Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Testing of Endocrine-Disrupting Chemicals and Sex Hormones
2.3. Clinical Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polanczyk, G.; De Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-L.; Chen, W.J.; Lin, K.-C.; Shen, L.-J.; Gau, S.S.-F. Prevalence of DSM-5 mental disorders in a nationally representative sample of children in Taiwan: Methodology and main findings. Epidemiol. Psychiatr. Sci. 2019, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.; Lycett, K.; Hiscock, H.; Care, E.; Sciberras, E. Longitudinal Associations Between Internalizing and Externalizing Comorbidities and Functional Outcomes for Children with ADHD. Child Psychiatry Hum. Dev. 2014, 46, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Usami, M. Functional consequences of attention-deficit hyperactivity disorder on children and their families. Psychiatry Clin. Neurosci. 2016, 70, 303–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lieshout, M.; Luman, M.; Twisk, J.W.R.; Van Ewijk, H.; Groenman, A.P.; Thissen, A.J.A.M.; Faraone, S.V.; Heslenfeld, D.J.; Hartman, C.A.; Hoekstra, P.J.; et al. A 6-year follow-up of a large European cohort of children with attention-deficit/hyperactivity disorder-combined subtype: Outcomes in late adolescence and young adulthood. Eur. Child Adolesc. Psychiatry 2016, 25, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Biederman, J.; Faraone, S.V. Attention-deficit hyperactivity disorder. Lancet 2005, 366, 237–248. [Google Scholar] [CrossRef]
- Thapar, A.; Cooper, M.; Eyre, O.; Langley, K. Practitioner Review: What have we learnt about the causes of ADHD? J. Child Psychol. Psychiatry 2012, 54, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Eubig, P.A.; Aguiar, A.; Schantz, S.L. Lead and PCBs as Risk Factors for Attention Deficit/Hyperactivity Disorder. Environ. Health Perspect. 2010, 118, 1654–1667. [Google Scholar] [CrossRef]
- Miodovnik, A. Environmental neurotoxicants and developing brain. Mt. Sinai J. Med. 2011, 78, 58–77. [Google Scholar] [CrossRef]
- Meeker, J.D. Exposure to Environmental Endocrine Disruptors and Child Development. Arch. Pediatr. Adolesc. Med. 2012, 166, 952–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmigiani, S.; Palanza, P.; Saal, F.S.V. Ethotoxicology: An Evolutionary Approach to the Study of Environmental Endocrine-Disrupting Chemicals. Toxicol. Ind. Health 1998, 14, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Baram, T.Z.; Brown, A.S.; Goldstein, J.M.; Insel, T.R.; McCarthy, M.M.; Nemeroff, C.B.; Reyes, T.M.; Simerly, R.B.; Susser, E.S.; et al. Early Life Programming and Neurodevelopmental Disorders. Biol. Psychiatry 2010, 68, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Martel, M.M.; Klump, K.; Nigg, J.T.; Breedlove, S.M.; Sisk, C.L. Potential hormonal mechanisms of Attention-Deficit/Hyperactivity Disorder and Major Depressive Disorder: A new perspective. Horm. Behav. 2009, 55, 465–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cock, M.; Maas, Y.G.; Van De Bor, M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr. 2012, 101, 811–818. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.-X.; Chen, W.-J.; Zhang, Y.; Li, H.-H.; Xiong, L.; Zhu, H.-P.; Chen, H.-Y.; Peng, S.-X.; Wan, Z.-H.; et al. Associations of phthalates exposure with attention deficits hyperactivity disorder: A case-control study among Chinese children. Environ. Pollut. 2017, 229, 375–385. [Google Scholar] [CrossRef]
- Baker, B.H.; Wu, H.; Laue, H.E.; Boivin, A.; Gillet, V.; Langlois, M.-F.; Bellenger, J.-P.; Baccarelli, A.A.; Takser, L. Methylparaben in meconium and risk of maternal thyroid dysfunction, adverse birth outcomes, and Attention-Deficit Hyperactivity Disorder (ADHD). Environ. Int. 2020, 139, 105716. [Google Scholar] [CrossRef]
- Harley, K.; Gunier, R.; Kogut, K.; Johnson, C.; Bradman, A.; Calafat, A.M.; Eskenazi, B. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ. Res. 2013, 126, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Kuang, H.; Fan, R.; Cha, C.; Li, G.; Luo, Z.; Pang, Q. Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China. Environ. Pollut. 2018, 235, 141–149. [Google Scholar] [CrossRef]
- Polańska, K.; Jurewicz, J.; Hanke, W. Exposure to environmental and lifestyle factors and attention-deficit / hyperactivity disorder in children—A review of epidemiological studies. Int. J. Occup. Med. Environ. Health 2012, 25, 330–355. [Google Scholar] [CrossRef]
- Phoenix, C.H.; Goy, R.W.; Gerall, A.A.; Young, W.C. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 1959, 65, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Breedlove, S.M. Sexual Differentiation of the Human Nervous System. Annu. Rev. Psychol. 1994, 45, 389–418. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.A.; Jordan, C.L.; Breedlove, S.M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 2004, 7, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, A.; Wojtacha, P.; Równiak, M.; Kolenkiewicz, M.; Tsai, M.-L. Differences in serum steroid hormones concentrations in Spontaneously Hypertensive Rats (SHR)—An animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Physiol. Res. 2019, 68, 25–36. [Google Scholar] [CrossRef]
- Gokcen, C.; Erbagci, A.B.; Mutluer, T.; Orkmez, M.; Correll, C.U. Mullerian inhibiting substance, sex hormone binding globulin and sex hormone levels in stimulant-naïve, first-diagnosed prepubertal boys with attention-deficit/hyperactivity disorder: Comparison with matched healthy controls as well as before and after oros-methylpenidate treatment. Int. J. Psychiatry Clin. Pract. 2019, 23, 251–257. [Google Scholar] [CrossRef]
- Wang, L.-J.; Lee, S.-Y.; Chou, M.-C.; Lee, M.-J.; Chou, W.-J. Dehydroepiandrosterone sulfate, free testosterone, and sex hormone-binding globulin on susceptibility to attention-deficit/hyperactivity disorder. Psychoneuroendocrinology 2019, 103, 212–218. [Google Scholar] [CrossRef]
- Roberts, B.; Eisenlohr-Moul, T.A.; Martel, M.M. Reproductive steroids and ADHD symptoms across the menstrual cycle. Psychoneuroendocrinology 2017, 88, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Şahin, N.; Altun, H.; Kurutas, E.B.; Fındıklı, E. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD). Bosn. J. Basic Med. Sci. 2018, 18, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; (DSM-5); American Psychiatric Press: Washington, DC, USA, 2013. [Google Scholar]
- Hysek, C.M.; Simmler, L.D.; Schillinger, N.; Meyer, N.; Schmid, Y.; Donzelli, M.; Grouzmann, E.; Liechti, M.E. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int. J. Neuropsychopharmacol. 2013, 17, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Lurie, S.; O’Quinn, A. Neuroendocrine responses to methylphenidate and d-amphetamine: Applications to attention-deficit disorder. J. Neuropsychiatry Clin. Neurosci. 1991, 3, 41–50. [Google Scholar] [CrossRef]
- Blount, B.C.; Milgram, K.E.; Silva, M.J.; Malek, N.A.; Reidy, J.A.; Needham, L.L.; Brock, J.W. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal. Chem. 2000, 72, 4127–4134. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Bourhis, C.; Chevrier, S.; Gangneux, J.-P. Evaluation of DPC immulite 2000®Toxoplasma quantitative IgG/IgM kits for automated toxoplasmosis serology with immulite 2000. J. Clin. Lab. Anal. 2009, 23, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Baron, I.S. Test Review: Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). Child Neuropsychol. 2005, 11, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Bussing, R.; Fernandez, M.; Harwood, M.; Garvan, C.W.; Eyberg, S.M.; Swanson, J.M.; Hou, W. Parent and teacher SNAP-IV ratings of attention deficit hyperactivity disorder symptoms: Psychometric properties and normative ratings from a school district sample. Assessment 2008, 15, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Berghuis, S.A.; Bos, A.F.; Sauer, P.J.J.; Roze, E. Developmental neurotoxicity of persistent organic pollutants: An update on childhood outcome. Arch. Toxicol. 2015, 89, 687–709. [Google Scholar] [CrossRef]
- Kim, B.-N.; Cho, S.-C.; Kim, Y.; Shin, M.-S.; Yoo, H.J.; Kim, J.-W.; Yang, Y.H.; Kim, H.-W.; Bhang, S.-Y.; Hong, Y.-C. Phthalates Exposure and Attention-Deficit/Hyperactivity Disorder in School-Age Children. Biol. Psychiatry 2009, 66, 958–963. [Google Scholar] [CrossRef]
- Won, E.-K.; Kim, Y.; Ha, M.; Burm, E.; Kim, Y.-S.; Lim, H.; Jung, D.-E.; Lim, S.; Kim, S.Y.; Kim, Y.-M.; et al. Association of current phthalate exposure with neurobehavioral development in a national sample. Int. J. Hyg. Environ. Health 2016, 219, 364–371. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, J.-W.; Shin, I.; Kim, B.-N. Interaction of DRD4 Methylation and Phthalate Metabolites Affects Continuous Performance Test Performance in ADHD. J. Atten. Disord. 2018. [Google Scholar] [CrossRef] [Green Version]
- Rebuli, M.E.; Patisaul, H.B. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J. Steroid Biochem. Mol. Biol. 2015, 160, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Latini, G. Monitoring phthalate exposure in humans. Clin. Chim. Acta 2005, 361, 20–29. [Google Scholar] [CrossRef]
- Błędzka-Boruta, D.; Gromadzinska, J.; Wąsowicz, W. Parabens. From environmental studies to human health. Environ. Int. 2014, 67, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Witorsch, R.J.; Thomas, J.A. Personal care products and endocrine disruption: A critical review of the literature. Crit. Rev. Toxicol. 2010, 40, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.; Yoo, Y.-M.; Choi, K.-C.; Jeung, E.-B. Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod. Toxicol. 2010, 29, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Aker, A.M.; Ferguson, K.K.; Rosario, Z.; Mukherjee, B.; Alshawabkeh, A.N.; Calafat, A.M.; Cordero, J.F.; Meeker, J.D. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ. Health 2019, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Gal, A.; Gedye, K.; Craig, Z.R.; Ziv-Gal, A. Propylparaben inhibits mouse cultured antral follicle growth, alters steroidogenesis, and upregulates levels of cell-cycle and apoptosis regulators. Reprod. Toxicol. 2019, 89, 100–106. [Google Scholar] [CrossRef]
- Calafat, A.M.; Ye, X.; Wong, L.-Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004. Environ. Health Perspect. 2007, 116, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kuang, H.; Luo, Y.; Liu, S.; Meng, L.; Pang, Q.; Fan, R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. Sci. Total. Environ. 2019, 697, 134036. [Google Scholar] [CrossRef]
- Mustieles, V.; Pérez-Lobato, R.; Olea, N.; Fernández, M.F. Bisphenol A: Human exposure and neurobehavior. NeuroToxicology 2015, 49, 174–184. [Google Scholar] [CrossRef]
- Hergüner, S.; Harmancı, H.; Toy, H. Attention deficit-hyperactivity disorder symptoms in women with polycystic ovary syndrome. Int. J. Psychiatry Med. 2015, 50, 317–325. [Google Scholar] [CrossRef]
- Dalsgaard, S.; Østergaard, S.D.; Leckman, J.F.; Mortensen, P.B.; Pedersen, M.G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: A nationwide cohort study. Lancet 2015, 385, 2190–2196. [Google Scholar] [CrossRef]
Boys | Girls | |||
---|---|---|---|---|
ADHD (n = 98) | Control (n = 42) | ADHD (n = 32) | Control (n = 26) | |
Demographic data, mean ± SD | ||||
Age, years | 8.5 ± 1.7 | 8.7 ± 1.7 | 8.1 ± 1.3 | 9.2 ± 1.9 |
Height, cm | 132.3 ± 12.4 | 133.3 ± 11.3 | 128.0 ± 11.6 | 136.9 ± 13.2 |
Body weight, kg | 33.5 ± 13.9 | 31.0 ± 10.3 | 30.7 ± 13.8 | 34.2 ± 10.9 |
Comorbidities, n (%) | ||||
ODD or conduct disorder | 27 (27.8) | - | 4 (12.5) | - |
Tic disorders | 15 (15.5) | - | 1 (3.1) | - |
WISC-IV, mean ± SD | ||||
Full Scale Intelligence Quotient | 98.6 ± 10.5 | 109.4 ± 15.1 | 96.9 ± 9.7 | 107.9 ± 11.9 |
Verbal Comprehension Index | 102.4 ± 11.0 | 108.8 ± 12.2 | 101.8 ± 9.2 | 104.2 ± 10.5 |
Perceptual Reasoning Index | 99.5 ± 12.7 | 110.4 ± 18.0 | 94.7 ± 10.6 | 109.9 ± 16.2 |
Working Memory Index | 99.6 ± 11.5 | 108.5 ± 12.8 | 97.7 ± 10.9 | 107.7 ± 11.5 |
Processing Speed Index | 94.0 ± 9.7 | 100.6 ± 12.1 | 94.9 ± 8.1 | 103.0 ± 11.9 |
SNAP-IV, mean ± SD | ||||
SNAP-IV parent form (I) | 16.5 ± 5.6 | 5.7 ± 6.3 | 17.1 ± 4.8 | 5.4 ± 5.5 |
SNAP-IV parent form (H) | 15.6 ± 6.2 | 5.0 ± 5.6 | 12.7 ± 5.4 | 3.8 ± 5.6 |
SNAP-IV parent form (O) | 12.7 ± 6.1 | 5.2 ± 5.1 | 10.8 ± 5.9 | 4.6 ± 5.1 |
SNAP-IV teacher form (I) | 15.3 ± 5.3 | 4.9 ± 5.5 | 13.5 ± 7.0 | 4.2 ± 3.6 |
SNAP-IV teacher form (H) | 13.7 ± 6.3 | 3.6 ± 4.0 | 7.7 ± 5.9 | 2.1 ± 2.5 |
SNAP-IV teacher form (O) | 10.0 ± 6.2 | 2.0 ± 2.8 | 5.2 ± 5.0 | 1.3 ± 1.6 |
Urinary creatinine (mg/dL) | 108.3 ± 39.0 | 104.1 ± 41.7 | 92.6 ± 29.1 | 107.7 ± 37.0 |
Urine specific gravity | 1.01 ± 0.0 | 1.00 ± 0.0 | 1.00 ± 0.0 | 1.01 ± 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-S.; Chou, W.-J.; Lee, S.-Y.; Lee, M.-J.; Chou, M.-C.; Wang, L.-J. Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder. Toxics 2020, 8, 57. https://doi.org/10.3390/toxics8030057
Tsai C-S, Chou W-J, Lee S-Y, Lee M-J, Chou M-C, Wang L-J. Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder. Toxics. 2020; 8(3):57. https://doi.org/10.3390/toxics8030057
Chicago/Turabian StyleTsai, Ching-Shu, Wen-Jiun Chou, Sheng-Yu Lee, Min-Jing Lee, Miao-Chun Chou, and Liang-Jen Wang. 2020. "Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder" Toxics 8, no. 3: 57. https://doi.org/10.3390/toxics8030057
APA StyleTsai, C. -S., Chou, W. -J., Lee, S. -Y., Lee, M. -J., Chou, M. -C., & Wang, L. -J. (2020). Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder. Toxics, 8(3), 57. https://doi.org/10.3390/toxics8030057