Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Pesticide Exposure Assessment
2.3. Covariate
2.4. Statistical Analysis
3. Results
3.1. Exposure to Suspected Endocrine-Disrupting Pesticides
3.2. Pesticides Classified According to Their Suspected Hormonal Targets
3.3. Exposure to Individual Pesticide Compounds
3.4. CP Sub-Phenotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 109, 8–14. [Google Scholar]
- Ravn, S.H.; Flachs, E.M.; Uldall, P. Cerebral palsy in eastern Denmark: Declining birth prevalence but increasing numbers of unilateral cerebral palsy in birth year period 1986–1998. Eur. J. Paediatr. Neurol. 2010, 14, 214–218. [Google Scholar] [CrossRef]
- Clark, S.M.; Ghulmiyyah, L.M.; Hankins, G.D.V. Antenatal antecedents and the impact of obstetric care in the etiology of cerebral palsy. Clin. Obstet. Gynecol. 2008, 51, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Schendel, D.E.; Schuchat, A.; Thorsen, P. Public health issues related to infection in pregnancy and cerebral palsy. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Surveillance of Cerebral Palsy in Europe (SCPE). Surveillance of Cerebral Palsy in Europe (SCPE). Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev. Med. Child Neurol. 2000, 42, 816–824. [Google Scholar] [PubMed]
- Jonsson, U.; Eek, M.N.; Sunnerhagen, K.S.; Himmelmann, K. Cerebral palsy prevalence, subtypes, and associated impairments: A population-based comparison study of adults and children. Dev. Med. Child Neurol. 2019, 61, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Marret, S.; Vanhulle, C.; Laquerriere, A. Pathophysiology of cerebral palsy. Handb. Clin. Neurol. 2013, 111, 169–176. [Google Scholar] [CrossRef] [PubMed]
- von Ehrenstein, O.S.; Ling, C.; Cui, X.; Cockburn, M.; Park, A.S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019, 364, l962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, R.D.; Badawi, N. Etiology of cerebral palsy. Hand Clin. 2003, 19, 547–556. [Google Scholar] [CrossRef]
- McIntyre, S.; Taitz, D.; Keogh, J.; Goldsmith, S.; Badawi, N.; Blair, E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev. Med. Child Neurol. 2013, 55, 499–508. [Google Scholar] [CrossRef]
- Streja, E.; Miller, J.E.; Bech, B.H.; Greene, N.; Pedersen, L.H.; Yeargin-Allsopp, M.; Van Naarden Braun, K.; Schendel, D.E.; Christensen, D.; Uldall, P.; et al. Congenital cerebral palsy and prenatal exposure to self-reported maternal infections, fever, or smoking. Am. J. Obstet. Gynecol. 2013, 209, 332.e1–332.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorngren-Jerneck, K.; Herbst, A. Perinatal factors associated with cerebral palsy in children born in Sweden. Obstet. Gynecol. 2006, 108, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, M.E.; MacLennan, A.H.; Gibson, C.S.; McMichael, G.L.; Haan, E.A.; Broadbent, J.L.; Goldwater, P.N.; Dekker, G.A. Australian Collaborative Cerebral Palsy Research Group Epidemiologic associations with cerebral palsy. Obstet. Gynecol. 2011, 118, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Tollånes, M.C.; Strandberg-Larsen, K.; Eichelberger, K.Y.; Moster, D.; Lie, R.T.; Brantsæter, A.L.; Meltzer, H.M.; Stoltenberg, C.; Wilcox, A.J. Intake of Caffeinated Soft Drinks before and during Pregnancy, but Not Total Caffeine Intake, Is Associated with Increased Cerebral Palsy Risk in the Norwegian Mother and Child Cohort Study. J. Nutr. 2016, 146, 1701–1706. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.G.; Grant-Webster, K.S. Neurobehavioral effects of developmental methylmercury exposure. Environ. Health Perspect. 1995, 103, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, M. Male cerebral palsy hospitalization as a potential indicator of neurological effects of methylmercury exposure in Great Lakes communities. Environ. Res. 2004, 95, 375–384. [Google Scholar] [CrossRef]
- Winneke, G. Developmental aspects of environmental neurotoxicology: Lessons from lead and polychlorinated biphenyls. J. Neurol. Sci. 2011, 308, 9–15. [Google Scholar] [CrossRef]
- Alehan, F.; Erol, I.; Onay, O.S. Cerebral palsy due to nonlethal maternal carbon monoxide intoxication. Birth Defects Res. Part A Clin. Mol. Teratol. 2007, 79, 614–616. [Google Scholar] [CrossRef]
- Gunier, R.B.; Bradman, A.; Harley, K.G.; Kogut, K.; Eskenazi, B. Prenatal Residential Proximity to Agricultural Pesticide Use and IQ in 7-Year-Old Children. Environ. Health Perspect. 2017, 125. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Johnston, M.V.; Hagberg, H. Sex and the pathogenesis of cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Meehan, E.; Gibson, C.S.; Scott, H.; Delacy, M.J. Australian Cerebral Palsy Register Group Biological sex and the risk of cerebral palsy in Victoria, Australia. Dev. Med. Child Neurol. 2016, 58 (Suppl. 2), 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, Z.; Ritz, B.; Bonefeld-Jørgensen, E.C.; Henriksen, T.B.; Nohr, E.A.; Bech, B.H.; Fei, C.; Bossi, R.; von Ehrenstein, O.S.; Streja, E.; et al. Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am. J. Epidemiol. 2014, 180, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.; Ghisari, M.; Bonefeld-Jørgensen, E.C. Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ. Sci. Pollut. Res. Int. 2013, 20, 8045–8056. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Thibodeaux, J.R.; Hanson, R.G.; Rogers, J.M.; Grey, B.E.; Stanton, M.E.; Butenhoff, J.L.; Stevenson, L.A. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol. Sci. 2003, 74, 382–392. [Google Scholar] [CrossRef]
- Ballesteros, V.; Costa, O.; Iñiguez, C.; Fletcher, T.; Ballester, F.; Lopez-Espinosa, M.-J. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. Environ. Int. 2017, 99, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, T.J.; Zota, A.R.; Schwartz, J.M. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ. Health Perspect. 2011, 119, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take home exposure pathways. Environ. Res. 2000, 84, 290–302. [Google Scholar] [CrossRef]
- Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R. Proximity to crops and residential exposure to agricultural herbicides in iowa. Environ. Health Perspect. 2006, 114, 893–897. [Google Scholar] [CrossRef]
- Ling, C.; Liew, Z.; von Ehrenstein, O.S.; Heck, J.E.; Park, A.S.; Cui, X.; Cockburn, M.; Wu, J.; Ritz, B. Prenatal Exposure to Ambient Pesticides and Preterm Birth and Term Low Birthweight in Agricultural Regions of California. Toxics 2018, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, E.M.; English, P.B.; Grether, J.K.; Windham, G.C.; Somberg, L.; Wolff, C. Maternal Residence Near Agricultural Pesticide Applications and Autism Spectrum Disorders among Children in the California Central Valley. Environ. Health Perspect. 2007, 115, 1482–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Barr, D.B.; Steenland, K.; Levy, K.; Ryan, P.B.; Iglesias, V.; Alvarado, S.; Concha, C.; Rojas, E.; et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology 2013, 39, 158–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Simard, M.-N.; Muckle, G.; Rouget, F.; Kadhel, P.; Bataille, H.; Chajès, V.; Dallaire, R.; Monfort, C.; Thomé, J.-P.; et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology 2013, 35, 162–168. [Google Scholar] [CrossRef]
- Ostrea, E.M.; Reyes, A.; Villanueva-Uy, E.; Pacifico, R.; Benitez, B.; Ramos, E.; Bernardo, R.C.; Bielawski, D.M.; Delaney-Black, V.; Chiodo, L.; et al. Fetal exposure to propoxur and abnormal child neurodevelopment at 2 years of age. Neurotoxicology 2012, 33, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Rull, R.P.; Ritz, B. Historical pesticide exposure in California using pesticide use reports and land-use surveys: An assessment of misclassification error and bias. Environ. Health Perspect. 2003, 111, 1582–1589. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, M.; Mills, P.; Zhang, X.; Zadnick, J.; Goldberg, D.; Ritz, B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am. J. Epidemiol. 2011, 173, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Pharoah, P.O.; Cooke, T. Cerebral palsy and multiple births. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 75, F174–F177. [Google Scholar] [CrossRef]
- Goldberg, D.W.; Wilson, J.P.; Knoblock, C.A.; Ritz, B.; Cockburn, M.G. An effective and efficient approach for manually improving geocoded data. Int. J. Health Geogr. 2008, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Costello, S.; Cockburn, M.; Zhang, X.; Bronstein, J.; Ritz, B. Parkinson’s disease risk from ambient exposure to pesticides. Eur. J. Epidemiol. 2011, 26, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmichael, S.L.; Yang, W.; Roberts, E.; Kegley, S.E.; Brown, T.J.; English, P.B.; Lammer, E.J.; Shaw, G.M. Residential agricultural pesticide exposures and risks of selected birth defects among offspring in the San Joaquin Valley of California. Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Wofford, P.; Segawa, R.; Schreider, J.; Federighi, V.; Neal, R.; Brattesani, M. Community air monitoring for pesticides. Part 3: Using health-based screening levels to evaluate results collected for a year. Environ. Monit. Assess. 2014, 186, 1355–1370. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar] [CrossRef]
- Wu, Y.W.; Xing, G.; Fuentes-Afflick, E.; Danielson, B.; Smith, L.H.; Gilbert, W.M. Racial, Ethnic, and Socioeconomic Disparities in the Prevalence of Cerebral Palsy. Pediatrics 2011, 127, e674–e681. [Google Scholar] [CrossRef] [Green Version]
- Yost, K.; Perkins, C.; Cohen, R.; Morris, C.; Wright, W. Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 2001, 12, 703–711. [Google Scholar] [CrossRef]
- Palanza, P.; Nagel, S.C.; Parmigiani, S.; vom Saal, F.S. Perinatal exposure to endocrine disruptors: Sex, timing and behavioral endpoints. Curr. Opin. Behav. Sci. 2016, 7, 69–75. [Google Scholar] [CrossRef] [Green Version]
- VanderWeele, T.J.; Hernández-Diaz, S. Is there a direct effect of pre-eclampsia on cerebral palsy not through preterm birth? Paediatr. Perinat. Epidemiol. 2011, 25, 111–115. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Mumford, S.L.; Schisterman, E.F. Conditioning on intermediates in perinatal epidemiology. Epidemiology 2012, 23, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Paneth, N. Maternal and infant thyroid disorders and cerebral palsy. Semin. Perinatol. 2008, 32, 438–445. [Google Scholar] [CrossRef]
- Petersen, T.G.; Andersen, A.-M.N.; Uldall, P.; Paneth, N.; Feldt-Rasmussen, U.; Tollånes, M.C.; Strandberg-Larsen, K. Maternal thyroid disorder in pregnancy and risk of cerebral palsy in the child: A population-based cohort study. BMC Pediatr. 2018, 18, 181. [Google Scholar] [CrossRef] [PubMed]
- Gützkow, K.B.; Haug, L.S.; Thomsen, C.; Sabaredzovic, A.; Becher, G.; Brunborg, G. Placental transfer of perfluorinated compounds is selective—A Norwegian Mother and Child sub-cohort study. Int. J. Hyg. Environ. Health 2012, 215, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Eryasa, B.; Grandjean, P.; Nielsen, F.; Valvi, D.; Zmirou-Navier, D.; Sunderland, E.; Weihe, P.; Oulhote, Y. Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances. Environ. Int. 2019, 130, 104874. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Goudarzi, H.; Oulhote, Y. Developmental Exposures to Perfluoroalkyl Substances (PFASs): An Update of Associated Health Outcomes. Curr. Environ. Health Rep. 2018, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Paneth, N. Does transient hypothyroxinemia cause abnormal neurodevelopment in premature infants? Clin. Perinatol. 1998, 25, 627–643. [Google Scholar] [CrossRef]
- Nelson, K.B.; Willoughby, R.E. Infection, inflammation and the risk of cerebral palsy. Curr. Opin. Neurol. 2000, 13, 133–139. [Google Scholar] [CrossRef]
- Zoeller, T.; Doan, L.; Demeneix, B.; Gore, A.; Nadal, A.; Tan, S. Update on Activities in Endocrine Disruptor Research and Policy. Endocrinology 2019, 160. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, G.; Gao, B.; Hu, K.; Kaziem, A.E.; Li, L.; He, Z.; Shi, H.; Wang, M. Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite. Environ. Pollut. 2019, 251, 30–36. [Google Scholar] [CrossRef]
- Knipper, M.; Bandtlow, C.; Gestwa, L.; Köpschall, I.; Rohbock, K.; Wiechers, B.; Zenner, H.P.; Zimmermann, U. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development 1998, 125, 3709–3718. [Google Scholar] [PubMed]
- Nuñez, J.; Yang, Z.; Jiang, Y.; Grandys, T.; Mark, I.; Levison, S.W. 17beta-estradiol protects the neonatal brain from hypoxia-ischemia. Exp. Neurol. 2007, 208, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Liew, Z.; Olsen, J.; Cui, X.; Ritz, B.; Arah, O.A. Bias from conditioning on live birth in pregnancy cohorts: An illustration based on neurodevelopment in children after prenatal exposure to organic pollutants. Int. J. Epidemiol. 2015, 44, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruckner, T.; Catalano, R. The sex ratio and age-specific male mortality: Evidence for culling in utero. Am. J. Hum. Biol. 2007, 19, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Raz, R.; Kioumourtzoglou, M.-A.; Weisskopf, M.G. Live-Birth Bias and Observed Associations between Air Pollution and Autism. Am. J. Epidemiol. 2018, 187, 2292–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastore, L.M.; Hertz-Picciotto, I.; Beaumont, J.J. Risk of stillbirth from occupational and residential exposures. Occup. Environ. Med. 1997, 54, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert-Barness, E. Teratogenic Causes of Malformations. Ann. Clin. Lab. Sci. 2010, 40, 99–114. [Google Scholar] [PubMed]
- Miller, J.E.; Pedersen, L.H.; Streja, E.; Bech, B.H.; Yeargin-Allsopp, M.; Van Naarden Braun, K.; Schendel, D.E.; Christensen, D.; Uldall, P.; Olsen, J. Maternal Infections during Pregnancy and Cerebral Palsy: A Population-based Cohort Study. Paediatr. Perinat. Epidemiol. 2013, 27, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Ritz, B.; Andersen, S.L.; Ramlau-Hansen, C.H.; Høyer, B.B.; Bech, B.H.; Henriksen, T.B.; Bonefeld-Jørgensen, E.C.; Olsen, J.; Liew, Z. Perfluoroalkyl Substances and Maternal Thyroid Hormones in Early Pregnancy; Findings in the Danish National Birth Cohort. Environ. Health Perspect. 2019, 127, 117002. [Google Scholar] [CrossRef]
- Andersen, S.L.; Andersen, S.; Liew, Z.; Vestergaard, P.; Olsen, J. Maternal Thyroid Function in Early Pregnancy and Neuropsychological Performance of the Child at 5 Years of Age. J. Clin. Endocrinol. Metab. 2017, 103, 660–670. [Google Scholar] [CrossRef]
- Mahjoubi-Samet, A.; Hamadi, F.; Soussia, L.; Fadhel, G.; Zeghal, N. Dimethoate effects on thyroid function in suckling rats. Ann. Endocrinol. 2005, 66, 96–104. [Google Scholar] [CrossRef]
- Rawlings, N.C.; Cook, S.J.; Waldbillig, D. Effects of the pesticides carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin, 2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes. J. Toxicol. Environ. Health Part A 1998, 54, 21–36. [Google Scholar] [CrossRef]
- Thibaut, R.; Porte, C. Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish. J. Steroid Biochem. Mol. Biol. 2004, 92, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.R.; Vinggaard, A.M.; Rasmussen, T.H.; Gjermandsen, I.M.; Bonefeld-Jørgensen, E.C. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol. 2002, 179, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Gennings, C.; Hauser, R.; Webster, T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016, 124, A6–A9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buñay, J.; Larriba, E.; Patiño-Garcia, D.; Cruz-Fernandes, L.; Castañeda-Zegarra, S.; Rodriguez-Fernandez, M.; Del Mazo, J.; Moreno, R.D. Editor’s Highlight: Differential Effects of Exposure to Single Versus a Mixture of Endocrine-Disrupting Chemicals on Steroidogenesis Pathway in Mouse Testes. Toxicol. Sci. 2018, 161, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard-Olesen, C.; Bach, C.C.; Long, M.; Wielsøe, M.; Bech, B.H.; Henriksen, T.B.; Olsen, J.; Bonefeld-Jørgensen, E.C. Associations of Fetal Growth Outcomes with Measures of the Combined Xenoestrogenic Activity of Maternal Serum Perfluorinated Alkyl Acids in Danish Pregnant Women. Environ. Health Perspect. 2019, 127. [Google Scholar] [CrossRef]
- Bell, M.L.; Belanger, K. Review of research on residential mobility during pregnancy: Consequences for assessment of prenatal environmental exposures. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.; Heck, J.E.; Cockburn, M.; Liew, Z.; Marcotte, E.; Ritz, B. Residential mobility in early childhood and the impact on misclassification in pesticide exposures. Environ. Res. 2019, 173, 212–220. [Google Scholar] [CrossRef]
- Gunier, R.B.; Ward, M.H.; Airola, M.; Bell, E.M.; Colt, J.; Nishioka, M.; Buffler, P.A.; Reynolds, P.; Rull, R.P.; Hertz, A.; et al. Determinants of Agricultural Pesticide Concentrations in Carpet Dust. Environ. Health Perspect. 2011, 119, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Croen, L.A.; Grether, J.K.; Hoogstrate, J.; Selvin, S. The Changing Prevalence of Autism in California. J. Autism Dev. Disord. 2002, 32, 207–215. [Google Scholar] [CrossRef]
Characteristics | CP Cases (N = 3905) | Controls (N = 39,377) | ||
---|---|---|---|---|
N | % | N | % | |
Child’s sex | ||||
Male | 2244 | 57.5 | 22,453 | 57.0 |
Female | 1661 | 42.5 | 16,924 | 43.0 |
Year of birth | ||||
1998–2004 | 2394 | 61.3 | 23,464 | 59.6 |
2005–2010 | 1511 | 38.7 | 15,913 | 40.4 |
Gestational age (weeks) | ||||
<32 | 602 | 15.4 | 430 | 1.1 |
32–37 | 552 | 14.1 | 3074 | 7.8 |
37–42 | 2525 | 64.7 | 33,229 | 84.4 |
42–45 | 226 | 5.8 | 2644 | 6.7 |
Maternal age (years) | ||||
Less than 20 | 436 | 11.2 | 4123 | 10.5 |
20–24 | 828 | 21.2 | 9149 | 23.2 |
25–29 | 979 | 25.1 | 10,498 | 26.7 |
30–35 | 894 | 22.9 | 9406 | 23.9 |
Greater than 35 | 768 | 19.7 | 6200 | 15.8 |
Missing | 0 | 0 | 1 | 0 |
Maternal education | ||||
Less than 8th grade | 475 | 12.2 | 4441 | 11.3 |
9th–12th grade | 734 | 18.8 | 7133 | 18.1 |
High school graduate/ high school diploma | 1109 | 28.4 | 10,788 | 27.4 |
Degree less than college | 822 | 21.1 | 8050 | 20.4 |
College or more than college | 694 | 17.8 | 8146 | 20.7 |
Missing | 71 | 1.8 | 819 | 2.1 |
Maternal race/ethnicity | ||||
White, non-Hispanic | 1115 | 28.6 | 11,653 | 29.6 |
Hispanic of any race | 2112 | 54.1 | 20,813 | 52.9 |
Black | 244 | 6.3 | 1920 | 4.9 |
Asian or Pacific islander | 325 | 8.3 | 3733 | 9.5 |
Other race/ethnicity | 109 | 2.8 | 1258 | 3.2 |
Maternal birthplace | ||||
Foreign Born | 1703 | 43.6 | 17,596 | 44.7 |
U.S. Born | 2184 | 55.9 | 21,542 | 54.7 |
Missing | 18 | 0.5 | 239 | 0.6 |
Timing of Exposure | Total Sample | Female Offspring | Male Offspring | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases (N = 3905) | Controls (N = 39,377) | OR 1 and 95% CI | OR 3 and 95% CI | Cases (N = 1661) | Controls (N = 16,924) | OR 2 and 95% CI | OR 3 and 95% CI | Cases (N = 2244) | Controls (N = 22,453) | OR 2 and 95% CI | OR 3 and 95% CI | |
Exposure to any of the 23 pesticides | ||||||||||||
1st trimester | ||||||||||||
No | 981 | 10,248 | Ref | Ref | 375 | 4424 | Ref | Ref | 606 | 5824 | Ref | Ref |
Yes | 2924 | 29,129 | 1.07 (0.99, 1.16) | 1.10 (1.00, 1.22) | 1286 | 12,500 | 1.19 (1.05, 1.35) | 1.25 (1.07, 1.46) | 1638 | 16,629 | 0.99 (0.89, 1.09) | 1.01 (0.89, 1.15) |
2nd trimester | ||||||||||||
No | 1020 | 10,247 | Ref | Ref | 408 | 4406 | Ref | Ref | 612 | 5841 | Ref | Ref |
Yes | 2885 | 29,130 | 1.01 (0.93, 1.09) | 0.99 (0.89, 1.11) | 1253 | 12,518 | 1.06 (0.94, 1.20) | 0.96 (0.81, 1.13) | 1632 | 16,612 | 0.98 (0.88, 1.08) | 1.03 (0.89, 1.19) |
3rd trimester 4 | ||||||||||||
No | 1149 | 11,092 | Ref | Ref | 449 | 4779 | Ref | Ref | 700 | 6313 | Ref | Ref |
Yes | 2578 | 25,612 | 0.98 (0.91, 1.06) | 0.95 (0.86, 1.04) | 1141 | 11,094 | 1.05 (0.93, 1.19) | 0.99 (0.86, 1.15) | 1437 | 14,518 | 0.93 (0.84, 1.03) | 0.91 (0.81, 1.03) |
Timing of Exposure | Female Offspring | Male Offspring | ||||
---|---|---|---|---|---|---|
Cases (N = 1661) | Controls (N = 16,924) | OR 1 and 95% CI | Cases (N = 2244) | Controls (N = 22,453) | OR 1 and 95% CI | |
Exposure to the 15 pesticides suspected to affect estrogen function 2 | ||||||
During pregnancy | ||||||
No | 398 | 4096 | Ref | 556 | 5353 | Ref |
Yes | 1263 | 12,828 | 1.06 (0.93, 1.20) | 1688 | 17,100 | 1.04 (0.94,1.16) |
1st trimester | ||||||
No | 568 | 6097 | Ref | 825 | 7944 | Ref |
Yes | 1093 | 10,827 | 1.11 (1.00, 1.25) | 1419 | 14,509 | 1.01 (0.92,1.11) |
2nd trimester | ||||||
No | 614 | 6114 | Ref | 838 | 7979 | Ref |
Yes | 1047 | 10,810 | 0.99 (0.88, 1.10) | 1406 | 14,474 | 1.00 (0.91,1.10) |
3rd trimester 3 | ||||||
No | 639 | 6423 | Ref | 924 | 8312 | Ref |
Yes | 951 | 9450 | 1.03 (0.92, 1.15) | 1213 | 12,519 | 0.93 (0.84,1.02) |
Exposure to the 11 pesticides suspected to affect androgen function 2 | ||||||
During pregnancy | ||||||
No | 368 | 4015 | Ref | 579 | 5434 | Ref |
Yes | 1293 | 12,909 | 1.08 (0.95, 1.23) | 1665 | 17,019 | 0.96 (0.86, 1.07) |
1st trimester | ||||||
No | 549 | 5987 | Ref | 843 | 7959 | Ref |
Yes | 1112 | 10,937 | 1.09 (0.98, 1.23) | 1401 | 14,494 | 0.94 (0.86, 1.03) |
2nd trimester | ||||||
No | 579 | 5991 | Ref | 877 | 8060 | Ref |
Yes | 1082 | 10,933 | 1.02 (0.91, 1.14) | 1367 | 14,393 | 0.91 (0.83, 1.00) |
3rd trimester 3 | ||||||
No | 622 | 6364 | Ref | 920 | 8370 | Ref |
Yes | 968 | 9509 | 1.01 (0.91, 1.14) | 1217 | 12,461 | 0.93 (0.84, 1.02) |
Exposure to the 7 pesticides suspected to affect thyroid function 2 | ||||||
During pregnancy | ||||||
No | 478 | 5558 | Ref | 767 | 7387 | Ref |
Yes | 1183 | 11,366 | 1.14 (1.02, 1.29) | 1477 | 15,066 | 0.93 (0.84, 1.02) |
1st trimester | ||||||
No | 693 | 7817 | Ref | 1079 | 10,267 | Ref |
Yes | 968 | 9107 | 1.13 (1.01, 1.26) | 1165 | 12,186 | 0.89 (0.81, 0.97) |
2nd trimester | ||||||
No | 723 | 7754 | Ref | 1066 | 10,275 | Ref |
Yes | 938 | 9170 | 1.02 (0.91, 1.13) | 1178 | 12,178 | 0.91 (0.83, 1.00) |
3rd trimester 3 | ||||||
No | 733 | 7983 | Ref | 1105 | 10,398 | Ref |
Yes | 857 | 7890 | 1.10 (0.99, 1.23) | 1032 | 10,433 | 0.92 (0.84, 1.01) |
Exposed in the First Trimester | Hormonal Target (I: Estrogen; II: Androgen; III: Thyroid) 1 | Female Offspring | Male Offspring | ||||||
---|---|---|---|---|---|---|---|---|---|
Cases (N = 1661) | Controls (N = 16,924) | OR and 95% CI 2 | OR and 95% CI 3 | Cases (N = 2244) | Controls (N = 22,453) | OR and 95% CI 2 | OR and 95% CI 3 | ||
Chlorpyrifos | II | 581 | 5910 | 0.96 (0.86, 1.08) | 0.93 (0.82, 1.06) | 714 | 7859 | 0.91 (0.82, 1.00) | 0.96 (0.86, 1.08) |
Acephate | I, II, III | 509 | 4965 | 0.97 (0.86, 1.09) | 0.96 (0.83, 1.12) | 656 | 6766 | 0.92 (0.83, 1.02) | 0.99 (0.87, 1.12) |
Malathion | III | 443 | 4013 | 1.10 (0.97, 1.24) | 1.13 (0.99, 1.30) | 529 | 5361 | 0.95 (0.86, 1.06) | 1.04 (0.92, 1.17) |
Myclobutanil | I, II | 364 | 3723 | 1.05 (0.93, 1.20) | 1.06 (0.91, 1.24) | 438 | 4960 | 0.92 (0.82, 1.03) | 1.02 (0.89, 1.17) |
Iprodione | I | 375 | 3989 | 0.95 (0.84, 1.08) | 0.90 (0.77, 1.06) | 459 | 5384 | 0.87 (0.78, 0.98) | 0.96 (0.83, 1.10) |
Diazinon | I | 356 | 3775 | 0.96 (0.85, 1.10) | 0.92 (0.80, 1.07) | 458 | 5192 | 0.88 (0.79, 0.99) | 0.94 (0.83, 1.07) |
Bifenthrin | II, III | 334 | 3130 | 0.95 (0.83, 1.09) | 0.94 (0.81, 1.10) | 386 | 4207 | 0.86 (0.76, 0.97) | 0.90 (0.79, 1.03) |
Permethrin | I | 307 | 3114 | 1.01 (0.87, 1.16) | 1.00 (0.85, 1.19) | 357 | 4153 | 0.91 (0.80, 1.04) | 1.04 (0.90, 1.21) |
Mancozeb | III | 271 | 2508 | 1.10 (0.95, 1.27) | 1.15 (0.97, 1.37) | 320 | 3526 | 0.93 (0.82, 1.06) | 1.05 (0.90, 1.22) |
Dimethoate | I, III | 238 | 2196 | 1.17 (1.00, 1.37) | 1.18 (0.99, 1.41) | 273 | 3116 | 0.95 (0.82, 1.09) | 1.04 (0.89, 1.22) |
Propiconazole | I, II | 246 | 2377 | 0.99 (0.85, 1.16) | 0.99 (0.83, 1.19) | 263 | 3133 | 0.84 (0.72, 0.97) | 0.92 (0.78, 1.08) |
Simazine | I | 169 | 1835 | 1.09 (0.90, 1.31) | 1.02 (0.83, 1.26) | 209 | 2407 | 1.03 (0.87, 1.21) | 1.07 (0.89, 1.28) |
Methomyl | I, II | 195 | 1798 | 1.19 (1.01, 1.42) | 1.19 (0.98, 1.45) | 210 | 2523 | 0.91 (0.78, 1.07) | 1.02 (0.85, 1.21) |
Carbaryl | I | 160 | 1649 | 0.98 (0.82, 1.17) | 0.94 (0.78, 1.13) | 205 | 2235 | 0.96 (0.82, 1.13) | 1.04 (0.88, 1.23) |
2,4-D, Dimethylamine Salt | II | 157 | 1715 | 1.08 (0.90, 1.31) | 1.07 (0.88, 1.30) | 171 | 2170 | 0.84 (0.70, 1.00) | 0.87 (0.72, 1.04) |
Trifluralin | I | 154 | 1727 | 0.96 (0.80, 1.15) | 0.92 (0.76, 1.12) | 194 | 2264 | 0.93 (0.79, 1.10) | 1.00 (0.84, 1.19) |
Lambda-Cyhalothrin | III | 150 | 1705 | 0.96 (0.79, 1.16) | 0.91 (0.73, 1.13) | 174 | 2235 | 0.85 (0.71, 1.00) | 0.94 (0.77, 1.14) |
Diuron | II | 153 | 1542 | 1.24 (1.02, 1.51) | 1.26 (1.01, 1.57) | 189 | 2102 | 1.06 (0.89, 1.26) | 1.08 (0.89, 1.32) |
Fenarimol | I, II | 139 | 1435 | 1.12 (0.93, 1.36) | 1.14 (0.93, 1.40) | 152 | 1866 | 0.89 (0.74, 1.06) | 0.94 (0.78, 1.14) |
Triadimefon | I, II | 126 | 1378 | 0.90 (0.73, 1.09) | 0.87 (0.70, 1.08) | 167 | 1820 | 0.88 (0.74, 1.05) | 0.94 (0.78, 1.14) |
Maneb | III | 136 | 1467 | 1.05 (0.84, 1.30) | 0.96 (0.75, 1.25) | 142 | 2028 | 0.73 (0.60, 0.90) | 0.80 (0.63, 1.01) |
Dicofol | I, II | 83 | 978 | 0.89 (0.70, 1.13) | 0.83 (0.65, 1.07) | 141 | 1423 | 1.01 (0.84, 1.21) | 1.07 (0.88, 1.30) |
Benomyl | I | 123 | 1075 | 1.15 (0.93, 1.42) | 1.11 (0.88, 1.39) | 128 | 1552 | 0.83 (0.68, 1.01) | 0.89 (0.72, 1.10) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liew, Z.; von Ehrenstein, O.S.; Ling, C.; Yuan, Y.; Meng, Q.; Cui, X.; Park, A.S.; Uldall, P.; Olsen, J.; Cockburn, M.; et al. Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California. Toxics 2020, 8, 52. https://doi.org/10.3390/toxics8030052
Liew Z, von Ehrenstein OS, Ling C, Yuan Y, Meng Q, Cui X, Park AS, Uldall P, Olsen J, Cockburn M, et al. Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California. Toxics. 2020; 8(3):52. https://doi.org/10.3390/toxics8030052
Chicago/Turabian StyleLiew, Zeyan, Ondine S. von Ehrenstein, Chenxiao Ling, Yuying Yuan, Qi Meng, Xin Cui, Andrew S. Park, Peter Uldall, Jørn Olsen, Myles Cockburn, and et al. 2020. "Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California" Toxics 8, no. 3: 52. https://doi.org/10.3390/toxics8030052
APA StyleLiew, Z., von Ehrenstein, O. S., Ling, C., Yuan, Y., Meng, Q., Cui, X., Park, A. S., Uldall, P., Olsen, J., Cockburn, M., & Ritz, B. (2020). Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California. Toxics, 8(3), 52. https://doi.org/10.3390/toxics8030052