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Abstract: Pollution is one of the most important issues currently affecting the global pop-
ulation and environment. Therefore, determining the zones where stringent measures
should be taken is necessary. In this study, Principal Component Analysis (PCA), Factor
Analysis (FA), and t-distributed Stochastic Neighbor Embedding (t-SNE) were utilized
for dimensionality reduction and clustering of data series containing the concentration of
10 heavy metals collected at 14 locations. The Hazard Quotient (HQ) and Hazard Index (HI)
were utilized to determine the non-carcinogenic risk to the population in the studied zones.
The highest concentrations of metals in the samples were those of Fe, Zn, Mn, and Cr. PCA
indicated that Fe and Zn (Co and Cd) had the highest contribution on the first (second)
Principal Component (PC). FA showed that the three-factor model is adequate for explain-
ing the variability of pollutant concentrations. The factor loadings revealed the strength of
association between variables and factors, e.g., 0.97 for Zn, 0.83 for Cr, and 0.99 for Co. HQ
for ingestion, HQing, was the highest for Fe (between 6.10 × 10−5 and 2.57 × 10−4). HQ for
inhalation, HQinh, was the biggest for Mn (from 1.41 × 10−3 to 1.95 × 10−3). HI varied in
the interval [0.172, 0.573], indicating the absence of a non-carcinogenic risk. However, since
values above 0.5 were determined at four sites, continuous monitoring of the pollution in
the sampling locations is necessary.

Keywords: multivariate analysis; pollution indicator; PCA; t-SNE; FA; HI

1. Introduction
Heavy metals are widely recognized as significant environmental contaminants [1].

The sources of heavy metals can be categorized as anthropogenic and natural. The first
category, including mining, agriculture, vehicle emissions, smelting operations, fossil fuel
combustion, and other industrial activities, mainly contributes to heavy metal pollution,
especially in urban zones [2–5]. The utilization of chemical fertilizers and pesticides, coal
burning, and metal extraction releases heavy metals like arsenic (As), copper (Co), cadmium
(Cd), lead (Pb), and mercury (Hg) into the air, soil, and water. Chromium (Cr), nickel (Ni),
cobalt (Co), zinc (Zn), and copper (Cu) released into the atmosphere can also pose severe
risks to human and environmental health, even at trace levels [6]. While some metals are
essential for specific biological functions in trace amounts, excessive accumulation can
seriously harm human health [7]. Their toxic effects, ranging from chronic diseases to
neurological damage, are intensified by their ability to accumulate in the environment and
living organisms over time [8–12].

The second category, including natural sources (forest fires, volcanic eruptions, sea salt
sprays, rock weathering, and wind-borne soil particles), also contributes to heavy metal
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levels in the atmosphere. However, their impact is generally lower than that of the first
category [13].

Recent studies [14–16] have indicated that urban areas are especially vulnerable to
high levels of heavy metal contamination, vehicle emissions being a significant contributor
to the pollution of cities, releasing a complex mixture of particles and gases [4,5,17,18].
Road dust—a mix of particles from soil, vehicle emissions, and atmospheric deposition—is
one of the most common and dangerous paths for heavy metal exposure in urban settings.
It often contains metals from tire wear, brake pads, exhaust fumes, and engine components.
The wear and tear on vehicles’ mechanical parts, tires, and industrial processes signifi-
cantly contribute to road dust pollution, introducing metals such as lead, nickel, zinc, and
copper [17–21].

The accumulation of road dust containing heavy metals affects inhaled air quality
and poses risks to people living in such contaminated environments, as well as ecological
equilibrium [22,23].

The dust from the desert regions (Sahara in Africa, the Middle East and Arabian
Peninsula, and Central Asian Deserts) constitutes another significant atmospheric pollution
source. Dust is transported long distances by strong winds and can impact air quality
and climate far from its origin [24–26]. Being located in a desert region with vast areas
of sand dunes (particularly in the Rub’ al Khali), the United Arab Emirates (UAE) is one
of the countries that experiences dust storms due to the winds (Shamal) that blow from
the northwest, especially during the spring and summer [27,28]. Rapid urbanization and
infrastructure building also generate large amounts of dust.

Modeling real-life phenomena necessitates advanced mathematical methods. In the
context of increasing pollution from various sources, scientific inquiry into the impact of
pollution is an iterative process involving hypothesis formulation, data collection, and
analysis. The complexity of this phenomenon necessitates performing multivariate analysis,
which is indispensable for extracting meaningful information from the collected datasets.
Examining the relationships between variables provides a comprehensive understanding
that univariate methods often fail to achieve. Still, while robust, multivariate analysis
presents cognitive and computational challenges [29,30].

Machine learning (ML) methods, like XGBoost [31], Random Forest (RF) [31–33], AN-
FIS and ANN [34], Support Vector Regression [32], and Regression Trees [35], have been
extensively used to model soil contamination. Unsupervised classification techniques,
including K-means [36], DBSCAN [37], Hierarchical Clustering [38], Mean Shift [39], Sup-
port Vector Machine [40], Naive Bayes Classifier [41], OPTICS [42], etc., have proven their
efficiency in various classification problems. Previous studies have indicated that com-
bining multivariate statistics and unsupervised classification techniques can deepen the
understanding of pollution sources and their spatial distribution [16,26,43,44].

In the above context, this article emphasizes algebraic concepts, minimizing advanced
mathematics while maintaining a quantitative approach, which is then applied to (1) analyz-
ing the heavy metal concentrations in dust collected in the Dubai area and (2) determining
the non-carcinogenic health risk to the population living in the neighborhoods of the sam-
pling sites. For the first goal, dimensionality reduction, clustering, and investigating the
correlations between the concentrations of the metals in dust samples were performed. The
second goal was achieved by computing HQ indices.

By maintaining a critical perspective and effectively integrating multivariate methods
with the HQ analysis, one can uncover meaningful insights into metal pollution in the
region, find the locations where advanced de-pollution methods should be used, and
provide a background for making decisions to preserve a clean environment.
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2. Data Series and Methodology
2.1. Study Region and Data Series

The United Arab Emirates (UAE) belongs to a dry and warm subtropical climate. An
extended surface of the country is covered by sand dunes. From May to October, daytime
temperatures vary between 35 and 50 ◦C, while they are generally between 20 and 35 ◦C at
midday in the rest of the year. In the desert interior, summer (winter) ground temperatures
can reach 70 ◦C (0 ◦C or below). The annual precipitation is under 100 mm. Rainfall is
irregular, mostly during winter, significantly varying by location and year. Coastal areas
also experience dew and fog that provide additional moisture. Sandstorms are frequent,
especially in the summer [45].

The study area is located in the Dubai Emirate (Figure 1). The soils are mainly
calcareous and sandy and deficient in organic matter. Along the coast, in depressions and
low-lying zones, the soils are characterized by high salinity, whereas in the inner desert,
they are sodic or saline [45].
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The dataset consists of the series of measured concentrations of heavy metals (Ba,
Co, Cu, Cd, Cr, Fe, Mn, Cr, Pb, Zn) extracted from analyzing the dust samples collected
in 14 locations in Dubai (Figure 1), the United Arab Emirates, following the procedure
from [21].

2.2. Methodology

The data series was subject to statistical analysis to determine the series characteristics.
The basic statistics included minimum (min), maximum (max), mean, standard deviation
(stdev), and outliers’ detection.

Principal Component Analysis (PCA), Factor Analysis (FA), and t-distributed Stochas-
tic Neighbor Embedding (t-SNE) were used to address the contamination extent in various
locations and to group those sites based on their similarities. PCA and t-SNE are unsuper-
vised algorithms. PCA is a deterministic method that linearly reduces the dimensions of
the dataset. t-SNE is a non-linear, randomized algorithm that maps a high-dimensional
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dataset to a lower-dimensional space. Its output is typically employed for visualization.
These techniques are explained in detail in Sections 2.2.1 and 2.2.3

R.4.3.2 software was employed to carry out the study. It offers a comprehensive
suite of packages and functions designed for multivariate analysis, psych for FA [46],
FactorMineR, factoextra, and MASS [47–49] for PCA, and NbClust [50] for clustering.
Its robust computational capabilities and visualization tools make R ideal for handling
complex datasets. Additionally, we used maximum likelihood to fit various models.

This approach will enhance our understanding of the underlying methodologies
and provide flexibility in diverse analytical scenarios. By leveraging R, we can effi-
ciently implement and interpret multivariate techniques, ensuring accurate and insightful
pollution analysis.

2.2.1. Principal Component Analysis

PCA allows for straightforward analysis without the significant loss of information by
reducing the dimensionality of a dataset while retaining its structure [51,52]. It transforms
potentially correlated variables into uncorrelated orthogonal Principal Components (PCs),
linear combinations of the original variables, ordered by the proportion of variance they
explain. PCA can reveal hidden patterns and relationships among variables. It is performed
on the correlation matrix, especially when the variables (the heavy metals’ concentrations,
in our case) are measured on different scales. The standardization step makes the procedure
robust against the influence of variables with more significant variances.

To perform PCA on a multivariate vector x =
(
x1, x2, . . . , xp

)
, the eigenvalues and

eigenvectors of the sample variance matrix S provide the estimations of the variances and
directions of the PCs. The jth PC is given by:

yj = e′jx (1)

where e′j is the j-th eigenvector.
The jth PC captures a fraction of the total variance equal to

tj =
λj

∑
p
k=1 λk

(2)

where λj is the jth eigenvalue.
If a few components capture a significant percentage of the total variance, the data’s

dimensionality can be reduced with minimal loss of information.
Different approaches can be utilized to select the optimum number of PCs [53,54].

An eigenvalue greater than 1 (often serving as a threshold for selecting a PC) suggests that
the corresponding PC accounts for more variance than any of the original standardized
variables. A PC whose eigenvalue λj is greater than 1 (the average eigenvalue when
working with standardized variables) is kept, while the others are discarded.

An alternative procedure uses a Scree Plot that displays the eigenvalues from the
highest to the lowest. It allows the selection of the PCs until the corresponding eigenvalues
start to level off [51,55]. Another approach is to retain the number of components that
collectively explain a predetermined fraction of the variance (usually 70% or 80%). However,
there is no universally accepted method for deciding the optimal number of PCs to retain.

Information Criteria like Akaike (AIC) and Bayesian (BIC) [56,57] can also be utilized to select
the best number of PCs. If n and k are the sample size and number of components, respectively,
Lk is the log likelihood for PCs, and AICk and BICk are defined by (3) and (4), respectively:

AICk = −2ln(L k) + 2k, (3)
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BICk = −2ln(L k) + kln(n). (4)

The optimal number of PCs is the one for which AICk or BICk is minimized, balancing
model fit and complexity. Based on AIC, a new PC can be added when its corresponding
eigenvalue, λk+1, satisfies the inequality λk+1 > exp(−2/n). Considering BIC, a new PC is
added when λk+1 > n1/n.

2.2.2. Factor Analysis

FA is a technique used to discover groups of variables, called factors, which seem
to act together. The FA model expresses each observed variable as a linear combination
of the underlying factors plus an error. Estimating the factors and loadings relies on the
hypothesis that the factors and errors means are zero, the factors and errors are uncorrelated,
and the factor vector has a variance equal to 1. In these hypotheses, the covariance matrix
can be decomposed into a part that captures the common variance explained by the factors
and another representing the unique variance unexplained by each.

We fit an FA model to uncover the latent factors that influence the concentrations
of various elements in the dust samples and understand any spatial patterns or regional
influences on these concentrations. The factor loadings obtained from the model will show
how the concentration of each element relates to these latent factors, helping us identify
groups of elements that are influenced by the same underlying process.

Various methods can be employed to check if the chosen number of factors adequately
explains the variability in the data, including the Parallel Analysis (PA) and Very Simple
Structure (VSS) criteria [58]. The BIC and AIC criteria can be utilized to find the number of
factors (m) that balance the model fit and complexity [59].

In the FA, by comparing the eigenvalues of the observed data λj with those obtained
from randomly generated data λj and selecting the factors that satisfy the relation λj > λj,
one can determine which factors explain more variance than would be expected by chance.
In VSS, the number of factors (m) that maximize the VSS index is considered optimal [58].

AIC and BIC minimization was also utilized to determine the optimal number of
factors. The formula used here, implemented in psych::fa()function in R, is slightly
different than those in (3) and (4). BIC is defined by:

BIC = χ2 − 2d f (5)

where χ2 is the chi-square statistic and d f is the degree of freedom of the model.
χ2 is derived from the likelihood function representing the goodness of fit and d f

measures the model’s complexity.
We can formulate AIC in the same context by:

AIC = χ2 + 2d f . (6)

Including more parameters in (6) will increase the AIC, favoring simpler models with
better fit.

2.2.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

Another algorithm designed for dimensionality reduction, particularly useful for visu-
alizing high-dimensional data by embedding it into two or three dimensions—t-SNE [60]—
is based on probability distributions with random walk on neighborhood graphs to find
the structure within the data. This technique aims to preserve the local structure of the data
while also revealing global patterns.
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t-SNE has been used in applications from various research domains, including ge-
nomics, medicine, bioinformatics, natural language processing, computer security, geology,
and geochemistry [60–66].

The key concepts and mathematical formulation of t-SNE, providing an understand-
ing of how the algorithm works and why specific methods are used, are presented in
the following.

The high-dimensional similarities ensure the similarity between pairs of data points in
the high-dimensional space. The similarity pj|i between vectors xi and xj is defined by:

pj|i =
exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2/2σ2
i

)
∑k ̸=i exp

(
−||xi − xk||2/2σ2

i

) (7)

where σi is the bandwidth of the Gaussian centered at xi.
This approach ensures that points closer in high-dimensional space have higher

probabilities, reflecting their local similarity.
Perplexity (Perp) controls the effective number of nearest neighbors considered for each

point [67]. Its values vary from 5 to 50 and should be less than the number of samples [68].
Perplexity balances the focus between local and global aspects of the data and is defined as

Perp(Pi) = 2H(Pi), (8)

where H(Pi) is the Shannon entropy of the probability distribution (Pi) in bits:

H(Pi) = −∑
j

pj|ilog2(pj|i). (9)

The low-dimensional similarities qij are modeled using a t-distribution with one degree
of freedom (or a Cauchy distribution) in the low-dimensional space.

The crowding problem [69] refers to the case when high-dimensional data points that are
moderately far apart are placed too close in a lower-dimensional representation, leading to
a loss of local structure. This situation occurs because, in lower-dimensional spaces, there is
not enough “room” to maintain the correct relative distances for both close and moderately
far points, leading to a loss of meaningful relationships.

Kullback-Leibler Divergence (KL divergence) [70] measures the difference between two
probability distributions. In t-SNE, it quantifies the discrepancy between the high- and
low-dimensional probability distributions P and Q. Minimizing KL divergence in t-SNE
preserves local structure by ensuring that the high-dimensional and low-dimensional
representations of the data have similar probability distributions. It means aligning Q
closely with P, ensuring that points that are close together in P remain close in Q.

To find the optimal low-dimensional representation, we aim to minimize KL diver-
gence using gradient descent with momentum (GD) [71] while eliminating local minima. The
learning rate η is a hyperparameter that controls the size of the steps taken during GD. A
smaller η makes the algorithm more stable but slower to converge, while a larger η speeds
up convergence but risks overshooting the minimum.

The learning rate is often set to values such as 200 or 1000, but it can be adjusted based
on the dataset and the specific requirements of the analysis. It controls the size of steps
taken towards the loss function minimum.

To achieve optimal performance for t-SNE, it is essential to focus on the parameters
that most significantly influence the algorithm’s performance, such as Perp, η, and α (the
momentum term, usually between 0.5 and 0.9). Common practices suggest using standard
values already mentioned in this section. Nevertheless, multiple methods, such as Bayesian
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optimization, cross-validation, and automated methods, can be applied. Here, we will
present the Bayesian optimization method, in which we define three different objective
functions that measure the quality of the resulting embedding.

Before analyzing the choice of the objective function, we will run the t-SNE algorithm
using the element concentration data to get a general picture of the results. The number of
lower dimensions will be 2, perplexity—3, maximum iterations—500, learning rate—50,
and momentum—0.5. Finally, we will visualize the results.

Quantitative analysis assesses how well the optimization has separated the data points.
The average distances within and between clusters were computed for this aim. KL
divergence measures how one probability distribution diverges from a second expected
probability distribution. By comparing the average intra-cluster distances (distances within
the same cluster) and inter-cluster distances (distances between different clusters), we can
determine if the optimized parameters lead to tighter, more distinct clusters. A significant
reduction in intra-cluster distances and an increase in inter-cluster distances indicate that
optimization effectively improves the separation and coherence of clusters.

Element concentration analysis enhances our understanding of the cluster profiles by
examining the distribution of individual element concentrations within and between the
clusters. By plotting the concentrations of each element for the identified clusters, we
can discern patterns and differences in the dust composition across different geographical
locations. This analysis is particularly useful for identifying which elements contribute
most to the clustering observed in the t-SNE plot. It can reveal whether certain elements are
prevalent in specific clusters, suggesting underlying environmental or geological factors
influencing the dust composition.

2.3. Health Risk Assessment

The non-carcinogenic health risk for the population living in the research area was
investigated by computing the average daily dose, ADD (mg/kg/day), of each metal, k,
by ingestion (ADDk,ing), inhalation (ADD k,inh

)
, and dermal contact (ADDk,derm), using

(10)–(12) [72–75].

ADDk,ing =
ck × Ring × EF × ED

BW × AT
× 10−6 (10)

ADDk,inh =
ck × Rinh × EF × ED

PEF × BW × AT
, (11)

ADDk,derm =
ck × SA × SL × ABS × EF × ED

BW × AT
× 10−6. (12)

The notations are explained in Table 1, according to [76].

Table 1. The exposure factors for adults.

Factor Definition Value

c concentration of the heavy metal in the sample [mg/kg] computed here
Ring dust ingestion rate [mg/day] 100
AT average time [day] 365 × ED
BW mean weight of body [kg] 70
EF frequency of exposure [days/year] 365
ED duration of exposure [year] 24
SA surface of the skin in contact with the dust [cm2] 5700
Rinh rate of inhalation [m3/day] 20
SL factor of skin adherence for dust [mg/cm2] 0.07
ABS factor of dermal absorption [-] 0.001
PEF factor of particle emission [m3/kg] 1.36 × 109
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The reference dose for a metal k (R f Dk) is the upper limit of the acceptable risk by
daily exposure to that metal of the people (adults, in this study) during their entire life
lifetime. When ADDk,ing < R f Dk,ing (ADDk,inh < R f Dk,inh and ADDk,derm < R f Dk,derm,
respectively), no adverse effects are likely to appear. The values of the reference doses for
each metal analyzed in this article are presented in Table 2. They are the most used in the
scientific literature [73–81]. Extensive discussions on various RfD values are found in [77].

Table 2. RfD [mg/kg/day] used in this study for the analyzed metals.

Metal Ingestion Dermal Inhalation

Ba 7 × 10−2 14 × 10−3 5 × 10−4

Cd 5 × 10−4 5 × 10−6 2 × 10−5

Co 3 × 10−2 5 × 10−6 6 × 10−6

Cr 3 × 10−3 15 × 10−6 1.4 × 10−4

Cu 4 × 10−2 12 × 10−3 1 × 10−4

Fe 0.7 2.2 × 10−4 7 × 10−3

Mn 2 × 10−2 8 × 10−4 5 × 10−5

Ni 2 × 10−2 54 × 10−4 2 × 10−5

Pb 14 × 10−4 42 × 10−5 1 × 10−4

Zn 0.300 0.0600 0.300

The Hazard Quotients for ingestion, inhalation, and dermal contact for a metal k
(HQk,ing, HQk,ing, and HQk,derm

)
are computed by:

HQk,ing =
ADDk,ing

R f Dk,ing
, (13)

HQk,inh =
ADDk,inh

R f Dk,inh
, (14)

HQk,derm =
ADDk,derm

R f Dk,derm
. (15)

They express the non-carcinogenic risk by ingesting the metal k, its inhalation, or by
dermal contact, respectively.

The Hazard Quotient with respect to the metal k is obtained by:

HQk = HQk,ing + HQk,inh + HQk,derm. (16)

To evaluate the total non-carcinogenic risk for the exposed population, one may use
the Hazard Index (HI) obtained by summing up the HQ by all paths for all n metals, so:

HI =
n

∑
k=1

HQk. (17)

HI > 1 indicates a possible non-carcinogenic effect on human health.

3. Results and Discussion
3.1. PCA Results

The PCA was conducted for 14 individuals (locations) and 10 variables (the metals
concentrations). The first four eigenvalues (ordered in decreasing order) had the values of
4.21, 1.94, 1.08, and 0.88 (Figure 2), explaining 43.08, 19.37, 10.80, and 8.81% of the variance,
respectively. Therefore, the first three PCs accounted for 73.25% of the variability in the
data, and the first four PCs explained 82.06% of the variability.
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Figure 2. Scree plot.

The first three PCs, with eigenvalues greater than 1, can be selected based on the
Kaiser criterion. According to the cumulative variance explained (%), the first three or four
PCs should be retained.

Table 3 presents the values of AIC and BIC corresponding to the first four components.
Based on AIC and BIC, the optimal number of PCs to retain is four, which will be used in
the following study.

Table 3. AIC and BIC criteria as a function of the number of components.

Number of PCs 1 2 3 4

AIC 102.13 86.277 74.23 62.12
BIC 102.77 87.55 76.14 64.68

The relationships among all variables can be observed from the variable correlation
circles (Figure 3). The positively correlated variables are clustered together, while those
negatively correlated are located on opposite sides of the plot with respect to origin.
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Figure 3. Correlation circles PC2 vs. PC1 (left) and PC4 vs. PC3 (right).

The distance of variables from the origin indicates the quality of their representation
on the factor map, with variables farther from the origin being better represented. In
Figures 3 and 4 (left), a high cos2 value signifies a good representation of the variable on
the PC, placing the variable near the circumference of the correlation circle. Fe, Zn, and
Mn are the best represented on PC1 and Co on PC2. Cr and Ni are best represented in the
negative direction of PC3, and Ni is best represented on PC4.

Figure 4 (left) shows the quality of representation of the variables to the first four PCs.
Ni, Co, Mn, and Cd, with cos2 values above 0.80 are the best represented. However, Pb
and Cu, while still contributing to the explained variance, are worse represented (with
cos2 > 0.625).
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Variables that show strong correlations with the first four PCs (Dim.1 to Dim.4) play
a significant role in explaining the variability within the dataset. The less significant
variables could be removed to simplify the overall analysis. Figure 4 (right) indicates the
following significant contributions to: Dim.1: Fe, Zn, Mn, Ba, Pb; Dim.2: Co, Cd, Ni; Dim.3:
Cr, Cu, Ni; Dim.4: Ni.

While the current analysis has focused on the contributions and significance of the
variables (metals), it is equally important to understand how the individual observations
(locations) are represented in the Principal Component space. PCA for individuals involves
examining each sample’s scores (coordinates) on the PC. This analysis helps identify
patterns, clusters, and outliers, providing insights into the relationships between sites
based on the PC. By visualizing and interpreting the PCA results for individuals, we
can gain a deeper understanding of the dataset’s structure from the perspective of the
observation sites, complementing the variable-based analysis and offering a comprehensive
view of the data.

The biplot (Figure 5) summarizes both aspects—the contributions of the variables and
individuals. Sites 5 and 9 are best represented on the positive side of PC1, while 12 is best
represented on the opposing side. Sites 2 and 1 are best represented on the positive side of
PC2, while 3, 7, and 14 are best represented on the negative part.
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3.2. FA Results

We fit an FA model to determine the latent factors influencing the elements’ concentra-
tions and to understand the spatial patterns or regional influences on these concentrations.
The factor loadings show how each element concentration relates to the latent factors,
helping us identify groups of elements influenced by the same underlying process. High
loadings on a specific factor indicate that that factor significantly influences the element.
First, we performed FA using the maximum-likelihood-as-fit method and fixed the number
of factors to three. The results are presented in Table 4. Columns 2–4 contain the stan-
dardized loadings (ordered based on their decreasing importance) based on the correlation
matrix. Columns 4–6 contain the communalities (h2), uniqueness (u2), and complexity
(com), respectively.

Table 4. FA analysis.

Metal ML2 ML3 ML1 h2 u2 Com

Cd −0.45 0.03 0.64 0.59 0. 413 1.8
Cr −0.15 0.83 −0.15 0.62 0.383 1.1
Cu 0.53 0.04 −0.08 0.31 0.688 1.1
Ni −0.11 −0.08 0.37 0.17 0.832 1.3
Pb 0.47 0.23 0.31 0.49 0.510 2.2
Co 0.09 −0.03 0.99 1.00 0.005 1.0
Ba 0.43 0.41 −0.21 0.58 0.415 2.5
Fe 0.86 0.11 0.07 0.86 0.137 1.0
Mn 0.26 0.77 0.18 0.91 0.093 1.3
Zn 0.97 −0.03 −0.02 0.91 0.091 1.0

The analysis shows that three factors (ML2, ML3, ML1) explain 64% of the total
variance. Here is a quick breakdown of the results:

1. Factor loadings and variance:

• Sum of squared (SS) loadings: ML2—2.22, ML3—1.77, ML1—1.74;
• Proportion variance: ML2—0.29, ML3—0.18, ML1—0.17;
• Cumulative variance: 64%;
• Loadings: Indicate the strength of association between variables and factors, e.g.,

Zn (ML2: 0.97), Cr (ML3: 0.83), Co (ML1: 0.99);
• h2 and u2: High communalities indicate variables well-explained by the factors.

For example, Zn has h2 = 0.91 and u2 = 0.091, indicating that the factors explain
91% of its variance. The same is true for Mn.

• Factor correlations: ML2-ML3: 0.54, ML2-ML1: 0.03, ML3-ML2: 0.54, ML3-ML1: −0.02.

2. Model fit indices:

• Chi-square statistic: 11.23 (p < 0.88);
• Root Mean Square of Residuals (RMSR): 0.07;
• Tucker–Lewis Index (TLI): 4.006;
• BIC: −35.27.

3. Factor score adequacy indicates a high reliability of factor scores:

• Correlation of regression scores with factors: ML2 (0.97), ML3 (0.95), ML1 (1.00);
• Multiple R-square of scores with factors: ML3 (0.95), ML1 (0.90), ML2 (0.99);
• Minimum correlation of possible factor scores: ML3 (0.90), ML1 (0.80), ML2 (0.99).

These results indicate that the three-factor model is adequate for explaining the vari-
ability of pollutants’ concentrations, with high factor score reliability and good fit indices.
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However, the choice of m = 3 was arbitrary. Based on the Scree plot (Figure 6a), we should
retain two factors.
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Running the VSS (Figure 6b), we obtained the following output: Complexity 1 achieves
a maximum fit of 0.77 with two factors, while Complexity 2 achieves a maximum fit of 0.87
with three factors. The minimum BIC = −63 was achieved with one factor, followed by the
value of −51, with two factors. The results show that two factors balance simplicity and
explanatory power well. Finally, we used the AIC and BIC criteria to determine the optimal
number of factors. From Figure 6c, we observe that the AIC decreases consistently as the
number of factors increases from one to five. It suggests that adding more factors improves
the model fit, according to AIC. However, the BIC shows an increasing trend. BIC penalizes
model complexity more heavily than AIC. Therefore, considering the balance between the
model fit and its complexity, the optimal number of factors is two.

3.3. T-SNE Results

Before delving into the choice of the objective function, we ran the t-SNE algorithm
using the element concentration data to get a general picture of the results. We chose the
number of lower dimensions to 2, perplexity to 3, maximum iterations to 100, learning rate
to 50, and momentum to 0.5. The t-SNE results (Figure 7a) show two clusters of sample IDs,
suggesting that sites 2–4, 8, 11–14 share similar element concentration profiles, similarly for
stations 1, 5–7, 9, and 10. Furthermore, there appear to be linear trends within each cluster,
which could indicate a gradient or some form of ordered relationship among the element
concentrations for those locations.

The first criterion chosen for Bayesian optimization was minimizing the KL divergence
objective function between the high- and low-dimensional distributions. We obtained Perp
= 3, the learning rate = 91.316, momentum = 0.677, and the best objective function = −0.037.
Running the t-SNE with the new parameters, we found a different configuration of the data
points represented by three clusters (Figure 7b).
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larger intra-cluster distance of 44.02 units, suggesting more significant variability among 
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The quantitative analysis of the t-SNE results reveals important insights into clustering
the sites based on the concentrations of various metals (Figure 8). Cluster 1 (containing sites
5, 6, and 10) and Cluster 2 (containing sites 1, 7, and 9) exhibit relatively small average intra-
cluster distances of 14.32 and 15.25 units, respectively, indicating that the points within
these clusters are closely packed and highly similar in terms of their element concentrations.
In contrast, Cluster 3 (that contains sites 2–4, 8, 9, 11–14) shows a significantly larger
intra-cluster distance of 44.02 units, suggesting more significant variability among the
points within this cluster. The average inter-cluster distance of 101.33 units indicates that
the clusters are well-separated, demonstrating clear distinctions between the different
groups of samples. The compactness of Clusters 1 and 2 implies that the geographical
locations represented by these clusters have similar compositions, likely due to similar
environmental or geological conditions. The spread within Cluster 3 indicates that it
encompasses a broader range of compositions, possibly from more diverse environments.
The good separation between clusters validates the use of t-SNE and the defined clustering
criteria, highlighting significant differences in dust compositions across the clusters.
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The element concentration analysis reveals that different clusters have distinct element
concentration profiles. For instance, C1 generally has higher concentrations for most ele-
ments, suggesting a unique dust composition compared to C2 and C3. C3, with the highest
intra-cluster distance, shows the most variability in element concentrations, indicating
a more diverse range of compositions within this cluster.

These patterns confirm that the t-SNE optimization has separated the data well and
grouped samples with similar elemental profiles, enhancing the interpretability and relia-
bility of the results.

The optimization of t-SNE parameters has provided better clustering results, as evi-
denced by the improved separation of clusters and the clear distinctions in element concen-
trations. The quantitative analysis supports the effectiveness of the optimization in terms
of intra-cluster cohesion and inter-cluster separation. The element concentration analysis
further validates these findings by showing distinct and meaningful differences in dust
compositions across the clusters. Therefore, the optimization has successfully enhanced the
quality and interpretability of the clustering results.

The second criterion for Bayesian optimization is maximizing the silhouette score [82].
This score assesses how well each point fits within its cluster. Scores close to one indicate
that points are well-matched to their cluster and poorly matched to neighboring clusters.
The results are presented in Figure 9a. Figures 7b and 9a delimitate the clusters containing
the sites (5, 6, 10) and (1, 7, 9) and show higher dissipations of the other elements contained
in a third cluster.
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The third criterion was to minimize the Sammon Mapping Error (SME) [83,84]. SME
evaluates how well the distances in the low-dimensional space correspond to those in the
high-dimensional space. Minimizing these errors ensures that the embedding accurately
reflects the relationships between points. Figure 9b shows the results of this attempt.
A clear delimitation of three groups appears: (3 and 12), (2, 4, 8, 11, 13, 14), and (1, 5, 6, 7, 9,
10). In this case, two clusters from the previous classifications—Figures 7b and 9a—are put
together (i.e., (1, 7, 9) and (5, 6, 10)), whereas the biggest one was split into two parts.

3.4. Results of Health Risk Assessment

The ADD by each path was computed initially (Table 5). The results indicate that the
highest ADD corresponds to Fe and the lowest to Cd. The highest exposure to Fe and Cu
is at D6, Ba, and Pb at D9, Cd and Co at D1, Ni at D8, Mn and Zn at D5, and Cr at D14.
Exposure to Fe is much higher compared to other metals.



Toxics 2025, 13, 52 15 of 21

Table 5. ADD × 108 by various paths.

ADDing × 108 ADDinh × 108 ADDderm × 108

Metal Min/Site Max/Site Mean Min/Site Max/Site Mean Min/Site Max/Site Mean

Ba 4.430 16.900 9.470 0.931 3.540 1.990 25.300 96.100 54.000
D2 D9 D2 D9 D2 D9

Cd 9.98 × 10−3 3.15 × 10−2 1.85 × 10−2 0.294 0.926 0.544 7.970 25.100 14.800
D7 D1, D12 D7 D1, D12 D7 D1, D12

Co 0.663 2.85 1.230 8.820 37.900 16.4 0.325 1.400 0.605
D12 D1 D12 D1 D12 D1

Cr 0.164 0.889 0.383 0.803 4.360 1.880 0.803 118.000 50.900
D1 D14 D1 D14 D1 D14

Cu 1.540 8.810 3.590 0.576 3.240 1.320 15.400 87.900 35.800
D12 D6 D12 D6 D12 D6

Fe 427.00 1800 1090.00 243.000 1030.00 625.00 243.00 1030.00 623.000
D3 D6 D3 D6 D3 D6

Mn 3.980 7.820 5.640 2.930 5.750 4.150 79.500 156.000 113.000
D8 D5 D8 D5 D8 D5

Ni 3.020 15.500 5.760 2.220 11.400 4.230 60.300 310.000 115.000
D11 D8 D11 D8 D11 D8

Pb 2.91 × 10−2 0.145 6.76 × 10−2 8.300 41.200 19.300 0.306 1.529 0.710
D12 D9 D12 D9 D12 D9

Zn 518.00 2500.00 1340.00 2.540 12.400 5.590 0.689 33.500 179.000
D14 D5 D14 D5 D14 D5

The chart of total ADD (ADDtotal) for all metals but Fe, obtained by summing up the
ADDs by all paths, is contained in Figure 10. Among these elements, the highest ADDtotal

corresponds to Zn, followed by Pb and Ni, with local peaks at D5 and D10. The ADDtotal

for Fe is about 100 times higher compared to those of other heavy metals. The HQs for
all metals but Fe are presented in Figure 11. HQing for Fe is between 6.10 × 10−5 and
2.57 × 10−4, the highest compared to those of other elements (Figure 11a).
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Figure 10. Chart of ADDtotal for all heavy metals but Fe.

For Fe, HQinh belongs to the interval [8.97 × 10−7, 3.78 × 10−6], and HQderm was
between 24.33 × 10−6 and 102.584 × 10−6. Overall, the highest values of HQs correspond
to Fe, Zn, Ni, and Mn. Outliers (represented by stars in Figure 11) are noticed for all
HQs corresponding to Ba, Co, Cr, Cu, and Ni, indicating inhomogeneous distributions of
HQs. Thus, the health risk related to exposure to these elements is highly variable at the
spatial level.

Figure 12 contains the HI chart for the sampling sites. The points are colored differently
according to the HI values. The lowest HI was obtained for 3 and 12, whereas the highest
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were obtained for 5, 6, and 10, followed by 1, 7, and 9 (in blue). The rest (in green)
correspond to sites 2, 4, 8, 11, 13, and 14. This result is in concordance with the clustering
obtained after using the SME.
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The lowest HI was found near green areas in zones 3 and 12. In contrast, the high-
est was noticed in the high-populated zones, close to the promenades (near the beach),
where the pollution from high traffic is accentuated by atmospheric transport (aerosols
carrying PM2.5), as explained in [85]. All HI values are less than one, indicating no
non-carcinogenic risk.

This research complements [86], which presents the analysis results of the dust col-
lected indoors in various locations in Dubai. However, instead of evaluating the contami-
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nation level with different metals in the dust using the quality indicators (e.g., Igeo, EF, PI,
PLI, PINemerow), the present work assessed the potential impact of pollution on population
health. The high values of quality indicators computed with respect to Fe and Zn indicate
that the pollution with these elements originates from industry, given that the UAE does
not have significant resources for these metals. Moreover, the previous study [86] indicated
high pollution with Cu, Pb, Zn, and Ni in heavy traffic and industry zones. This article
found the last three elements to have the highest total ADD.

Compared to the output of [16], the HIs in the sampling zones in the Ajman and
Sharjah industrial areas are many times higher than those in Dubai: 36.88 (for Cd), 8321.49
(for Cr), 1167.76 (for Cu), 1967.61 (for Ni), 11724 (for Pb), and 117.10 (for Zn), respectively.

More analysis of the pollution level from a different viewpoint is presented in another
study that is currently under review.

4. Conclusions
The goal of this article was twofold. First, we aimed to evaluate the pollution intensity

at 14 sampling points from Dubai based on the concentrations of 10 heavy metals. Secondly,
we addressed the non-carcinogenic impact of pollution on the population’s health at the
same locations.

To achieve the first goal, the dataset’s dimensionality reduction was performed by
PCA, leading to the extraction of the most significant four PCs. The FA indicated that
a two-factor model can adequately explain pollutants’ concentration variability. The t-SNE
clustered the data series, whereas its optimization helped identify the similarities and
differences between the dust content at the various sampling sites. It revealed that certain
elements are prevalent in specific clusters, underlying environmental or geological factors
influencing dust composition.

PCA performed for the dataset’s dimensionality reduction led to extracting the
four most significant PCs.

ADD combined with the clustering results revealed the following:

• Extreme ADDs—the minimum for Cr and Cd, and maximum for Ba, Co, and Pb were
computed for sites 1, 7, and 9 (belonging to the same cluster in Figure 7b);

• The ADDs for Fe and Pb reached their minimum at sites 3 and 12 (clustered together
in Figure 9b);

• The maximum ADD for Fe and Pb were found at sites 5 and 6 (clustered together in
Figure 7b);

• The HI values indicate a concordance between the clusters provided after t-SNE
optimization and the magnitude of the non-carcinogenic risk to the population.

This information is valuable for interpreting the t-SNE optimization results and under-
standing the observed clusters’ real-world implications. It means that while clustering by
itself would not be relevant, optimizing and using it together with the Hazard Index gives
a correct image of the extent of pollution and its impact on population health. Moreover, it
can be utilized as an early warning instrument for increased pollution, which can be used
to take measures to maintain a clean environment.

Given the promising results of this approach, future studies will be developed to
validate the findings using larger databases and testing other clustering optimization
techniques and pollution indices. The study will emphasize the importance of statistical
tools for better mapping the places where urgent measures are necessary for keeping safe
living places for the population.
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