 (130.6–202.3) mg/L 48 h–EC50

Ligumia recta

PFOS
13.5 (5.7–31.8) mg/L 24 h–EC50

17.1 (9.4–31.1) mg/L 48 h–EC50

PFOA
161.0 (135.8–191.0) mg/L 24 h–EC50

161.3 (135.0–192.7) mg/L 48 h–EC50

Moina macrocopa PFOA 199.51 (153.89–245.13) mg/L 48 h–EC50 [49]

Moina micrura
PFOS 549.6 (407.2–743.9) µg/L 48 h–LC50

[55]
PFOA 474.77 (350.4–644.5) µg/L 48 h–LC50

Mytilus galloprovincialis
PFOS 1.07 (1.06–1.08) mg/L 48 h–LC50

[56]
PFOA 9.98 (9.6–10) mg/L 48 h–LC50

Neocaridina denticulate

PFOS

57 (43–75) mg/L 48 h–LC50

[52]

20 (17–24) mg/L 72 h–LC50

10 (9–12) mg/L 96 h–LC50

PFOA

712 (663–764) mg/L 48 h–LC50

546 (502–594) mg/L 72 h–LC50

454 (418–494) mg/L 96 h–LC50

Paracentrotus lividus
PFOS 20 (15.8–25.3) mg/L 72 h–EC50

[57]
PFOA 110 (99.2–121.9) mg/L 72 h–EC50

Perna viridis

PFOS 33 (29–37) µg/L 7 d–EC50

[58]

PFOA 594 (341–1036) µg/L 7 d–EC50

PFNA 195 (144–265) µg/L 7 d–EC50

PFDA 78 (73–84) µg/L 7 d–EC50

Siriella armata
PFOS 6.9 (6.8–7.0) mg/L 72 h–EC50

PFOA 15.5 (13.0–18.6) mg/L 72 h–EC50 [57]

Terrestrial invertebrate

Bombus terrestris PFOS 1.01 (0.6–1.8) mg/L 11 weeks–LC50 [59]

Caenorhabditis elegans

PFOS 4.522 mg/L 24 h–LC50
[60]

PFOA 22.655 mg/L 24 h–LC50

PFBS 238.28 (187.26–302.8) µg/mL 48 h–LC50
[61]

PFOA 0.58 (0.45–0.66) µg/mL 48 h–LC50

PFBS 481.5 mg/L 48 h–LC50 [62]

PFOS 1.57 (1.36–1.8) µg/mL 48 h–LC50 [63]
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Table 1. Cont.

Species PFAS Type LC50/EC50 (95% Confidential
Interval) Test Duration Reference

Eisenia fetida

PFOS
32.40 µg/cm2 24 h–LC50

[64]
26.28 µg/cm2 48 h–LC50

PFOA
21.34 µg/cm2 24 h–LC50

14.95 µg/cm2 48 h–LC50

PFOS
1302.57 mg/kg 7 d–LC50

[65]
913.3 mg/kg 14 d–LC50

F-53B
1118.52 mg/kg 7 d–LC50

816.06 mg/kg 14 d–LC50

cC6O4 10.4 mg/kg 56 d–EC50 [66]

PFOS
405.3 (373.8–439.5) mg/kg 7 d–LC50

[67]
365.4 (333.6–400.2) mg/kg 14 d–LC50

PFOA
1307 (1236.1–1394.5) mg/kg 7 d–LC50

1000.8 (926.2–1081.5) mg/kg 14 d–LC50

PFOA 812 mg/kg 14 d–LC50 [68]

PFOS 478.0 mg/kg 14 d–LC50
[69]

PFOA 759.6 mg/kg 14 d–LC50

Folsomia candida PFOS 130 (101–167) mg/kg 28 d–LC50 [70]

Oppia nitens PFOS 65 (59–72) mg/kg 28 d–LC50 [70]

Physa acuta

PFOS

271 mg/L 24 h–LC50

[52]

233 (226–241) mg/L 48 h–LC50

208 (197–219) mg/L 72 h–LC50

178 (167–189) mg/L 96 h–LC50

PFOA

856 (768–954) mg/L 24 h–LC50

732 (688–779) mg/L 48 h–LC50

697 (661–735) mg/L 72 h–LC50

672 (635–711) mg/L 96 h–LC50

4.2. Oxidative Stress

Oxidative stress, caused by an imbalance between oxidation and antioxidants in the
body, can cause a range of diseases. PFASs produce a range of adverse effects by inducing
oxidative stress, which may be caused by PFASs inducing ROS, which attack the DNA,
resulting in breakage and nucleotide removal. This leads to a decrease in GSH activity.
As an antioxidant that protects nerve cells, its reduced activity increases oxidative stress
damage to nerve cells. Among terrestrial invertebrates, Caenorhabditis elegans is a good
model organism, and it has been shown that PFOS exposure increases ROS levels in the
body [71], inducing oxidative stress. Rijnders et al. found that a general inhibition of
earthworm growth and an initial activation and then inhibition of the antioxidant stress in
snails was related to PFAS concentrations and inferred from the results that snails may be
more sensitive to PFOS and PFBA than other PFASs [72]. A general inhibition of earthworm
growth and an initial activation and then inhibition of the antioxidant activities of super-
oxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione peroxidase
(GSH-Px) were observed in PFOS-containing soils with controlled final concentrations of
PFOS of 0, 10, 20, 40, 80, and 120 mg/kg. In addition, it was observed that glutathione
(GSH-Px) content decreased and malondialdehyde (MDA) content increased during the
exposure period [64,73]. A significant enhancement of SOD, POD, CAT, and malondialde-
hyde (MDA) activities was also found in earthworms living in soils containing chlorinated
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polyfluoroalkyl ether sulfonic acid (F-53B) [65]. In the study of Nereidae, which is also a
member of the annelid phylum, it was also found that PFOS induced ROS production,
which caused oxidative stress, resulting in changes in various oxidative stress indices and,
finally, oxidative damage [37]. Exposure of another annelid, Lumbriculus variegatus, to the
acids PFOA, PFOS, and PFDA resulted in a significant increase in MDA and CAT [74].

In addition, PFOA is equally widely used. One study found that earthworms exposed
to PFOA also had increased MDA levels and activities of SOD, CAT, POD, and glutathione
S-transferase (GST). A similar decrease in the activities of these antioxidant enzymes
occurred with increasing exposure time [75]. The ability of PFOA to induce oxidative
stress in earthworms is also illustrated by the fluctuations in SOD and CAT in the study of
Wang et al. [76]. These are similar to the toxicity produced by PFOS exposure, and their
mechanisms of action may be similar. In a recent study in the spotted cockroach, PFOA
exposure increased head and midgut SOD, GSH-Px, and CAT activities but decreased fat
body activities. PFOA also significantly increased GST activity and decreased GSH levels
in the head, midgut, and fat body [77]. Culture of Drosophila with PFOA reveals that PFOA
exposure produces oxidative stress, including changes in GSH and CAT activity [78]. In
a short-chain study, PFBS, PFHxS, and 6:2FTSA were applied to earthworms exposed to
PFOA, which produced excessive ROS. PFBS and PFHxS promoted SOD and CAT activities
as well as increased MDA levels, whereas none of the 6:2FTSA had significant effects [29].

Among aquatic invertebrates, Daphnia magna is a classical model animal often used to
assess the toxicity of various pollutants. High PFOS exposure significantly inhibits their GST
activity, and their antioxidant system is significantly inhibited by short-term exposure to PFOS,
which was experimentally demonstrated to be disrupted in Daphnia magna by long-term
exposure to PFOS [79]. In a study on the offspring of Daphnia magna, it was found that
exposure to high concentrations of PFOS resulted in a significant increase in GST levels in
the offspring from the second generation to the fourth generation, which also indicated that
PFOS causes an increase in oxidative stress in Daphnia magna and its offspring, suggesting
that PFOS adversely affects the offspring of Daphnia magna [80]. Dugesia japonica also induced
oxidative stress by PFOA after 10 days of exposure to PFOA, which was manifested by
lipid peroxidation, significant elevation of glutathione S-transferase (GST), and a significant
decrease in glutathione peroxidase (GSH-Px) activity [81]. It has been shown that exposure of
Mytilus edulis to PFOA induces oxidative stress, with a decrease in CAT and SOD activities
and a significant increase in GPx activity [82]. PFHxA, 6:2 FTA, PFUnDA, PFDoA, PFTriDA,
and PFTeDA were evaluated using Mytilus galloprovincialis and found that in digestive glands,
catalase activity increased and total antioxidant capacity decreased; additionally, the gill
antioxidant enzyme activity was inhibited and oxidative stress increased [83]. Meanwhile,
enzyme activation of CAT and SOD was observed in green mussels at lower exposure
concentrations of PFOA and PFOS (0–100 µg/L), along with a decrease in GSH content.
ROS production under PFOA and PFOS exposure was demonstrated to be dose-dependent,
increasing with exposure concentration. At higher exposure concentrations (100–10,000 µg/L),
both SOD and GSH-Px activities decreased [37,84,85]. In contrast, the activities of SOD and
CAT fluctuated after PFOS exposure in sea urchins, with SOD activity increasing and then
decreasing over time, and CAT following the opposite trend; this enhanced SOD activity may
oxidize CAT and lead to a decrease in activity [32].

4.3. Neurobehavioral Toxicity

Acetylcholinesterase (AChE) is a key enzyme in biological nerve conduction between
cholinergic synapses. This enzyme can degrade acetylcholine, terminate the excitatory effect
of neurotransmitters on the postsynaptic membrane, and ensure the normal transmission
of nerve signals in living organisms. The use of AChE activation is used as an indicator
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of neurological dysfunction for evaluation. Exposure to PFASs causes a reduction in the
activity of AChE, resulting in an increase in the content of ACh and overexcitation of nerve
cells, and also affects the expression of genes related to the development of nerve cells,
resulting in the under-development of nerve cells and a reduction in branching, which in
turn leads to inhibiting the normal activities of life. It has been shown that Daphnia magna
significantly inhibits cholinesterase (ChE) in response to prolonged exposure to PFOS [79].
Jeong et al. found a significant increase in AChE activity in a study of the offspring of
Daphnia magna exposed to PFOS. In a multigenerational response to discontinuous exposure,
Daphnia magna was found to upregulate AChE during exposure and downregulate it during
non-exposure [80]. Using green fluorescent protein (GFP)-tagged transgenic Caenorhabditis
elegans nematodes, researchers found that PFOS exposure resulted in downregulation
of the expression of the chemoreceptor gene gcy-5 in ASE chemosensory neurons [86].
By exploring the of PFOS on different neuron types, it was found that dopaminergic
(DA) neurons were the most sensitive to PFOS, followed by gamma-aminobutyric acid
(GABA)-ergic, serotonergic, and cholinergic neurons, and that the damage to DA was
concentration- and time-dependent. It was also demonstrated that GSH alleviated the
damage caused by PFOS [87]. It has been shown that chronic exposure of earthworms to
PFOS and PFOA altered calcium homeostasis-related genes, with upregulation of NCS-2
and SSPO and downregulation of CANB2 and DUOX2, as well as altering the expression
of genes related to neuronal development, such as the upregulation of H2AX, ANK1, and
AT1A2, and downregulation of IF4G3, BTG-1, TSSK1, and DYH3 [88,89]. Several other
studies have also shown that PFOA exposure reduces head acetylcholinesterase activity
in Nauphoeta cinerea [77], and PFOA-induced behavioral deficits persist after cessation of
exposure [90]. In a study of the triploid whirligig Dugesia japonica, PFOA produced damage
to the ventral nerve cord, while PFOS mainly affected the cranial ganglia and caudal
nerves [37]. Detection of neurodevelopment-related genes in Dugesia japonica exposed to
PFOS revealed that DjotxA, DjotxB, DjFoxD, and DjFoxG were downregulated, while Djnlg
was upregulated. The brain shape of the experimental group was shown to be abnormal
by immunofluorescence, with smaller head ganglia and reduced nerve fiber density and
brain branching, and the experimental results showed that AChE first increased and then
decreased with exposure time [91].

The toxicity of PFASs to invertebrates is often accompanied by changes in their be-
havior that are inextricably linked to their neurotoxic effects. In existing studies, PFOA
exposure was found to cause abnormal foraging behavior in Drosophila larvae, which is
manifested by the larvae moving slowly and away from food [92]. Under PFOA exposure,
spotted Nauphoeta cinerea showed a significant decrease in locomotor activity and a signifi-
cant increase in the time of cessation of immobility [77]. At PFOS concentrations higher
than 10 mg/L, damselfly larvae activity was reduced, the ability to escape from simulated
predators was reduced, and foraging efficiency was reduced [93]. It has been shown that
Caenorhabditis elegans exposed to PFOS at a concentration of 20 µmol results in reduced
locomotor behavior, including forward movement, body-bending, and head-bobbing [86].
It has also been shown that PFOS exposure also causes offspring to exhibit the same lo-
comotor deficits as their parents, such as a reduction in the frequency of body-bending
and head-bobbing [63]. Exposure of Lumbriculus variegatus to PFOA, PFOS, and PFDA
for 12 days results in escape behaviors that indicate retardation [74]. In contrast, a signif-
icant avoidance behavior was also found in earthworms affected by PFOS and F-53B, as
evidenced by the continuous escape of earthworms from soil to control soil [65]. In another
test, no significant adverse reaction of Daphnia magna was detected at PFOS concentrations
below 30 mg/L. Almost all Daphnia magna remained immobile when the concentration
was higher than 150 mg/L. Increasing PFOS concentrations stimulated the heartbeat but
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suppressed heart rate in high concentrations [79]. Gammarus feeding was affected and
food consumption was reduced after exposure to 100 ng/L PFBA [94]. Faxonius immunis
were similarly exposed to PFAS and resulted in reduced foraging behavior [95].

4.4. Developmental and Reproductive Toxicity

In several recent studies, PFASs were found to have severe toxicity on developmen-
tal reproduction. Adult Drosophila flies exposed to 500 nM PFOA lost significant weight
compared to controls, while PFOA had a strong effect on Drosophila larval development, as
evidenced by impaired plumage change, inability of most larvae to transition from the first
to the second instar, and polyphasic lethality [92]. PFBA was also found to affect normal de-
velopment in the beet armyworm moth. The weight of 2nd~5th instar larvae increased after
exposure, and the time to pupation and time to plumage were shortened [96]. European
honey bee (Apis mellifera) larvae also completely stopped developing at the lowest exposure
concentration of PFOS, 0.02 mg/L, and the other exposure concentrations also reduced
the body weights of the adult moths [97]. In crustaceans, the presence of ecdysteroids
(20-hydroxyecdysone, 20E) and juvenile-preserving hormone (JH) allows for EcR recep-
tors and USP to bind and upregulate the induction of developmental and molting-related
genes [98]. Exposure to PFASs downregulates the gene expression of EcRA and EcRB, as
well as USP, and JHE—an enzyme that hydrolyzes JH—is also downregulated. The upregu-
lation of JH leads to the downregulation of Vtg genes, which are regulated by the binding
of JH and JHRE [99] and affect yolkgenesis and embryonic development. In contrast, body
weight differences during development are PPAR-mediated lipid-metabolism-related. In
Daphnia magna, downregulation of genes involved in developmental and reproductive
processes was observed after exposure to 10 µm (5 mg/L) and 25 µm (12.5 mg/L) PFOA
and 25 µm (10.35 mg/L) PFOS, including Vtg2, VASA, EcRA, EcRB, USP, JHE, HR3, FTZ-
F1, E74, and E75 [100]. PFOS in Tigriopus japonicus also caused a delay in the growth
time of the unsegmented larvae to the adult stage [101]. PFOA also resulted in slowed
growth and developmental delay in Hyalella azteca, with a proportion unable to reach
sexual maturity [53]. Caenorhabditis elegans were exposed to PFBA, PFHxA, PFOA, PFBS,
PFHxS, PFOS, 1H,1H, 2H, and 2H-perfluorooctanesulfonamidoacetic acid (NEtFOSAA),
6:2 FTSA, perfluorooctanesulfonamide (PFOSA), and hexafluoropropylene oxide dimeric
acid (HFPO-DA); it was found that all of these PFASs exhibited a significant inhibition
of their growth in the adult stage [102]. Treatment of Daphnia at all dilute concentrations
of aqueous film-forming foams (AFFFs) revealed developmental disorders manifested
by a significant reduction in body length [103]. Interestingly, compared to exposure to
long-chain PFOA, the rotifer Brachionus calyciflorus exposed to short-chain PFBA, PFPeA,
and PFHxA showed a significant increase in body size, suggesting that the ecological effects
of the short-chain PFCAs are different from those of long-chain [30].

PFASs have been found to have toxic effects on reproductive organs as well as on
the conception of offspring in both reproductive aspects. In terms of reproductive tox-
icity, PFASs first accumulate in organs and cause toxicity in them, and have secondary
effects on germ cell (sperm and egg) production and apoptosis. This is exacerbated by
the upregulation of EGL-1 and CED-13, which increase the activity of apoptosis-initiating
protein p53 [104], exacerbating apoptosis. By drinking PFOS-containing sugar water, it
was found that the onset of ovary size in bumblebee Bombus terrestris was drastically re-
duced, with a reduction in ovary length of more than 50% [59]. Preconceptional exposure
of Drosophila melanogaster to 2 ng of PFOS resulted in a significant reduction in megalin
transcript levels, a decrease in egg production, the retardation of offspring development, as
well as altered expression of the Drosophila melanogaster insulin-like peptide (DILP) [105].
Enallagma cyathigerum, also an insect, showed decreased egg-hatching success, delayed
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larval development, and increased mortality after exposure to PFOS [106]. A study eval-
uating sperm changes in Caenorhabditis elegans nematodes exposed to 0.001, 0.01, and
0.1 mmol/L PFOS or PFOA for 48 h found that exposure induced reproductive toxicity in
male nematodes, resulting in reduced brood size, lower germ cell counts, reduced sper-
matocyte size and viability, and increased sperm malformations. Further studies found
that this damage was caused by the disruption of spermatogenesis, including mitotic and
meiotic progression, formation of membranous organelles (MO), fusion of MO and the
plasma membrane (PM), and pseudopods, which were inseparably linked to changes in
the SPE-4, SPE-6, SPE-10, SPE-15, SPE-17, and fer-1 genes [107]. Female nematodes ex-
posed to PFOA and PFOS, on the other hand, were responsible for reduced egg production
and progeny [108]. In addition, PFOS exposure resulted in significantly delayed gonadal
development in Caenorhabditis elegans nematodes[71]. It was also found that exposure of
Caenorhabditis elegans to HFPO-DA 1.5–4 g/L for 48 h resulted in developmental delay,
and a statistically significant delay in progeny production was observed, the extent of
which correlated with the concentration of HFPO-DA, with higher concentrations result-
ing in later egg laying [109]. It has also been shown that, in Caenorhabditis elegans, germ
cell apoptosis after PFBS exposure occurs, with an upregulation of pro-apoptotic genes
EGL-1 and CED-13, a significant reduction in egg laying and brood size, downregulation
of reproduction-related genes VIT-6 (vitellogenin 6, encoding vitellogenin), and upreg-
ulation of NHR-14 (nuclear hormone receptor 14, encoding estrogen receptor) [61]. In
addition, cC6O4 completely inhibited the reproduction of Eisenia fetida at a concentration of
1390 mg/kg d. w. At a concentration of 2.79 mg/kg d. w., the yield reduction in offspring
was 27% [66].

In aquatic environments, PFOS at 8 mg/L significantly inhibited most of the reproduc-
tive behaviors of Daphnia magna, higher PFOS concentrations delayed the production of
offspring, and the prolongation of Daphnia reproduction was more or less correlated with
toxicity [49]. Jeong et al. investigated the multigenerational toxicity of PFOS on the number
of offspring and the time to first brood. The reproductive ability of Daphnia magna was
inhibited during the first generation after continuous exposure to PFOS [80]. In another
study on Daphnia magna, it was observed that PFOS at concentrations higher than 1 µM
and PFOA at concentrations higher than 24 µM resulted in inhibition of reproduction [110].
It was also found that the number of Daphnia magna first broods first decreased, and then
rose and fell with increasing concentrations. At a concentration of 2 mg/L, Daphnia magna
continuously exposed to PFOS may have adapted to the environment, resulting in a partial
rise in population [79]. Daphnia magna exposed to AFFFs, which are also PFASs, have been
found to have a decrease in reproduction capacity with increasing exposure concentra-
tions until complete loss occurs [103]. Perfluoroethylcyclohexane sulfonate (PFECHS), a
member of the perfluoroalkyl sulfonate family, also causes significant downregulation of
the vitellogenin-related gene (Vtg1) in Daphnia magna [111]. Unlike Daphnia magna, which
inhabits the pelagic layer, exposure of the Daphnia carinata to high concentrations of PFOA
and PFOS was also found to significantly affect the time to first brood and reduce the num-
ber of offspring surviving. At PFOS concentrations greater than 1 mg/L, reproduction was
even completely inhibited and an absence of offspring occurred [51]. The rotifer Brachionus
calyciflorus resulted in a reduction in egg size after exposure to both PFOS and PFOA,
with PFOS significantly reducing the reproductive rate of the rotifer [30]. Calculating the
hatchability of resting eggs exposed to PFOA/PFOS during egg incubation, a significant re-
duction in hatchability occurred when the PFOA concentration was higher than 0.25 mg/L,
whereas a significant reduction in hatchability occurred when the PFOS concentration was
higher than 2 mg/L [112]. Paracentrotus lividus induces malformations in its embryos by
accumulating in large quantities in the gonads after exposure to PFOA [113].



Toxics 2025, 13, 47 13 of 22

4.5. Immunogenetic Toxicity

Invertebrates do not have an adaptive immune system and rely on the innate immune
response to defend against pathogens, and blood cells are an important component of this
innate immunity. The immunotoxicity of PFASs is achieved by disrupting the function of blood
cells as well as the regulation of immune factors due to the downregulation of immune-related
genes. Ruditapes philippinarum showed significant disruption of the subcellular structure
of blood cells under PFOA exposure, and the phagocytosis of blood cells increased and
then decreased with the duration of exposure [114]. Researchers also found that immune-
related genes and pathways were altered, such as the PI3K-Akt-mTOR, NF-KB, and IL-17
signaling pathways and genes encoding TLR2/4/6, MyD88, and NFkB1 being significantly
upregulated [115]. Using transcriptome analysis, a large number of immune molecules were
found to be significantly downregulated in Ruditapes philippinarum exposed to 20 mg/L
PFOS. This includes C1q—involved in innate immunity—as well as the glycoprotein-binding
family, which plays an important role in immune regulation, among others [116]. Exposure
experiments using PFOS, PFOA, PFNA, and PFDA on the Perna viridis also revealed a
decrease in the number of hemocyte activities and a similar decrease in phagocytosis, and
also found that these immunotoxicities were reversible [117]. Eriocheir sinensis was exposed
to 0, 0.01, 0.1, 1.0, and 10 mg/L PFOS on days 1, 4, 7, 14, and 21, and significant reductions
in the number of hemocytes were observed, as well as significant reductions in the activity
of the phenoloxidase enzyme, which is important for natural immunity [118]. Exposure of
Ruditapes philippinarum to short-chain C6O4 at concentrations of 0.1 µg/L and 1 µg/L similarly
revealed upregulation of genes encoding C-type lectins, complement C1q-like proteins, and
interferon-inducible GTPase 1-related genes [119].

4.6. Genotoxicity

Genotoxicity refers to damage to genetic material (e.g., chromosomes or DNA) by
physical or chemical agents. It has been shown that both PFOA and PFOS cause DNA
damage in Dugesia japonica, which is manifested by an increase in tail DNA and tail moment
content [120,121]. Exposure of green mussels (Perna viridis) to concentrations of 0.1, 1,
10, 100, and 1000 µg/L PFOS, PFOA, PFNA, and PFDA revealed DNA fragmentation
and chromosome breakage by comet assay, MN assay, and DNA diffusion assay [58]. For
Daphnia carinata exposed to PFOA and PFOS, significant DNA fragmentation was similarly
found to occur in PFOA and PFOS at concentrations of 1 mg/L and 10.0 mg/L [51]. The
treatment of the Aporrectodea caliginosa with different concentrations of PFOA and PFOS
and the extraction of earthworm luminal cells for comet assay revealed that PFOS and
the mixture of PFOS + PFOA induced DNA damage, which was absent in PFOA, and
genotoxicity increased with increasing concentrations [122]. In contrast, PFOS did not
cause DNA damage in the Eisenia fetida exposure experiment, whereas PFOA increased
DNA migration [123]. A study found that all concentrations of PFOS caused DNA damage
in Eisenia fetida. DNA damage was found to be caused by oxidative stress, and ROS caused
DNA damage by causing DNA strand breaks, removing nucleotides, and modifying
nucleotide bases [73]. PFOS and PFOA have also been shown to cause DNA damage, with
PFOS being more toxic than PFOA [69].

4.7. Lifetime Impact

PFASs reduce invertebrates’ lifespan ordinarily. It has been shown that PFASs activate
DAF-16 by inhibiting DAF-2 and promote the movement of DAF-16 from the cytoplasm
into the nucleus, thereby extensively regulating the expression levels of downstream genes
related to stress resistance, detoxification, and metabolism [124]. Researchers have found
a shortening effect of PFOA on the lifespan of male Drosophila but no significant effect
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on the lifespan of adult females [92]. It has been found that exposure to 0.2–200 µM
PFOS for 50 h shortens lifespan in a concentration-dependent manner in Caenorhabditis
elegans nematodes. Lifespan has been reported to be affected by mutations in the daf-16,
daf-2, or age-1 genes, which are associated with the insulin/IGF-1 signaling pathway
(IIS) in transgenic Caenorhabditis elegans nematodes [125]. It has also been shown that the
lifespan of Caenorhabditis elegans nematodes is significantly reduced in the presence of high
concentrations of PFOS ≥ 1.0 µM [63], which demonstrates that PFOS exposure accelerates
senescence and shortens the lifespan of the animals. Seyoum et al. exposed the entire
lifespan of Daphnia magna to PFOS, and found that the control daphnia’s lifespan was
45 days; Daphnia magna exposed to 1 µM and 10 µM PFOS and all concentrations of PFOA
had a lifespan of 39 to 41 days; and Daphnia magna exposed to 25 µM PFOS had a severely
reduced lifespan of 23 days [100]. Exposure of the rotifer Brachionus calyciflorus to both
2.0 mg PFOA/L and PFOS revealed reductions in their survival times [30].

5. Mixed Toxicity
It is well-known that water bodies as well as soils contain numerous chemicals that

can act as initiators or as antagonists interacting with PFASs to produce unknown toxicity.
In the example of metal ions, it has been shown that the presence of PFOS significantly
affects the toxicity of Cu and Cd in earthworms, exacerbating oxidative stress [126,127].
The presence of PFASs was also found to increase the uptake of Cd, Zn, Ni, Pb, and Cu
from soil by earthworms in a study by Zhao et al., where PFASs and metals interacted with
each other to affect their bioaccumulation and subcellular distribution in earthworms [128].
Another study also illustrated that exposing earthworms to soil containing PFOA, arsenite
(As(III)) caused higher oxidative stress and increased arsenic bioaccumulation in earth-
worms, which in turn reduced PFOA bioaccumulation [68]. A similar situation was found
in artificial soils exposed to PFOA and four arsenic species—arsenite (As(III)), arsenate
(As(V)), monomethylarsenate (MMA), and dimethylarsenate (DMA)—causing greater tox-
icity to earthworms that was not limited to growth inhibition and oxidative stress, and
demonstrating that the type of As present in the artificial soils has a greater effect on
co-toxicity [129]. Co-exposure of PFOA with organic As resulted in antagonistic responses,
while co-exposure with inorganic As resulted in synergistic responses [129]. Along with
the metal ion interactions, studies have also found the effects of pH and the co-treatment of
Zn and PFOS on Caenorhabditis elegans caused the 24 h-EC50 value of Zn metal to decrease
with a decreasing pH or an increasing exposure concentration of PFOS [62]. In a study
on the toxicity of co-exposure of PFOS and suspended sediment (SPS) on Corbicula flu-
minea, it was found that there was a significant increase in bioaccumulation and oxidative
stress, where indicators such as SOD and CAT activities were significantly increased. Co-
exposure also causes histopathological alterations in the gonads and digestive glands, such
as shrinkage of oocytes, loss of epithelial cells, and even inhibition of siphoning behavior
in clams [130]. Combined exposure to polystyrene microplastics (MPs) and ammonium
perfluorooctanoic acid ammonium salt (APFO) is found to have synergistic and antago-
nistic effects on their mixed toxicity, with APFO inducing an alteration in MP intestinal
fullness in Daphnia magna. At high concentrations, the mixed toxicity of MPs and APFO
elicits intestinal obstruction-mediated physiological and biochemical responses in Daphnia
magna [131]. It was also found that lower concentrations of MPs adsorbed more PFOS, and
that combined exposure to MPs and PFOS impeded the regeneration of the eyepatches of
decapitated Dugesia japonica, resulting in severe DNA damage. Treatment with MPs and
PFOS not only impaired the proliferation of neoblasts in Dugesia japonica but also impeded
the regeneration and development of the nervous system [132]. Co-exposure of PFOA
and nano-TiO2 caused a worse case of oxidative stress [133]. It also had a toxic effect on
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immune function and significantly reduced the total blood count, mitochondrial count, and
lysosomal content [134]. It also interfered with the normal byssal line secretion process of
Mytilus coruscus, resulting in damage to its foot structure, weakening byssal performance,
and affecting its defense capability [135]. Co-exposure to 2,2′,4,4′-Tetrabrmodiphenyl ether
(BDE-47) and PFOA exacerbates oxidative stress in Mytilus galloprovincialis [136]. Thus, it is
expected that the toxicity of PFASs in the environment may be far greater, and it is urgent
to improve the laws and regulations.

6. Conclusions
PFASs have become global pollutants and have been found in many environments

and organisms. Many long-chain PFASs have been banned but their use has resulted
in their accumulation in the environment where they are not readily degradable, and
where they will pose a serious threat to organisms in the environment for a long time to
come. According to the existing literature, PFASs are already known to be reproductively
toxic, neurotoxic, developmentally toxic, immunotoxic, and metabolically toxic. They
enter the environment through daily production activities, first accumulating in plants and
invertebrates, then bioaccumulating through the food chain, and ultimately completing
their accumulation in organisms, where they cause a range of adverse effects, including
reproductive degradation, developmental delay, and neurological damage in invertebrates.
PFASs can also be combined with other pollutants in the environment to form a combination
of toxicities, deepening the toxicity of PFASs. The bioconcentration capacity and toxicity of
PFASs are strongly related to their chain length, which is generally positively correlated.
Of the invertebrates tested, aquatic invertebrates appeared to be more sensitive than
terrestrial invertebrates, possibly due to differences in living environments and the fact
that contaminants are more likely to be deposited in the aquatic environment. From
the data, Chironomus dilutus was the most vulnerable to PFASs, which harmed it at very
low concentrations.

PFASs have now spread all over the world, with traditional long-chain PFASs being
replaced by emerging short-chain PFASs. The ecological impact of short-chain PFASs
needs to be further investigated, especially in terrestrial invertebrates where gaps still exist.
Study of the combined exposure toxicity of multiple PFASs at environmentally relevant
concentrations is also critical. In the future, it is necessary to strictly control the production,
use, transportation, and disposal of PFASs, reduce the direct or indirect entry of PFASs
into the environment, emphasize the remediation of ecological pollution, and strengthen
the research on the degradation of PFASs and their substitutes in order to reduce the
environmental risks of PFASs.
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