Elimination of Intravenous Di-2-Ethylhexyl Phthalate Exposure Abrogates Most Neonatal Hypertension in Premature Infants with Bronchopulmonary Dysplasia
Abstract
:1. Introduction
2. Materials and Methods
Study Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
DEHP | Di-2-ethylhexyl phthalate |
VLVW | Very low birthweight (birthweight of 500–1500 g) |
NICU | Newborn intensive care |
IVF | Intravenous fluid |
BPD | Bronchopulmonary dysplasia |
FDA | Food and Drug Administration |
SBP | Systolic blood pressure |
HTN | Hypertension |
PMA | Postmenstrual age |
11B-HSD2 | 11 beta-hydroxysteroid dehydrogenase type II |
CLD | Chronic lung disease |
TPN | Total parenteral nutrition |
LOS | Length of stay |
GA | Gestational age |
References
- Sathyanarayana, S. Phthalates and children’s health. Curr. Prob. Pediatr. Adolesc. Health Care 2008, 38, 34–49. [Google Scholar] [CrossRef]
- Schettler, T. Human exposure to phthalates via consumer prouducts. Int. J. Androl. 2006, 29, 134–139. [Google Scholar] [CrossRef]
- Koch, H.M.; Rossbach, B.; Drexler, H.; Angerer, J. Internal exposure of the general population to DEHP and the other phthalates—Determination of the secondary and primary phthalate monoester metabolites in urine. Environ. Res. 2003, 93, 177–185. [Google Scholar] [CrossRef]
- National Toxicology Program, Center for the Evaluation of Risks to Human Reproduction. NTP-CERHR Expert Panel Report on Di(2-ethylhexyl) Phthalate; US Department of Health and Human Services: Alexandria, VA, USA, 2006. Available online: http://ntp.niehs.nih.gov/ntp/ohat/phthalates/dehp/dehp-monograph.pdf (accessed on 31 March 2021).
- Lorz, P.M.; Towae, F.K.; Enke, W.; Jackh, R.; Bhargava, N. Phthalic acid and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 132–180. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth and Life Studies; Board on Environmental Studies and Toxicology; Committee on the Health Risks of Phthalates. Phthalates and Cumulative Risk Assessment—The Tasks Ahead; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Shea, K.M. Pediatric exposure and potential toxicity of Phthalate plasticizers. Pediatrics 2003, 111, 1467–1474. [Google Scholar] [CrossRef] [Green Version]
- Koop, C.E.; Juberg, D.R.; Benedek, E.P.; Brecher, R.W.; Brent, R.L.; Cole, P.; Thompson, K.M. Review and consensus statement. A scientific evaluation of health effects of two plasticizers used in medical devices and toys: A report from the American Council on Science and Health. Med. Gen. Med. 1999, 22, e14. [Google Scholar]
- Loff, S.; Kabs, F.; Subotic, U.; Schaible, T.; Reinecke, F.; Langbein, M. Kinetics of diethylhexyl-phthalate extraction from polyvinylchloride-infusion lines. J. Parenter. Enter. Nutr. 2002, 26, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loff, S.; Subotic, U.; Reinicke, F.; Wischmann, H.; Brade, J. Extraction of di-ethylhexyl-phthalate from perfusion lines of various material, length and brand by lipid emulsions. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Latini, G.; De Felice, C.; Del Vecchio, A.; Barducci, A.; Ferri, M.; Chiellini, F. Di-(2-ethylhexyl)phthalate leakage and color changes in endotracheal tubes after application in high-risk newborns. Neonatology 2009, 95, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, F.; Ferri, M.; Latini, G. Physical-chemical assessment of di-(2-ethylhexyl)-phthalate leakage from poly(vinyl chloride) endotracheal tubes after application in high risk newborns. Int. J. Pharm. 2011, 409, 57–61. [Google Scholar] [CrossRef]
- Green, R.; Hauser, R.; Calafat, A.M.; Weuve, J.; Schettler, T.; Ringer, S.; Huttner, K.; Hu, H. Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ. Health Perspect. 2005, 113, 1222–1225. [Google Scholar] [CrossRef] [Green Version]
- Weuve, J.; Sanchez, B.N.; Calafat, A.M.; Schettler, T.; Green, R.A.; Hu, H.; Hauser, R. Exposure to phthalates in neonatal intensive care unit infants: Urinary concentrations of monoesters and oxidative metabolites. Environ. Health Perspect. 2006, 114, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Needham, L.L.; Silva, M.J.; Lambert, G. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics 2004, 113, e429–e434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallow, E.B.; Fox, M.A. Phthalates and critically ill neonates: Device-related exposures and non-endocrine toxic risks. J. Perinatol. 2014, 34, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Stroustrup, A.; Bragg, J.B.; Busgang, S.A.; Andra, S.S.; Curtin, P.; Spear, E.A.; Just, A.C.; Arora, M.; Gennings, C. Sources of clinically significant neonatal intensive care unit phthalate exposure. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Stroustrup, A.; Teitelbaum, S.L.; Aschner, J.L. The value of preterm infant environmental health cohorts: The canary in the coal mine. JAMA Pediatr. 2017, 171, 1139–1140. [Google Scholar] [CrossRef] [PubMed]
- Shiue, I. Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011–2012. Int. J. Environ. Res. Public Health 2014, 11, 5989–5999. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Sathyanarayana, S.; Spanier, A.J.; Trachtman, H.; Attina, T.M.; Urbina, E.M. Urinary phthalates are associated with higher blood pressure in childhood. J. Pediatr. 2013, 163, 747–753.e1. [Google Scholar] [CrossRef] [Green Version]
- Trasande, L.; Attina, T.M. Association of exposure to di-2-ethylhexylphthalate (DEHP) replacements with increased blood pressure in children and adolescents. Hypertension 2015, 66, 301–308. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Subcommittee On Screening and Management Of High Blood Pressure In Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, R.; Tackitt, S.; Gievers, L.; Iragorri, S.; Sage, K.; Cornwall, T.; O’Riordan, D.; Merchant, J.; Rozansky, D. Phthalate-associated hypertension in premature infants: A prospective mechanistic cohort study. Pediatr. Nephrol. 2019, 34, 1413–1424. [Google Scholar] [CrossRef] [Green Version]
- Kent, A.L.; Chaudhari, T. Determinants of neonatal blood pressure. Curr. Hypertens. Rep. 2013, 15, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.; Pannu, H.; Yu, R.; Shete, S.; Bricker, J.T.; Gupta-Malhotra, M. Systemic hypertension requiring treatment in the neonatal intensive care unit. J. Pediatr. 2013, 163, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheftel, D.N.; Hustead, V.; Friedman, A. Hypertension screening in the follow-up of premature infants. Pediatrics 1983, 71, 763–766. [Google Scholar] [CrossRef]
- Singh, H.P.; Hurley, R.M.; Myers, T.F. Neonatal hypertension. Incidence and risk factors. Am. J. Hypertens. 1992, 5, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Seliem, W.A.; Falk, M.C.; Shadbolt, B.; Kent, A.L. Antenatal and postnatal risk factors for neonatal hypertension and infant follow-up. Pediatr. Nephrol. 2007, 22, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Farnbach, K.; Iragorri, S.; Al-Uzri, A.; Rozansky, D.; Forbush, R.; Jenkins, R. The changing spectrum of hypertension in premature infants. J. Perinatol. 2019. [Google Scholar] [CrossRef]
- Jenkins, R.D.; Aziz, J.K.; Gievers, L.L.; Mooers, H.M.; Fino, N.; Rozansky, D.J. Characteristics of hypertension in premature infants with and without chronic lung disease: A long-term multi-center study. Pediatr. Nephrol. 2017, 32, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Al Awad, E.; Yusuf, K.; Soraisham, A.; Obaid, H.; Sundaram, A.; Samedi, V.; Akierman, A. Transient hyperaldosteronism and neonatal hypertension: Case series and literature review. J. Clin. Neonatol. 2018, 7, 185–189. [Google Scholar] [CrossRef]
- Milstein, J.M.; Goetzman, B.W.; Riemenschneider, T.A.; Wennberg, R.P. Increased systemic vascular resistance in neonates with pulmonary hypertension. Am. J. Cardiol. 1979, 44, 1159–1162. [Google Scholar] [CrossRef]
- Cohen, G.; Lagercrantz, H.; Katz-Salamon, M. Abnormal circulatory stress responses of preterm graduates. Pediatr. Res. 2007, 61, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Greenough, A.; Emery, E.F.; Gamsu, H.R. Dexamethasone and hypertension in preterm infants. Eur. J. Pediatr. 1992, 151, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.M.; Abitbol, C.L.; Flynn, J.T. Hypertension in infancy: Diagnosis, management and outcome. Pediatr. Nephrol. 2012, 27, 17–32. [Google Scholar] [CrossRef]
- Flynn, J.T. Hypertension in the neonatal period. Curr. Opin. Pediatr. 2012, 24, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Chu, Y.; Huang, Y.; Hardy, D.O.; Lin, S.; Ge, R. Structure-dependent inhibition of human and rat 11B-hydroxysteroid dehydrogenase 2 activities by phthalates. Chem. Biol. Interact. 2010, 183, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.R.; Edwards, C.R. Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol. Metab. Clin. N. Am. 1994, 23, 359–377. [Google Scholar] [CrossRef]
- Martinez-Arguelles, D.B.; Papadopoulos, V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front. Endocrinol. 2015, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Montrose, L.; Padmanabhan, V.; Goodrich, J.M.; Domino, S.E.; Treadwell, M.C.; Meeker, J.D.; Watkins, D.J.; Dolinoy, D.C. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 2018, 13, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Categories | Criteria |
---|---|
Renovascular | Renal artery thromboembolism or renal vein thrombosis |
Congenital renal parenchymal disease | Significant renal parenchymal or urological congenital anomalies, including moderate or severe hydronephrosis, cystic dysplasia, or renal hypoplasia |
Acquired renal parenchymal disease | Serum creatinine greater than 0.6 mg/dL or urine output <1 mL/kg/h at the time of hypertension and without other mechanism of hypertension |
Pulmonary | Chronic lung disease (respiratory support needed after 36 weeks postmenstrual age or 28 days of chronologic age) or acute pulmonary disease at hypertension onset |
Cardiac | Coarctation of the aorta, supra-valvular aortic stenosis, or mid-aortic syndrome |
Endocrine | Hyperthyroidism, congenital adrenal hyperplasia, Cushing’s syndrome, Cohn’s syndrome, or any monogenic cause of hypertension |
Medications/Intoxicants | Patients exposed to one or more of the following agents: corticosteroids, ACTH, sympathomimetics, stimulants, fluid overload, or excessive sodium administration |
Neoplasia | Wilms tumor, neuroblastoma, pheochromocytoma, or mesoblastic nephroma |
Neurologic | Increased intracranial pressure or intraventricular hemorrhage at the time of hypertension |
Miscellaneous | Patients not fitting other categories or for whom a secondary cause of hypertension could not be identified |
Categories of Hypertension a | Period 1 32 Months Baseline | Period 2 20 Months Removal | Period 3 20 Months Return | p | |
---|---|---|---|---|---|
IV DEHP+ 221 VLBW | IV DEHP− 144 VLBW | IV DEHP+ 119 VLBW | Period 1 vs. 2 | Period 2 vs. 3 | |
n (%) | n (%) | n (%) | |||
Pulmonary | 18 (8.1) | 2 (1.4) | 12 (10.1) | <0.01 | <0.01 |
Bronchopulmonary dysplasia | 17 (7.7) | 2 (1.4) | 12 (10.1) | <0.01 | <0.01 |
Acquired renal parenchymal disease | 1 (0.5) | 0 (0) | 0 (0) | NS | NS |
Miscellaneous | 3 (1.4) | 0 (0) | 0 (0) | NS | NS |
All-cause hypertension | 21 (9.5) | 2 (1.4) | 12 (10.1) | <0.01 | <0.01 |
Risk Factors | Period 1 2014–2016 n = 17 | Period 2 2017–2018 n = 2 | Period 3 2019–2020 n = 12 |
---|---|---|---|
Male gender (%) | 76 | 0 | 50 |
Birthweight (kg) | 1.1 ± 0.2 | 0.9 ± 0.1 | 0.9 ± 0.2 |
GA at birth (weeks) | 27.8 ± 1.6 | 29.5 ± 4.0 | 27.2 ± 1.7 |
PMA at HTN (weeks) | 39.4 ± 2.5 | 40.1 ± 3.6 | 39.4 ± 2.2 |
Bronchopulmonary dysplasia (%) | 100 | 100 | 100 |
Incidence of maternal hypertension (%) | 23.5 | 0 | 30.0 |
Demographics and Risk Factors | Period 1 2014–2016 | Period 2 2017–2018 | Period 3 2019–2020 | Period 1 + 3 | p | ||
---|---|---|---|---|---|---|---|
n = 267 | n = 191 | n = 98 | n = 365 | Period 1 vs. 2 | Period 2 vs. 3 | Period 1 + 3 vs. 2 | |
Birthweight (kg) + | 1.1 ± 0.3 | 1.0 ± 0.3 | 1.1 ± 0.3 | 1.1 ± 0.3 | NS | NS | NS |
GA at birth (weeks) + | 28.5 ± 3.1 | 28.1 ± 3.2 | 28.3 ± 2.8 | 28.5 ± 3.0 | NS | NS | NS |
Length of stay (days) + | 59.1 ± 40.1 | 56.0 ± 38.8 | 62.5 ± 41.0 | 60.0 ± 40.3 | NS | NS | NS |
Antenatal steroids (%) | 82.5 | 82.2 | 94.9 | 85.8 | NS | 0.003 | NS |
Chronic lung disease (%) | 25.4 | 27.4 | 35.6 | 28.9 | NS | NS | NS |
Incidence of maternal hypertension (%) | 27.2 | 28.8 | 33.7 | 29.0 | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkins, R.; Farnbach, K.; Iragorri, S. Elimination of Intravenous Di-2-Ethylhexyl Phthalate Exposure Abrogates Most Neonatal Hypertension in Premature Infants with Bronchopulmonary Dysplasia. Toxics 2021, 9, 75. https://doi.org/10.3390/toxics9040075
Jenkins R, Farnbach K, Iragorri S. Elimination of Intravenous Di-2-Ethylhexyl Phthalate Exposure Abrogates Most Neonatal Hypertension in Premature Infants with Bronchopulmonary Dysplasia. Toxics. 2021; 9(4):75. https://doi.org/10.3390/toxics9040075
Chicago/Turabian StyleJenkins, Randall, Katia Farnbach, and Sandra Iragorri. 2021. "Elimination of Intravenous Di-2-Ethylhexyl Phthalate Exposure Abrogates Most Neonatal Hypertension in Premature Infants with Bronchopulmonary Dysplasia" Toxics 9, no. 4: 75. https://doi.org/10.3390/toxics9040075
APA StyleJenkins, R., Farnbach, K., & Iragorri, S. (2021). Elimination of Intravenous Di-2-Ethylhexyl Phthalate Exposure Abrogates Most Neonatal Hypertension in Premature Infants with Bronchopulmonary Dysplasia. Toxics, 9(4), 75. https://doi.org/10.3390/toxics9040075