Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020
Abstract
:1. Introduction
2. The Workshop
3. Themes
3.1. Assessment of Exposure
3.2. Assessment of Adverse Health Outcomes
3.3. Controlled Exposure Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, S.B.; Bruce, N.G.; Grigg, J.; Hibberd, P.L.; Kurmi, O.P.; Lam, K.B.H.; Mortimer, K.; Asante, K.P.; Balakrishnan, K.; Balmes, J.; et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2014, 2, 823–860. [Google Scholar] [CrossRef] [Green Version]
- GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 14 July 2020).
- Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 14 July 2020).
- Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 14 July 2020).
- Assad, N.A.; Balmes, J.; Mehta, S.; Cheema, U.; Sood, A. Chronic Obstructive Pulmonary Disease Secondary to Household Air Pollution. Semin. Respir. Crit. Care Med. 2015, 36, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.; Barnes, P.J. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest 2010, 138, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.; Barnes, P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009, 374, 733–743. [Google Scholar] [CrossRef]
- Van Gemert, F.; Kirenga, B.; Chavannes, N.; Kamya, M.R.; Luzige, S.; Musinguzi, P.; Turyagaruka, J.; Jones, R.; Tsiligianni, I.; Williams, S.; et al. Prevalence of chronic obstructive pulmonary disease and associated risk factors in Uganda (FRESH AIR Uganda): A prospective cross-sectional observational study. Lancet Glob. Health 2015, 3, e44–e51. [Google Scholar] [CrossRef]
- Available online: https://www.nhlbi.nih.gov/health-topics/copd (accessed on 14 July 2020).
- Mani, S.; Jain, A.; Tripathi, S.; Gould, C.F. The drivers of sustained use of liquified petroleum gas in India. Nat. Energy 2020, 5, 450–457. [Google Scholar] [CrossRef]
- Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 14 July 2020).
- Mahesh, P.A.; Lokesh, K.S.; Madhivanan, P.; Chaya, S.K.; Jayaraj, B.S.; Ganguly, K.; Krishna, M. Cohort Profile: The Mysuru stUdies of Determinants of Health in Rural Adults (MUDHRA), India. Epidemiol. Health 2018, 40, e2018027. [Google Scholar] [CrossRef]
- Mahesh, P.; Jayaraj, B.; Prabhakar, A.; Chaya, S.; Vijaysimha, R. Identification of a threshold for biomass exposure index for chronic bronchitis in rural women of Mysore district, Karnataka, India. Indian J. Med. Res. 2013, 137, 87–94. [Google Scholar]
- Camp, P.G.; Ramirez-Venegas, A.; Sansores, R.H.; Alva, L.F.; McDougall, J.E.; Sin, D.D.; Paré, P.D.; Müller, N.L.; Silva, C.I.S.; Rojas, C.E.; et al. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur. Respir. J. 2013, 43, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.; Gulati, N.; Fernandes, Y.; Mesquita, A.M.; Sardessai, M.; Lammers, J.-W.J.; Hoesein, F.A.M.; Hacken, N.H.T.; Berge, M.V.D.; Galbán, C.J.; et al. Small airway imaging phenotypes in biomass- and tobacco smoke-exposed patients with COPD. ERJ Open Res. 2017, 3, 124–2016. [Google Scholar] [CrossRef] [PubMed]
- Ocakli, B.; Acartürk, E.; Aksoy, E.; Gungor, S.; Çiyiltepe, F.; Öztaş, S.; Özmen, I.; Agca, M.C.; Salturk, C.; Adigüzel, N.; et al. The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1261–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonne, C.; Ranzani, O.T. Is occupational biomass smoke exposure an overlooked driver of respiratory health? Occup. Environ. Med. 2018, 75, 687–688. [Google Scholar] [CrossRef]
- Vishweswaraiah, S.; Thimraj, T.A.; George, L.; Krishnarao, C.S.; Lokesh, K.S.; Siddaiah, J.B.; Larsson, K.; Upadhyay, S.; Palmberg, L.; Mahesh, P.A.; et al. Putative Systemic Biomarkers of Biomass Smoke-Induced Chronic Obstructive Pulmonary Disease among Women in a Rural South Indian Population. Dis. Markers 2018, 2018, 4949175. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, P.A.; Jayaraj, B.S.; Prahlad, S.T.; Chaya, S.K.; Prabhakar, A.K.; Agarwal, A.N.; Jindal, S.K. Validation of a structured questionnaire for COPD and prevalence of COPD in rural area of Mysore: A pilot study. Lung India 2009, 26, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, P.A.; Jayaraj, B.S.; Chaya, S.K.; Lokesh, K.S.; McKay, A.J.; Prabhakar, A.K.; Pape, U.J. Variation in the prevalence of chronic bronchitis among smokers: A cross-sectional study. Int. J. Tuberc. Lung Dis. 2014, 18, 862–869. [Google Scholar] [CrossRef]
- Lin, E.Z.; Esenther, S.; Mascelloni, M.; Irfan, F.; Pollitt, K.J.G. The Fresh Air Wristband: A Wearable Air Pollutant Sampler. Environ. Sci. Technol. Lett. 2020, 7, 308–314. [Google Scholar] [CrossRef]
- Mukerjee, S.; Oliver, K.D.; Seila, R.L.; Jacumin, H.H., Jr.; Croghan, C.; Daughtrey, H.E., Jr.; Neas, L.M.; Smith, L.A. Field comparison of passive air samplers with reference monitors for ambient volatile organic compounds and nitrogen dioxide under week-long integrals. J. Environ. Monit. 2009, 11, 220–227. [Google Scholar] [CrossRef]
- Yu, C.H.; Morandi, M.T.; Weisel, C.P. Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 441–451. [Google Scholar] [CrossRef]
- Meier, R.; Eeftens, M.; Phuleria, H.C.; Ineichen, A.; Corradi, E.; Davey, M.; Fierz, M.; Ducret-Stich, R.E.; Aguilera, I.; Schindler, C.; et al. Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PMabsorbance and NO2 in Swiss homes. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 499–505. [Google Scholar] [CrossRef]
- Eeftens, M.; Phuleria, H.C.; Meier, R.; Aguilera, I.; Corradi, E.; Davey, M.; Ducret-Stich, R.E.; Fierz, M.; Gehrig, R.; Ineichen, A.; et al. Spatial and temporal variability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PMcoarse in Swiss study areas. Atmos. Environ. 2015, 111, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Beelen, R.; Basagaña, X.; Becker, T.; Cesaroni, G.; De Hoogh, K.; Dėdelė, A.; Declercq, C.; Dimakopoulou, K.; Eeftens, M.; et al. Evaluation of Land Use Regression Models for NO2 and Particulate Matter in 20 European Study Areas: The ESCAPE Project. Environ. Sci. Technol. 2013, 47, 4357–4364. [Google Scholar] [CrossRef]
- Monn, C.; Brändli, O.; Schindler, C.; Ackermann-Liebrich, U.; Leuenberger, P. Personal exposure to nitrogen dioxide in Switzerland. Sci. Total Environ. 1998, 215, 243–251. [Google Scholar] [CrossRef]
- Kumie, A.; Emmelin, A.; Wahlberg, S.; Berhane, Y.; Ali, A.; Mekonen, E.; Worku, A.; Brandstrom, D. Sources of variation for indoor nitrogen dioxide in rural residences of Ethiopia. Environ. Health 2009, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Afshar-Mohajer, N.; Zuidema, C.; Sousan, S.; Hallett, L.; Tatum, M.; Rule, A.M.; Thomas, G.; Peters, T.M.; Koehler, K.; Koehle, K. Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J. Occup. Environ. Hyg. 2018, 15, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartoňová, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.K.-A.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Lower Respiratory Infections Collaborators. Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: An analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 20, 60–79. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.F.; Reilly, C. Wood and Biomass Smoke: Addressing Human Health Risks and Exposures. Chem. Res. Toxicol. 2019, 32, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Dixit, M. Upadhyay and Dixit-2014: Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, S.R.; Kim, J.O.; Lee, Y.C. The Roles of Phytochemicals in Bronchial Asthma. Molecules 2010, 15, 6810–6834. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Rinaldi, S.; Thimraj, T.A.; Lin, E.; O’Brien, F.; Koelmel, J.; Ernstgård, L.; Johanson, G.; Mahesh, P.; Pollitt, K.; et al. Assessment of biomass smoke induced pulmonary response and the protective effect of magnolol using physiologically relevant normal- and chronic bronchitis-like bronchial mucosa models. In Proceedings of the American Thoracic Society 2020 International, Philadelphia, PA, USA, 15–20 May 2020. [Google Scholar]
- Sharma, V.K.; Jagawat, S.; Midha, A.; Jain, A.; Tambi, A.; Mangwani, L.K.; Sharma, B.; Dubey, P.; Satija, V.; Copeland, J.R.M.; et al. The Global Mental Health Assessment Tool-validation in Hindi: A validity and feasibility study. Indian J. Psychiatry 2010, 52, 316–319. [Google Scholar] [CrossRef]
- Velthorst, E.; Walsh, S.F.; Stahl, E.; Ruderfer, U.; Ivanov, I.; Buxbaum, J.D.; Banaschewski, T.; Bokde, A.L.W.; Dipl-Psych, U.B.; Büchel, C.; et al. Genetic risk for schizophrenia and autism, social impairment and developmental pathways to psychosis. Transl. Psychiatry 2018, 8, 204. [Google Scholar] [CrossRef]
- Mccarty, M.F. Proposal for a dietary “phytochemical index”. Med. Hypotheses 2004, 63, 813–817. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Taylor, A.G. Relationship of the dietary phytochemical index to weight gain, oxidative stress and inflammation in overweight young adults. J. Hum. Nutr. Diet. 2009, 23, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Kc, R.; Hyland, I.K.; Smith, J.A.; Shukla, S.D.; Hansbro, P.M.; Zosky, G.R.; Karupiah, G.; O’Toole, R.F. Cow Dung Biomass Smoke Exposure Increases Adherence of Respiratory Pathogen Nontypeable Haemophilus influenzae to Human Bronchial Epithelial Cells. Expo. Health 2020, 1–13. [Google Scholar] [CrossRef]
- Barbier, M.; Oliver, A.; Rao, J.; Hanna, S.L.; Goldberg, J.B.; Albertí, S. Novel Phosphorylcholine-Containing Protein of Pseudomonas aeruginosa Chronic Infection Isolates Interacts with Airway Epithelial Cells. J. Infect. Dis. 2008, 197, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Kc, R.; Shukla, S.D.; Gautam, S.S.; Hansbro, P.M.; O’Toole, R.F. The role of environmental exposure to non-cigarette smoke in lung disease. Clin. Transl. Med. 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Bruce, N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: A systematic review and meta-analysis. Bull. World Health Organ. 2008, 86, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Po, J.Y.T.; FitzGerald, J.M.; Carlsten, C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: Systematic review and meta-analysis. Thorax 2011, 66, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, N.G.; Dherani, M.K.; Das, J.K.; Balakrishnan, K.; Adair-Rohani, H.; Bhutta, Z.A.; Pope, D. Control of household air pollution for child survival: Estimates for intervention impacts. BMC Public Health 2013, 13, S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.R.; McCracken, J.P.; Weber, M.W.; Hubbard, A.; Jenny, A.; Thompson, L.M.; Balmes, J.; Diaz, A.; Arana, B.; Bruce, N. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): A randomised controlled trial. Lancet 2011, 378, 1717–1726. [Google Scholar] [CrossRef]
- Mortimer, K.; Ndamala, C.B.; Naunje, A.W.; Malava, J.; Katundu, C.; Weston, W.; Havens, D.; Pope, D.; Bruce, N.G.; Nyirenda, M.; et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): A cluster randomised controlled trial. Lancet 2016, 389, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Painschab, M.S.; Davila-Roman, V.G.; Gilman, R.H.; Vasquez-Villar, A.D.; Pollard, S.L.; Wise, R.A.; Miranda, J.J.; Checkley, W. CRONICAS Cohort Study Group. Chronic exposure to biomass fuel is associated with increased carotid artery intima-media thickness and a higher prevalence of atherosclerotic plaque. Heart 2013, 99, 984–991. [Google Scholar] [CrossRef]
- Unosson, J.; Blomberg, A.; Sandstrom, T.; Muala, A.; Boman, C.; Nyström, R.; Westerholm, R.N.; Mills, N.L.; E Newby, D.; Langrish, J.P.; et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part. Fibre Toxicol. 2013, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Darbre, P.D. Overview of air pollution and endocrine disorders. Int. J. Gen. Med. 2018, 11, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.J. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Hedelin, A.; Malmlöf, M.; Kessler, V.G.; Seisenbaeva, G.; Gerde, P.; Palmberg, L. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles. PLoS ONE 2017, 12, e0170428. [Google Scholar] [CrossRef]
- Ganguly, K.; Thimraj, T.; Nordström, A.; Ramström, M.; Lin, E.; O’Brien, F.; Koelmel, J.; Ernstgård, L.; Johanson, G.; Pollitt, K.; et al. Flavor, Nicotine Content, Vaping Regime, and Lung Region Matter: Alarm Anti-Proteases and Anti-Microbial Defensins Are Important for Electronic Cigarette Related Pulmonary Response. In Proceedings of the American Thoracic Society 2020 International, Philadelphia, PA, USA, 15–20 May 2020. [Google Scholar]
- Upadhyay, S.; Palmberg, L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol. Sci. 2018, 164, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.; Upadhyay, S.; Xiong, X.; Malmlöf, M.; Sandstrom, T.; Gerde, P.; Palmberg, L. Multi-cellular human bronchial models exposed to diesel exhaust particles: Assessment of inflammation, oxidative stress and macrophage polarization. Part. Fibre Toxicol. 2018, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.; Ganguly, K.; Mihai, X.; Sun, J.; Malmlöf, M.; Gerde, P.; Upadhyay, S.; Palmberg, L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: Comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019, 13, 1362–1379. [Google Scholar] [CrossRef]
- Thimraj, T.A.; Sompa, S.I.; Ganguly, K.; Ernstgård, L.; Johanson, G.; Palmberg, L.; Upadhyay, S. Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicol. In Vitro 2019, 61, 104617. [Google Scholar] [CrossRef]
- Dwivedi, A.M.; Upadhyay, S.; Johanson, G.; Ernstgård, L.; Palmberg, L. Inflammatory effects of acrolein, crotonaldehyde and hexanal vapors on human primary bronchial epithelial cells cultured at air-liquid interface. Toxicol. In Vitro 2018, 46, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Vishweswaraiah, S.; George, L.; Purushothaman, N.; Ganguly, K. A candidate gene identification strategy utilizing mouse to human big-data mining: “3R-tenet” in COPD genetic research. Respir. Res. 2018, 19, 92. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padukudru Anand, M.; Larsson, K.; Johanson, G.; Phuleria, H.C.; Ravindra, P.V.; Ernstgård, L.; Mabalirajan, U.; Krishna, M.; Palmberg, L.; Pollitt, K.J.G.; et al. Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020. Toxics 2020, 8, 68. https://doi.org/10.3390/toxics8030068
Padukudru Anand M, Larsson K, Johanson G, Phuleria HC, Ravindra PV, Ernstgård L, Mabalirajan U, Krishna M, Palmberg L, Pollitt KJG, et al. Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020. Toxics. 2020; 8(3):68. https://doi.org/10.3390/toxics8030068
Chicago/Turabian StylePadukudru Anand, Mahesh, Kjell Larsson, Gunnar Johanson, Harish C. Phuleria, P. Veeranna Ravindra, Lena Ernstgård, Ulaganathan Mabalirajan, Murali Krishna, Lena Palmberg, Krystal J. Godri Pollitt, and et al. 2020. "Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020" Toxics 8, no. 3: 68. https://doi.org/10.3390/toxics8030068
APA StylePadukudru Anand, M., Larsson, K., Johanson, G., Phuleria, H. C., Ravindra, P. V., Ernstgård, L., Mabalirajan, U., Krishna, M., Palmberg, L., Pollitt, K. J. G., Upadhyay, S., & Ganguly, K. (2020). Clinical, Epidemiological and Experimental Approaches to Assess Adverse Health Outcomes of Indoor Biomass Smoke Exposure: Conclusions from An Indo-Swedish Workshop in Mysuru, January 2020. Toxics, 8(3), 68. https://doi.org/10.3390/toxics8030068