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Abstract: 2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfec-
tion byproduct (DBP) in bodies of water. However, this compound poses an unknown
toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in
Microcystis aeruginosa (M. aeruginosa) were investigated through physiological and nontar-
geted metabolomic assessments. The results show that 2,6-DCBQ inhibited the growth
of M. aeruginosa, reduced its photosynthetic pigment and protein contents, increased the
levels of reactive oxygen species, damaged the antioxidant defense system, and aggra-
vated the cytomembrane. Meanwhile, 2,6-DCBQ stimulated the production and release of
microcystin-LR (MC-LR) and altered the transcripts of genes associated with its synthesis
(mcyA, mcyD) and transport (mcyH). In addition, nontargeted metabolomics of M. aeruginosa
cells exposed to 0.1 mg/L 2,6-DCBQ identified 208 differential metabolites belonging to
10 metabolic pathways and revealed the considerable interference caused by 2,6-DCBQ
among ABC transporters, the two-component system, and folate biosynthesis. This study
deepens the understanding of the physiological and nontargeted metabolomic responses of
M. aeruginosa exposed to 2,6-DCBQ, offers insights into the toxic effect of 2,6-DCBQ on M.
aeruginosa, and provides a theoretical basis for the ecological risk assessment of emerging
DBPs in accordance with water quality criteria.

Keywords: 2,6-dichloro-1,4-benzoquinone; Microcystis aeruginosa; toxic effect; non-targeted
metabolomics; water quality criteria

1. Introduction
The COVID-19 pandemic spread globally and greatly threatened human health [1].

The worldwide COVID-19 pandemic has resulted in a substantial rise in the use of disinfec-
tants around the globe. Excessive use of disinfectants leads to increased concentrations of
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residual chlorine and disinfection byproducts (DBPs) in water bodies [2]. Thus far, DBPs
have been extensively detected in a variety of reclaimed and surface waters [3]. Although
the environmental levels of DBPs (~µg/L) are typically considerably lower than their effec-
tive toxic concentrations (~mg/L), recent studies have shown that DBPs at environmentally
relevant concentrations can also pose environmental risks [4,5]. At present, over 900 DBPs
have been detected [6], but only a limited number have been investigated.

Halobenzoquinones (HBQs), a new class of DBPs [7,8], have garnered research interest
due to studies demonstrating their potential cytotoxicity, genotoxicity, and carcinogenic-
ity [9,10]. Toxicological experiments have confirmed the high cytotoxicity of HBQs, with
toxicity levels approximately 10–1000 times higher than those of regulated DBPs, such as
trichloromethane and halogenated acetic acids [7]. 2,6-Dichloro-1,4-benzoquinone (2,6-
DCBQ) is the most frequently detected type of HBQs, with the highest detection concen-
tration of 274.5 ± 13.0 ng/L [11,12]. The toxic effect of 2,6-DCBQ is an important issue in
the research on DBPs. Previous research has indicated that 2,6-DCBQ-induced toxicity is
mainly due to the presence of reactive oxygen species (ROS) [13]. However, the toxicity and
potential mechanisms of 2,6-DCBQ have not been explored, especially in aquatic ecosystems.

Cyanobacterial blooms have attracted worldwide attention in the past several
decades [14]. Cyanobacterial blooms have caused detrimental effects on the ecological
safety of water environments, including the restriction of light penetration, the depletion of
dissolved oxygen, and the mortality of aquatic organisms [15–17]. In addition, eutrophic
lakes have encountered new challenges due to the introduction of emerging contami-
nants [18,19]. Microcystis aeruginosa is the most common type of phytoplankton [20,21].
M. aeruginosa, as a primary producer in aquatic habitats, is a major contributor to global
biogeochemical cycles [22]. However, as a potential toxic cyanobacterium, it produces
microcystins, which exhibit significant toxicity to other aquatic organisms. Cyanobacteria
that have been exposed to environmental stressors experience physiological changes, which
can be used in the effective identification of the toxic effects of pollutants and the further
unveiling of their underlying mechanisms. The emerging contaminants (such as DBPs)
released into the aquatic environment may contribute to the outbreak of cyanobacterial
blooms through their effects on cyanobacterial growth and metabolism [23,24]. Therefore,
conducting studies on the impact of emerging contaminants, such as 2,6-DCBQ, on M.
aeruginosa has profound significance.

This study investigated the physiological response of M. aeruginosa exposed to 2,6-
DCBQ. The cell density and contents of chlorophyll (Chl)-a, carotenoids, adenosine triphos-
phate (ATP), proteins, and glucose were examined. Measurements were conducted for
the ROS level, microcystin-LR (MC-LR) content, lipid peroxidation, and activities of
antioxidant-related enzymes in M. aeruginosa. In addition, observations were focused
on the morphology and ultrastructural characteristics of cyanobacteria cells. Finally, non-
targeted metabolomics was applied in the metabolite analysis and identification of toxicity
biomarkers. The results can aid in the elucidation of the toxicity mechanisms of 2,6-DCBQ
on M. aeruginosa and provide a theoretical basis for the ecological risk assessment of
emerging DBPs in accordance with water quality criteria.

2. Materials and Methods
2.1. Chemicals and M. aeruginosa Cultivation

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) (CAS No. 697-91-6) was obtained from
TCL Co., Ltd. (Shanghai, China). An MC-LR standard sample (purity ≥ 95%) was obtained
from Puhuaren Biological Development Co., Ltd. (Beijing, China).

M. aeruginosa (FACHB-905) was acquired from the Freshwater Algae Culture collection
at the Institute of Hydrobiology, Chinese Academy of Sciences (Wuhan, China). The culti-
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vation conditions were referenced from our previous paper [25]. Based on the preliminary
experiments, exposure concentrations of 2,6-DCBQ were set as follows: 0.01, 0.05, 0.1,
0.2, and 0.5 mg/L. According to the OECD Test Guideline No. 201, dimethyl sulfoxide
(purity ≥ 99.9%) was used as a carrier to dissolve 2,6-DCBQ, which was added to the M.
aeruginosa culture media at a volume below 0.01% (v/v).

2.2. Measurements of Growth and the Contents of Chl-a, Carotenoid, and Protein

Based on preliminary experiments, five concentrations (0.01, 0.05, 0.1, 0.2, and
0.5 mg/L) were selected for testing. Guava flow cytometry (Luminex, Austin, TX, USA)
was used to acquire the standard curve correlating the cell density with the optical density.
The measurements were analyzed using the following equations [25]:

Cell density = 13.77488 × OD680 + 0.75405 (R2 = 0.9934) (1)

We determined the content of chlorophyll a and carotenoids in the M. aeruginosa using
the N, N-dimethylformamide method. Each group of M. aeruginosa cells were collected on
days 3, 6, and 9 for the chl-a and carotenoid content measurements. The measurements
were analyzed using the following equations:

Chl-a = 13.7 × OD665 − 5.76 × OD649 (2)

Carotenoid = (1000 × OD470 − 1.91chl-a)/225 (3)

The intracellular protein content was measured according to the instructions of the kit
(A045-2-2, Jiancheng Bioengineering Institute, Nanjing, China) on days 3 and 6, which are
based on the basic principles of the Bradford method.

2.3. ATP Content and Glucose Content Detection

The ATP content was determined according to phosphomolybdic acid colorimetry.
The ATP content was measured according to the instructions of the kit (A095-1-1, Jiancheng
Bioengineering Institute, Nanjing, China) on days 3 and 6. The luminescence intensity
was measured at 636 nm. The glucose content was determined according to the glucose
oxidase method. The glucose content was measured according to the instructions of the kit
(F006-1-1, Jiancheng Bioengineering Institute, Nanjing, China) on days 3 and 6.

2.4. Determination of Oxidative Stress Biomarkers

After 24 and 48 h of exposure, the ROS level was measured according to the
instructions of the kit (A106-1-2), which are based on the basic principles of 2′,7′-
Dichlorodihydrofluorescein diacetate. After 24 and 48 h of exposure, the lipid hydroper-
oxide (LPO) content was measured according to the instructions of the kit (A106-1-2),
which are based on the basic principles of the colorimetric method. The catalase (CAT)
and superoxide dismutase (SOD) activities were determined according to the ammonium
molybdate method and a xanthine oxidase assay, respectively. The CAT and SOD activities
were measured according to the instructions of the kits (A007-1-1 and A001-3-2). The
operation and calculation procedures were conducted in accordance with the instructions
provided by the kit (Jiancheng Bioengineering Institute, Nanjing, China).

2.5. Scanning Electron Microscope (SEM) and Transmission Electron Microscope
(TEM) Observations

SEM and TEM observations were conducted according to our previous studies [25].
After 72 h of exposure, 1mL of the cell sample was centrifuged at 4000× g (4 ◦C, 8 min),
and the precipitated cells were collected. The sediment was suspended in 1.5mL PBS.
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The samples were fixed in 25% glutaraldehyde solution at 4 ◦C in the dark for 12 h, and
washed three times with 0.1 M PBS (pH = 7.0). Then, the solution was dehydrated in
different concentration gradients of ethanol for 15 min each and treated with 100% ethanol
for 20 min. The samples were soaked in 100% propylene oxide for 20 min, then treated
with a mixture of embedding agent and acetone, and embedded in epoxy resin. The surface
morphology of the cells was observed using SEM at 3.0 kV with an SU8010 instrument
(HITACHI, SU8010, Hitachi, Ltd., Tokyo, Japan), while the ultrastructure of the cells was
observed using TEM (HITACHI H-7650, Hitachi, Ltd., Tokyo, Japan).

2.6. Detection of Microcystin-LR in M. aeruginosa

The MC-LR content was measured according to our previous studies [25]. After 72 and
144 h of exposure, 40 mL of culture media was centrifuged at 4000× g (4 ◦C, 8 min). The
supernatant was collected as extracellular MC-LR. The pellet was utilized as an intracellular
solution for MC-LR extraction. The precipitate was dissolved in 10 mL of 50% methanol
and subjected to sonication at 40% power using an ultrasonic cell disruptor in an ice-water
bath (below 4 ◦C) for 8 min. The supernatant obtained after centrifugation at 7000× g (4 ◦C,
10 min) was used for further measurement of the intracellular MC-LR.

The samples gathered underwent solid-phase extraction (SPE) and analyzed by HPLC
(Shimadzu, TC-20A, Shanghai, China) [26]. The SPE cartridge used contained C18 silica
gel (TS208-001, Shanghai Titan Technology Co., Ltd., Shanghai, China), with a packing
material of 500 mg/6 mL per cartridge. The extraction process was divided into four
steps: activation (10 mL of pure methanol and 10 mL of distilled water), sample injection,
leaching (10 mL of 20% methanol), and elution (5mL of methanol). After the SPE process,
the resulting eluate was dried using nitrogen at a temperature of 40 ◦C until it was almost
dry and resuspended in 1 mL of chromatography-grade methanol. The eluate was then
stored at a temperature of −20 ◦C for analysis. The samples were measured by HPLC
(UV detector, 238 nm). The mobile phase consisted of a mixture of water and methanol
at a volumetric ratio of 40:60 (v:v). The injection volume was 10 µL, with a flow rate of
1.0 mL/min. The column temperature was maintained at 35 ◦C, and each sample was
analyzed within 15 min. The limit of determination of MC-LR is 100 µg/L.

2.7. Extraction of Metabolites and Nontargeted Metabolomics Analysis

Extraction and analysis of the metabolites were conducted by Shanghai Luming
Biotechnology Co., Ltd. (Shanghai, China). To analyze the metabolites, 2 mL of the cultural
samples from the CON (control group) and the 0.1 mg/L group on day 9 were collected
and centrifuged at 100× g for 5 min [27,28]. The pellets were gently mixed and washed
with 1 mL of PBS, and the cells of M. aeruginosa were immediately frozen in liquid nitrogen
for further analysis. Then, the samples were analyzed through ultra-performance liquid
chromatography–mass spectrometry (ACQUITY UPLC-MS, Waters Corporation, Milford,
MA, USA) equipped with the ACQUITY UPLC BEN C18 column (100 mm × 2.1 mm, 1.7 µm;
Waters Corporation). The mobile phases consisted of 0.1% formic acid in water/acetonitrile
(95/5, v/v, solvent A) and 0.1% formic acid in acetonitrile/isopropanol/water (47.5/47.5/5,
v/v, solvent B). The sample injection volume was 5 µL, and the flow rate was set to
0.4 mL/min. The column temperature was maintained at 45 ◦C.

Metabolites were identified on the metabolome database. The online platform OE-
Cloud tools (https://cloud.oebiotech.com, accessed on 14 January 2025) was used to
summarize and analyze the data in bioinformatics, accessed on 5 March 2024. The roles of
these metabolites and metabolic pathways were analyzed using the KEGG database.

https://cloud.oebiotech.com
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2.8. Quantitative Real-Time PCR Analysis

Quantitative real-time PCR analysis was conducted according to our previous stud-
ies [25]. The fold change in gene expression was determined using the 2−∆∆Ct method.
Cultural samples from the CON and the 0.1 mg/L 2,6-DCBQ treatment were collected on
day 3. The primers of the target genes (mcyA, mcyD, mcyH, rbcL, ftsH, recA, bchL, pckA, pgk,
and psaB) are listed in Table S1.

2.9. Reproducibility of the Results and Statistical Analysis

According to the OECD Test Guideline No. 201, we conducted 3 independent experi-
ments, each with 3 replicates. Statistical analysis was performed using GraphPad Prism
8.0.1 (GraphPad Software, San Diego, CA, USA) and SPSS 27.0 (SPSS Inc., Chicago, IL,
USA) to determine the significance among the treatments. One-way analysis of variance
(ANOVA) was used to determine the differences between the control and treatment groups,
and p < 0.05 was considered statistically significant. In addition, the statistical methods
for nontargeted metabolomics included principal component analysis (PCA), partial least
squares discriminant analysis (OPLS-DA), metabolic pathway enrichment analysis, and
heatmap clustering analysis.

3. Results
3.1. Physiological Responses of M. aeruginosa Exposed to 2,6-DCBQ
3.1.1. Inhibitions of Growth, Photosynthetic Pigments, and Protein Contents

Figure 1a shows the response of growing M. aeruginosa to various concentrations of
2,6-DCBQ. High concentrations of 2,6-DCBQ (0.2 and 0.5 mg/L) significantly inhibited
the growth of M. aeruginosa. Additionally, 0.05 and 0.1 mg/L 2,6-DCBQ also exhibited
significant inhibition effects on day 4 (p < 0.05). With increasing concentration and exposure
time, concentration- and time-dependent effects were observed.
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2,6-DCBQ on days 3, 6, and 9. Protein content (d) of M. aeruginosa treated with mg/L 2,6-DCBQ on
days 3 and 6. Results are presented as means ± standard deviations. * Indicates p < 0.05; ** indicates
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Growth inhibition can be indicated by the variation in the content of photosynthetic
pigments. The 2,6-DCBQ group contained considerably decreased chl-a levels after 3 and
6 days of treatment (Figure 1b). On the 9th day, 0.1, 0.2, and 0.5 mg/L 2,6-DCBQ sub-
stantially inhibited chl-a, with inhibition rates of 25.17%, 36.57%, and 92.18%, respectively.
The results indicate the inhibited or disrupted photosynthetic system of M. aeruginosa,
which in turn possibly affected its growth and proliferation. In addition, the content of
carotenoids significantly decreased during exposure to 0.1 and 0.5 mg/L 2,6-DCBQ on
day 3, with inhibition rates of 47.06% and 72.94%, respectively (Figure 1c). In addition,
0.5 mg/L 2,6-DCBQ resulted in substantial inhibitions in the total soluble protein content,
with inhibition rates of 15.9% and 35.7% on days 3 and 6, respectively (Figure 1d).

3.1.2. ATP and Glucose Contents

Figure 2e,f display the ATP and glucose contents of M. aeruginosa exposed to 2,6-DCBQ
on days 3 and 6, respectively. The contents of ATP decreased when M. aeruginosa was ex-
posed to 0.2 mg/L 2,6-DCBQ for 3 days. In addition, the ATP content significantly increased
(p < 0.01) when M. aeruginosa was exposed to 0.1 and 0.5 mg/L 2,6-DCBQ for 3 and 6 days.
The glucose content considerably declined with the increase in 2,6-DCBQ concentrations.
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3.1.3. ROS Level, LPO Content, and Detection of Antioxidant Activities

The antioxidant activities were evaluated to investigate the oxidative stress induced
by 2,6-DCBQ in M. aeruginosa. The intracellular ROS level of M. aeruginosa increased
significantly during exposure to 0.1 and 0.2 mg/L 2,6-DCBQ (Figure 2a).

Figure 2b,c show the activities of superoxide dismutase (SOD) and catalase (CAT) in M.
aeruginosa exposed to 2,6-DCBQ. The activities of SOD and CAT presented concentration-
related effects. The 0.5 mg/L 2,6-DCBQ increased the SOD activity on days 1 and 2. During
M. aeruginosa exposure to 0.01, 0.05, 0.1, 0.2, and 0.5 mg/L 2,6-DCBQ, CAT activities were
substantially increased by 21.9%, 22.1%, 58.5%, 34.1%, and 290% of the control on day 2
(Figure 2c), respectively. Similarly, the LPO content revealed a significant increase in M.
aeruginosa when exposed to 0.5 mg/L of 2,6-DCBQ (Figure 2d).

3.2. Cell Morphology and Ultrastructure Characteristics

Figure 3a(1) shows that the surface structure of healthy M. aeruginosa cells was smooth
and plump, without obvious damage or rupture. The cell membrane (CM) and cell wall
(CW) were intact, and the cells exhibited round or oval shapes. However, after the treatment
with 0.1 mg/L 2,6-DCBQ, the cells exhibited a shriveled surface morphology, deviating from
their normal spherical shape, with a wrinkled and rough surface. The SEM images reveal
the presence of abundant extracellular mucus surrounding the cells (Figure 3a(2)). The
TEM images show that the CM and CW were rough and fragmented. The thylakoid of M.
aeruginosa was dispersed (Figure 3b(2),b(3)). These results indicate that 2,6-DCBQ exerted
acute toxicity effects on M. aeruginosa by inhibiting cell growth and photosynthesis. The
disruption of CM further led to the release of intracellular substances (such as MCs) into the
aquatic environment, accelerating the death of cells and polluting the water environment.
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Figure 3. The effects of the CON (a(1),b(1)) and 0.1 mg/L of 2,6-DCBQ on the ultrastructure (TEM,
(b(2)–b(4))) and surface morphology (SEM, (a(2)–a(4))) of M. aeruginosa cells after 3 days of exposure.
The components pictured include the nucleoid (N), phycobilisome (PBS), polyphosphate bodies (PB),
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3.3. MC-LR Content

Figure 4 indicates that 0.1 and 0.2 mg/L 2,6-DCBQ stimulated the synthesis of MC-LR
(p < 0.01). On days 3 and 6, the content of intracellular MC-LR increased when M. aeruginosa
was exposed to 0.1 and 0.2 mg/L 2,6-DCBQ. Similarly, the extracellular MC-LR contents
were increased when exposed to 0.1 and 0.2 mg/L 2,6-DCBQ. The results indicate that
2,6-DCBQ stimulated the production and release of MC-LR in M. aeruginosa.



Toxics 2025, 13, 64 8 of 17

Toxics 2025, 13, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. The effects of the CON (a(1), b(1)) and 0.1 mg/L of 2,6-DCBQ on the ultrastructure (TEM, 
(b(2)–b(4))) and surface morphology (SEM, (a(2)–a(4))) of M. aeruginosa cells after 3 days of expo-
sure. The components pictured include the nucleoid (N), phycobilisome (PBS), polyphosphate bod-
ies (PB), thylakoids (T), leucoplast (L), cell wall (CW), and cell membrane (CM). 

3.3. MC-LR Content 

Figure 4 indicates that 0.1 and 0.2 mg/L 2,6-DCBQ stimulated the synthesis of MC-
LR (p < 0.01). On days 3 and 6, the content of intracellular MC-LR increased when M. 
aeruginosa was exposed to 0.1 and 0.2 mg/L 2,6-DCBQ. Similarly, the extracellular MC-LR 
contents were increased when exposed to 0.1 and 0.2 mg/L 2,6-DCBQ. The results indicate 
that 2,6-DCBQ stimulated the production and release of MC-LR in M. aeruginosa. 

 

Figure 4. Effects of 2,6-DCBQ on the contents of extracellular (a,b) and intracellular (cell quota) (c,d) 
microcystin-LR in M. aeruginosa. Results are presented as means ± standard deviations. * Indicates 
p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001 relative to the control by ANOVA. 

Figure 4. Effects of 2,6-DCBQ on the contents of extracellular (a,b) and intracellular (cell quota)
(c,d) microcystin-LR in M. aeruginosa. Results are presented as means ± standard deviations.
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3.4. Nontarget Metabolomics Analysis
3.4.1. Metabolite Detection and Analysis

We analyzed the changes in the metabolites in M. aeruginosa after exposure to 2,6-
DCBQ. Figure 5a,b shows the score plots of principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis (OPLS-DA), including those of the
quality control samples. The scoring plots, which are based on positive ion patterns,
demonstrate the overall differences between the sample groups and the variability within
each group. As shown in Figure 5a, PCA revealed distinct distributions within each group
and effectively distinguished the two sample groups. The consistency of the results from
the PLS-DA further supports these findings (Figure 5b).
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3.4.2. Identification of Differential Metabolites (DMs) and Metabolic Pathway Analysis

The volcano diagram in Figure 5c illustrates the number of significantly changed
metabolites during the 0.1 mg/L 2,6-DCBQ treatment of M. aeruginosa. In addition, the
volcano plot visually display the overall distribution of the DMs. A total of 63 upregulated
(red dots) and 145 downregulated (blue dots) metabolites were identified during this period
(Figure 5c). Figure 5d indicates the main differential metabolites; the box plots of relative
abundance are shown in Figure S1. The upregulated DMs mainly comprised organic
oxygen compounds and organic nitrogen compounds (Figure 6). The downregulated DMs
primarily included lipids and lipid-like molecules, organic acids, and nucleotides (Figure 6).
The key enriched pathways included ABC transporters, the two-component system, and
folate biosynthesis (Figure 7a). Exposure to 2,6-DCBQ can affect the KEGG pathway of M.
aeruginosa through environmental information processing, metabolism, genetic information
processing, and cellular processes (Figure 7b). ABC transporters and the two-component
system are involved in environmental information processing, while folate biosynthesis
is a part of metabolism (Table S2). All differential metabolites showed both upregulation
and downregulation. Quorum sensing is a part of cellular processes (Table S2), with all
differential metabolites being upregulated. The differential metabolites of chloroalkane
and chloroalkene degradation were all upregulated, while the differential metabolites of
other metabolic pathways were all downregulated.
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3.5. Gene Expressions

The expressions of genes involved in the energy metabolism, MCs, and photosynthesis
were examined to explore the possible toxic mechanisms of 2,6-DCBQ. The results show
that 2,6-DCBQ induced alterations in the gene expressions of M. aeruginosa (Figure 8). After
the exposure of M. aeruginosa to 0.1 mg/L 2,6-DCBQ, the expressions of mcyA, mcyD, mcyH,
ftsH, recA, bchL, pckA, and pkg revealed significant downregulation (p < 0.05). Meanwhile,
the expressions of rbcL and psaB did not change significantly.
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4. Discussion
4.1. Physiological Responses of M. aeruginosa Exposed to 2,6-DCBQ
4.1.1. Growth and Photosynthetic Pigments

In this study, the results on cell density after exposure to 2,6-DCBQ indicate that
2,6-DCBQ exhibits acute toxicity (Figure 1a). recA plays a critical role in DNA repair [29,30].
The present study reveals that the significantly decreased expression of the recA gene
suggests DNA damage may also indicate inhibited growth of M. aeruginosa due to exposure
to 2,6-DCBQ (Figure 8).

The influence of 2,6-DCBQ on the chl-a and carotenoid contents was similar to those
on cell growth. Furthermore, the decrease in the chl-a content could impair the antioxidant
capability of M. aeruginosa, resulting in an energy deficit in the cells and reducing their
resistance to ROS-induced damage [19]. Carotenoids can react with lipid peroxides and
protect the photosynthetic system of M. aeruginosa [31,32]. Tiwari et al. [33] also noted that
the heavy metal chromium can decrease the contents of chlorophyll and carotenoids in
paddy-field cyanobacteria.

The decreases in chl-a (Figure 1b) suggest the impairment or disturbance of the
photosynthetic system of M. aeruginosa, which hindered cell growth. Li et al. [34] confirmed
the same phenomenon when they exposed Chlorella pyrenoidosa to perfluorooctanoic acid.
In summary, 2,6-DCBQ restricted the expressions of photosynthesis-related genes in M.
aeruginosa, which resulted in its decreased photosynthetic efficiency and inhibited growth.
However, the result of the psaB gene suggests that photosystem I of M. aeruginosa was not
severely damaged by 0.1 mg/L 2,6-DCBQ.

4.1.2. ATP, Glucose, and Protein Contents

ATP is the direct energy source in organisms, driving various biochemical reactions
and cellular activities. With prolonged exposure, the ATP content in the high-concentration
treatment groups (0.1–0.5 mg/L 2,6-DCBQ) significantly increased, indicating that ATP
is continuously synthesized to provide energy for repairing stress damage and other
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functions. A previous study also revealed that the chiral fragrance carvone affected the
ATP production of M. aeruginosa [35], which is consistent with our experimental results.

The glucose and total soluble protein contents were comprehensively studied, and
the results reveal the time–concentration toxic effect of 2,6-DCBQ on M. aeruginosa. In
this study, reductions in the total soluble protein and glucose production were observed,
indicating that disruptions in energy metabolism during photosynthesis may be involved
in the growth inhibition of M. aeruginosa caused by 2,6-DCBQ.

The change in the total soluble protein content is a key response of M. aeruginosa under
external stress. The total soluble protein content of M. aeruginosa decreased continuously
under 2,6-DCBQ exposure (Figure 1d). The results indicate that the normal physiological
activities of the cells were disrupted [35]. The ftsH gene plays a vital role in the maintenance
of the quality of membrane proteins during the response to heat shock and in the regulation
of cell division [36]. Midepogu et al. also found that after 96 h of treatment with TiO2

nanoparticles at a concentration of 20 mg/L, the ftsH gene in Chlorella pyrenoidosa decreased
to approximately 0.3-fold of the control [37]. The downregulation of the cell division
protein-related ftsH gene may be a direct cause of the inhibitory effect on cell growth
(Figure 8).

4.1.3. Oxidative Stress and Membrane Permeability

Excessive ROS production can affect various cellular processes through the alteration
of nucleic acids, the oxidization of proteins, and the triggering of lipid peroxidation [38]. In
this study, M. aeruginosa exposed to 2,6-DCBQ showed ROS accumulation and subsequent
lipid peroxidation. In addition, excessive generation of ROS can initiate oxidative damage
to the cell membrane, which results in morphological changes, such as disruption of cellular
structures and cell death. To investigate the mechanism of oxidative damage, the effect of
2,6-DCBQ on lipid peroxidation was analyzed.

The results on the LPO content indicate that the lipids of M. aeruginosa were oxidatively
damaged due to exposure to 2,6-DCBQ, and antioxidant enzymes cannot completely
eliminate ROS [39]. In addition, a high concentration of 2,6-DCBQ may possibly induce
the rise in LPO levels, which can increase cell membrane permeability [40]. The TEM
results also confirm this conclusion (Figure 3b(2)). Our previous study further revealed
that chloroacetic acid caused oxidative stress on M. aeruginosa [25].

Excessive production of SOD is the primary mechanism underlying the protection
of thylakoid membranes against organic pollution [41]. Increased SOD activity protected
green algae from the toxic effects of a pesticide known as trifloxystrobin [42]. The upregula-
tion of CAT activity is considered an adaptation to the stress experienced by M. aeruginosa,
which is stimulated by various environmental and chemical stressors [43].

4.1.4. Production and Release of MC-LR

MCs are secondary metabolites of cyanobacteria [44]. Figure 4 indicates that 2,6-
DCBQ increased the production and release of MC-LR. Exposure to emerging pollutants
can upregulate the expressions of MC-related genes in M. aeruginosa, which will promote
MC-LR secretion [45].

The mcy gene cluster plays a key role in the biosynthesis of MCs in various cyanobac-
terial genera, including M. aeruginosa. Genes mcyA and mcyD encode the synthetase of
MCs. Gene mcyH encodes the transportation of MCs [46]. Numerous studies have verified
the relationship between the upregulation of the relative transcript abundance of mcy
gene and the increased contents of MC-LR during production [35,47]. In addition, the
common contaminant γ-lindane upregulates the transcription of mcyD and mcyH genes
and improves MC production in M. aeruginosa [48]. However, a previous study also re-
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ported that under external stressors, such as fluoroquinolone antibiotics, the extracellular
concentration of MCs increased despite inhibited M. aeruginosa growth, potentially due
to the regulation of the mcy cluster [49]. In the present study, genes of mcyA, mcyD, and
mcyH were substantially decreased compared with the control (Figure 8). These results are
possibly due to severe damage of the cell membrane (Figure 3b(4)), which may result in an
increase in the extracellular MC-LR content.

4.2. Nontargeted Metabolomics Analysis

Such metabolites include substances related to antioxidation (alpha-lactose, sucrose,
and dihydrozeatin-7-N-glucoside), as well as nucleosides, nucleotides and their analogues,
organic acids, derivatives, and lipids, all of which were altered when M. aeruginosa was
exposed to 2,6-DCBQ (Figure 6).

Glutamic acid can be transformed into alpha-ketoglutaric acid, which is an essen-
tial intermediate in the tricarboxylic acid (TCA) cycle, through the actions of glutamate
dehydrogenase, alanine aminotransferase, or aspartate aminotransferase [32]. In pho-
tosynthetic organisms, the synthesis of chl starts from glutamate, which subsequently
undergoes a series of intricate biochemical reactions that involve a minimum of 17 enzyme
reaction steps [50]. The stress caused by 2,6-DCBQ resulted in downregulated contents of
L-glutamic acid (Figure 6), which indicates that the TCA cycle was inhibited and amino acid
metabolism was disrupted. In addition, the decline in genes encoding pckA (Figure 8) led to
the blockage of the TCA cycle. Thus, 2,6-DCBQ can hinder the energy metabolism pathway.

Lipids are the main components of organelle membranes in cyanobacteria [51]. In
this study, several fatty acids (such as the potassium salts of fatty acids) in the 2,6-DCBQ
exposure group were downregulated, which indicates the decreased biosynthesis of some
fatty acids. In addition, the fatty acid composition of M. aeruginosa changes under the stress
of pollutants [28,52]. Glycerophospholipids take part in the development of biological
membranes and contribute to protein recognition and cell membrane signaling [53]. In
this study, numerous lipid DMs, such as dodecanamide, carindone, and gingerglycolipid,
were screened based on the nontargeted metabolomics of 2,6-DCBQ-treated M. aeruginosa.
This study hypothesized that 2,6-DCBQ would affect the lipid content, which would
consequently alter the selective permeability of the biomembrane and lead to the death of
M. aeruginosa. Consequently, alterations in the types and quantities of membrane-bound
lipids result in the heightened permeability of the biomembrane system. Lipid metabolism
is the core pathway for cell energy and substance metabolism; it also plays a key role in
basic physiological processes, such as cell membrane formation and intracellular signal
transduction. Changes in these pathways inevitably lead to disturbances across the entire
metabolic network, consistent with findings in previous reports. Additionally, heatmap
analysis revealed the relationship between metabolites and antioxidants (Figure 6).

The pathways significantly downregulated, including ABC transporters and the two-
component system (p < 0.05) (Figure 7a). ABC transporters, particularly ABC transporter
BmrD, can participate in the absorption, accumulation, and expulsion of endogenous toxins
and exogenous substances, playing an important role in defense mechanisms [51,54]. The
two-component system plays a crucial role in modulating responses to environmental
changes. The results show that the related signaling pathways were inhibited. The down-
regulation of folate biosynthesis indicates that the folate cycle was inhibited. However, due
to the high diversity of metabolism species and a limited pathway database, more DMs
remain to be further studied in the future.
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5. Conclusions
This work reveals the physiological responses and nontargeted metabolomics of M.

aeruginosa exposed to various concentrations of 2,6-DCBQ. The possible mechanisms un-
derlying the mortality of M. aeruginosa under 2,6-DCBQ stress can be summarized as
follows: (1) 2,6-DCBQ hampered the synthesis of photosynthetic pigments and further
influenced photosynthesis and energy metabolism; (2) 2,6-DCBQ increased ROS produc-
tion and reduced the antioxidant capacity of M. aeruginosa; (3) 2,6-DCBQ affected the
external morphology and cell structure of M. aeruginosa cells; (4) 2,6-DCBQ significantly
increased the production and release of MC-LR while downregulating the expression of
mcyA, mcyD, and mcyH, possibly due to the cell membrane damage; (5) the nontargeted
metabolomics analysis identified 208 differential metabolites (including antioxidants, sub-
stances related to energy metabolism, and lipids) belonging to 10 metabolic pathways.
Significant metabolic enrichment pathways include ABC transporters, two-component
systems, and folate biosynthesis. This study revealed the inhibitory mechanism and key
biomarkers of 2,6-DCBQ on M. aeruginosa through in situ bioanalytical methods with
multiple endpoints and nontargeted metabolomics analyses. This study also provides a
theoretical basis for future research on risk assessments and the development of water
quality criteria for new pollutants such as DBPs.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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canamide; Table S1: PCR primer sequences used in the experiment; Table S2: Detailed information of
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