Interaction of Plant Extracts with Central Nervous System Receptors
Abstract
:1. Introduction
2. Methods of Plant Extract Interactions with CNS Receptors
3. Effect of Plant Extracts on CNS Receptors and Therapeutic Applications
3.1. In Vitro Studies
3.2. In Vivo Studies
3.3. Clinical Trials and Therapeutic Applications
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Cercato, L.M.; White, P.A.; Nampo, F.K.; Santos, M.R.; Camargo, E.A. A systematic review in medicinal plants used for weight loss in Brazil: Is there potential for obesity treatment? J. Ethnopharmacol. 2015, 176, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Olivier, D.K.; Van Vuuren, S.F.; Moteetee, A.N. Annickia affinis and A. chlorantha (Enantia chlorantha)—A review of two closely related medicinal plants from tropical Africa. J. Ethnopharmacol. 2015, 176, 438–462. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, Q.; Li, G.; Sun, S.; Guo, Y.; Kuang, H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. J. Ethnopharmacol. 2015, 176, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar] [CrossRef]
- Memvanga, P.B.; Tona, G.L.; Mesia, G.K.; Lusakibanza, M.M.; Cimanga, R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J. Ethnopharmacol. 2015, 169, 76–98. [Google Scholar] [CrossRef] [PubMed]
- Sucher, N.J.; Carles, M.C. A pharmacological of herbal medicines for epilepsy. Epilepsy Behav. 2015, 52, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.S.; Bahramsoltani, R.; Fazaei, M.H.; Abdollahi, M.; Rahimi, R. Plant-derived natural medicines for the management of depression: An overview of mechanisms of action. Rev. Neurosci. 2015, 26, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.C.; Xiao, P.G. Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evol. Bioinfor. Online 2015, 11, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Bowery, N.G.; Greengrass, P.M.; Phillipson, J.D. Application of radioligand receptor binding assays in the search for CNS active principles from Chinese medicinal plants. J. Ethnopharmacol. 1996, 54, 153–164. [Google Scholar] [CrossRef]
- Bockaert, J.; Pin, J.P. Molecular tinkering of G protein-coupled receptors: An evolutionary success. EMBO J 1999, 18, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Waszkielewicz, A.M.; Gunia, A.; Szkaradek, N.; Słoczyńska, K.; Krupińska, S.; Marona, H. Ion channels as drug targets in central nervous system disorders. Curr. Med. Chem. 2013, 20, 1241–1285. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.D.; Percy, M.E.; McIntyre Burnham, W.; Cole, D.E. G protein-coupled receptors disrupted in human genetic disease. Methods Mol. Biol. 2008, 448, 109–137. [Google Scholar] [PubMed]
- Nazıroğlu, M.; Demirdaş, A. Psychiatric Disorders and TRP Channels: Focus on Psychotropic Drugs. Curr. Neuropharmacol. 2015, 13, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Unlocking the therapeutic potential of plant extracts. Future Med. Chem. 2016, 8, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Nahrstedt, A.; Evans, J.; Hufeisen, S.; Rauser, L.; Savage, J.; Popadak, B.; Ernsberger, P.; Roth, B.L. In vitro receptor screening of pure constituents of St. John’s wort reveals novel interactions with a number of GPCRs. Psychopharmacology 2002, 162, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Simmen, U.; Higelin, J.; Berger-Büter, K.; Schaffner, W.; Lundstrom, K. Neurochemical studies with St. John’s wort in vitro. Pharmacopsychiatry 2001, 34 (Suppl. 1), S137–S142. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.P.; Drew, C.A.; Duffield, P.; Johnston, G.A.; Jamieson, D.D. Kava pyrones and resin: Studies on GABAA, GABAB and benzodiazepine binding sites in rodent brain. Pharmacol. Toxicol. 1992, 71, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Vongtau, H.O.; Abbah, J.; Mosugu, O.; Chindo, B.A.; Ngazal, I.E.; Salawu, A.O.; Kwanashie, H.O.; Gamaniel, K.S. Antinociceptive profile of the methanolic extract of Neorautanenia mitis root in rats and mice. J. Ethnopharmacol. 2004, 92, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wake, G.; Savelev, S.; Tildesley, N.T.; Perry, E.K.; Wesnes, K.A.; Scholey, A.B. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology 2003, 28, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.F.; Jan, Y.M.; Huang, S.Y.; Wang, H.H.; Yu, L.L.; Chen, C.F. Evaluation with receptor binding assay on the water extracts of ten CNS-active Chinese herbal drugs. Proc. Natl. Sci. Counc. Repub. China B 1995, 19, 151–158. [Google Scholar] [PubMed]
- Linde, K.; Ramirez, G.; Mulrow, C.D.; Pauls, A.; Weidenhammer, W.; Melchart, D. St John’s wort for depression—An overview and meta-analysis of randomised clinical trials. BMJ 1996, 313, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Simmen, U.; Burkard, W.; Berger, K.; Schaffner, W.; Lundstrom, K. Extracts and constituents of Hypericum perforatum inhibit the binding of various ligands to recombinant receptors expressed with the Semliki Forest virus system. J. Recept. Signal Transduct. Res. 1999, 19, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Dinh, K.D.; Simmen, U.; Bueter, K.B.; Bueter, B.; Lundstrom, K.; Schaffner, W. Interaction of various Piper metysticum cultivars with CNS receptors in vitro. Planta Med. 2001, 67, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Dinh, L.D.; Ngyuen, L.A.; Trinh, C.T.; Pham, H.T. Interaction of various Vietnamese medicinal plant extracts with angiotensin II receptor revealed by fluorescein-labeled ligand receptor binding assays. In Proceedings of the 7th Indochina Conference on Pharmaceutical Sciences and Advancing Pharmacy for ASEAN Community, Bangkok, Thailand, 14–16 December 2011. P-BB-08.
- Dinh, L.D.; Thi Pham, N.H.; Thi Hoang, N.M.; Tat, C.T.; Thi Nguyen, V.H.; Thi Vo, L.T.; Thanh Pham, H.; Lundstrom, K. Interaction of Vietnamese plant extracts with recombinantly expressed human neurokinin-1 receptor. Planta Med. Lett. 2015, 2, e42–e47. [Google Scholar] [CrossRef]
- Del Valle-Mojica, L.M.; Ayala-Marín, Y.M.; Ortiz-Sanchez, C.M.; Torres-Hernández, B.A.; Abdalla-Mukhaimer, S.; Ortiz, J.G. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [3H]Glutamate Binding to Rat Synaptic Membranes. Evid. Based Complement. Altern. Med. 2011, 2011, 403591. [Google Scholar] [CrossRef] [PubMed]
- Wake, G.; Court, J.; Pickering, A.; Lewis, R.; Wilkins, R.; Perry, E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J. Ethnopharmacol. 2000, 69, 105–114. [Google Scholar] [CrossRef]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.J.; Ruiz, J.M.; Hoye, T.R.; Roth, B.L.; Shoemaker, A.T. Receptor screening technologies in the evaluation of Amazonian ethnomedicines with potential applications to cognitive deficits. J. Ethnopharmacol. 2011, 134, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Jäger, A.K.; Krydsfeldt, K.; Rasmussen, H.B. Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother. Res. 2009, 23, 1642–1644. [Google Scholar] [CrossRef] [PubMed]
- Nencini, C.; Cavallo, F.; Capasso, A.; De Feo, V.; De Martino, L.; Bruni, G.; Giorgi, G.; Micheli, L. Binding studies for serotoninergic, dopaminergic and noradrenergic receptors of Valeriana adscendens Trel. extracts. J. Ethnopharmacol. 2006, 108, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Hennebelle, T.; Sahpaz, S.; Gressier, B.; Joseph, H.; Bailleul, F. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba. Phytother. Res. 2008, 22, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Stafford, G.I.; Jäger, A.K.; van Staden, J. Activity of traditional South African sedative and potentially CNS-acting plants in the GABA-benzodiazepine receptor assay. J. Ethnopharmacol. 2005, 100, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Tai, M.C.; Tsang, S.Y.; Chang, L.Y.; Xue, H. Therapeutic potential of wogonin: A naturally occurring flavonoid. CNS Drug Rev. 2005, 11, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.L.; Kaufman, N.C.; Grundmann, O. The pharmacology and toxicology of kratom: From traditional herb to drug of abuse. Int. J. Legal Med. 2016, 130, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.S.; Lee, S.I.; Ha, J.H.; Lee, D.U. Inhibitory effects of the essential oil from SuHeXiang Wan on the central nervous system after inhalation. Biol. Pharm. Bull. 2004, 27, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shing, M.; Huen, Y.; Tsang, S.Y.; Xue, H. Neuroactive flavonoids interacting with GABAA receptor complex. Curr. Drug Targets CNS Neurol. Disord. 2005, 4, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Muceniece, R.; Saleniece, K.; Krigere, L.; Rumaks, J.; Dzirkale, Z.; Mezhapuke, R.; Kviesis, J.; Mekss, P.; Klusa, V.; Schiöth, H.B.; et al. Potato (Solanum tuberosum) juice exerts an anticonvulsant effect in mice through binding to GABA receptors. Planta Med. 2008, 74, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Muceniece, R.; Saleniece, K.; Rumaks, J.; Krigere, L.; Dzirkale, Z.; Mezhapuke, R.; Zharkova, O.; Klusa, V. Betulin binds to gamma-aminobutyric acid receptors and exerts anticonvulsant action in mice. Pharmacol. Biochem. Behav. 2008, 90, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Lin, J.K.; Liu, S.H.; Lin-Shiau, S.Y. Novel regimen through combination of memantine and tea polyphenol for neuroprotection against brain excitotoxicity. J. Neurosci. Res. 2008, 86, 2696–2704. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Reyes, R.; López-Rubalcava, C.; Rocha, L.; Heinze, G.; González Esquinca, A.R.; Martínez-Vázquez, M. Anxiolytic-like and sedative actions of Rollinia mucosa: Possible involvement of the GABA/benzodiazepine receptor complex. Pharm. Biol. 2010, 48, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Han, D.; Kim, S.B.; Yoon, M.; Yang, H.; Jin, Y.H.; Jo, J.; Yong, H.; Lee, S.H.; Jeon, Y.J.; et al. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from Ecklonia cava edible brown seaweed. Biosci. Biotechnol. Biochem. 2012, 76, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Martet, M.; Feliú, A.; Espejo-Porras, F.; Mecha, M.; Carrillo-Salinas, F.J.; Fernández-Ruiz, J.; Guaza, C.; de Lago, E. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors. Mult. Scler. Relat. Disord. 2015, 4, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Kumarihamy, M.; León, F.; Pettaway, S.; Wilson, L.; Lambert, J.A.; Wang, M.; Hill, C.; McCurdy, C.R.; ElSohly, M.A.; Cutler, S.J.; et al. In vitro opioid receptor affinity and in vivo behavioral studies of Nelumbo nucifera flower. J. Ethnopharmacol. 2015, 174, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.Z.; Nahar, N.; Akter, S.; Rana, M.S. Antinociceptive activity of methanol extract of flowers of Impatiens balsamina. J. Ethnopharmacol. 2012, 142, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Veryser, L.; Bracke, N.; Wynendaele, E.; Joshi, T.; Tatke, P.; Taevernier, L.; De Spiegeleer, B. Quantitative in vitro and in vivo evaluation of intestinal and blood-brain barrier transport kinetics of the plant N-alkylamide pellitorine. Biomed. Res. Int. 2016, 2016, 5497402. [Google Scholar] [CrossRef] [PubMed]
- Veryser, L.; Taevernier, L.; Joshi, T.; Tatke, P.; Wynendaele, E.; Bracke, N.; Stalmans, S.; Peremans, K.; Burvenich, C.; Risseeuw, M.; et al. Mucosal and blood-brain barrier transport kinetics of the plant N-alkylamide spilanthol using in vitro and in vivo models. BMC Complement. Altern. Med. 2016, 16, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.X.; Feng, L.; Cao, F.R.; Pan, R.L.; Liao, Y.H.; Liu, X.M.; Chang, Q. Pharmacokinetic profiles of the five isoflavonoids from Pueraria lobata roots in the CSF and plasma of rats. J. Ethnopharmacol. 2016, 184, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Li, W.; Li, Q.; Zhao, H.; Tang, J.; Chen, Q.; Liu, X.; Zhang, J.H.; Chen, Y.; Feng, H. Protective effects of Ephedra sinica extract on blood-brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neurosci. Lett. 2015, 609, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, M.A.; Prasad, S.; Cucullo, L. Protecting the BBB endothelium against cigarette smoke-induced oxidative stress using popular antioxidants: Are they really beneficial? Brain Res. 2015, 1627, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Caccia, S.; Gobbi, M. St. John’s wort components and the brain: Uptake, concentrations reached and the mechanisms underlying pharmacological effects. Curr. Drug Metab. 2009, 10, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Yenesetti, S.C.; Manjunath, M.J.; Muralidhara, C. Neuropharmacological properties of Withania somnifera—Indian Ginseng: An overview on experimental evidence with emphasis on clinical trials and patents. Recent Pat. CNS Drug Discov. 2016, 10, 204–215. [Google Scholar] [CrossRef]
- Miroddi, M.; Navarra, M.; Quattropani, M.C.; Calapai, F.; Gangemi, S.; Calapai, G. Systemic review of clinical tiral assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci. Ther. 2014, 20, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Rezapour-Firouzi, S.; Arefhosseini, S.R.; Mehdi, F.; Mehrangiz, E.M.; Baradaran, B.; Sadeghihokmabad, E.; Mostafaei, S.; Fazljou, S.M.; Torbati, M.A.; Sanaie, S.; et al. Immunomodulatory and therapeutic effects of hot-nature diet and co-supplemented hemp seed, evening primrose oils intervention in multiple sclerosis patients. Complement. Ther. Med. 2013, 21, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Zajicek, J.P.; Apostu, V.I. Role of cannibinoids in multiple sclerosis. CNS Drugs 2011, 25, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Pandaran Sudheeran, S.; Jacob, D.; Natinga Mulakal, J.; Gopinathan Nair, G.; Maliakel, A.; Maliakel, B.; Kuttan, R.; Im, K. Safety, tolerance, and enhanced efficacy of a bioavailable formulation of curcumin with fenugreek dietary fiber on occupational stress: A randomized, double-blind, placebo-controlled pilot study. J. Clin. Psychopharmacol. 2016, 36, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Dimpfel, W.; Todorova, A.; Vonderheid-Guth, B. Pharmacodynamic properties of St. John’s wort—A single blind neurophysiological study in healthy subjects comparing two commercial preparations. Eur. Med. Res. 1999, 4, 303–312. [Google Scholar]
- Itil, M.; Eralp, E.; Ahmed, I.; Kunitz, A.; Itil, K.Z. The pharmacological effects of Ginkgo biloba, a plant extract, on the brain of dementia patients in comparison with tacrine. Psychopharmacol. Bull. 1998, 34, 391–397. [Google Scholar] [PubMed]
- Schofferman, J.A. A clinical comparison of syrup of ipetec and apomorphine use in adults. JACEP 1976, 5, 22–25. [Google Scholar] [CrossRef]
- Garcia-Merino, A. Endocannabinoid system modulator use in everyday clinical practice in the UK and Spain. Expert Rev. Neurother. 2013, 13, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.Y.; Li, F.Z.; Afseth, J. Review of the regulations of clinical research in herbal medicines in USA. Chin. J. Integr. Med. 2014, 20, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Maegawa, H.; Nakamura, T.; Saito, K. Regulation of traditional herbal medicinal products in Japan. J. Ethnopharmacol. 2014, 158 Pt B, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Rekha, K.; Sivasubramanian, C.; Thiruvengadam, M. Evaluation of polyphenol composition and biological activities in two samples from summer and winter seasons of Liguralia fischeri var. Spiciformis nakai. Acta Biol. Hung. 2015, 66, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalt, W.; Ryan, D.A.; Duy, J.C.; Prior, L.; Ehlenfeld, M.K.; Vander Kloet, S.P. Interspecific variation in anthocyanins, phenolics, and and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J. Agric. Food Chem. 2001, 49, 4761–4767. [Google Scholar] [CrossRef] [PubMed]
Receptor | Plant/Extract | Host | Effect/Response | Ref. |
---|---|---|---|---|
5-HT1A | R. cimicifugae, Z.spinose V. adsendens/methanolic, aqueous | Cell lines Cell lines | Receptor affinity Weak affinity, only aqueous extract | [21] [32] |
5-HT1D | H. perforatum/amentoflavone | Cell lines | Receptor binding | [16] |
5-HT2 | H. perforatum/amentoflavone | Cell lines | Receptor binding | [16] |
5-HT6/7 | H. perforatum/lipophilic fraction H. perforatum/hypericin, hyperforin | Cell lines Cell lines | Receptor binding Receptor binding | [23] [23] |
AR | H. perforatum/amentoflavone, hypericin | Cell lines | Receptor binding | [23] |
AT-II | E. indica, P. vulgaris | Cell lines | Receptor binding | [25] |
BZD | S. milthiorrhizae, Scutellariae H. perforatum/amentoflavone P. methysticum/Kava R. mucosa leaves E. cava/phlorotannin | Cell lines Cell lines Rodent brain Mouse brain Mouse brain | Receptor affinity Receptor binding Weak receptor binding Reduced binding Receptor binding | [21] [16] [18] [42] [43] |
CB1 | Sativex® | EAE mice | Therapeutic potential | [44] |
Estrogen | H. perforatum/I3 II8-biapegenin | Cell lines | Receptor binding | [26] |
NK1 | P. nigrum, S. cambodica, S. japonicum H. perforatum/lipophilic fraction | Cell lines Cell lines | Inhibition of NK1 Weak binding | [24] [23] |
GABAA | Chuanxiong/R. chuanxion Danggui/A. Sinensis Qiunjiao/G. macrophyllae Marcgraviaceae/betulin S. tuberosum/juice L. alba/polyphenols, iridoids Flavonoids A. echinatus, A. afra, M. aquatica S. baicalensis/wogonin P. methysticum/Kava E. cava/phlorotannin P.methysticum | Cell lines Cell lines Cell lines Mice, in vivo Mice, in vivo Cell system Mice, in vivo Cell lines Mice, in vivo Rodent brain Mouse brain Cells | Receptor affinity Receptor affinity Receptor affinity Anticonvulsant action Anticonvulsant action Antioxidant, neurosedative Receptor affinity GABAA binding GABAA binding Weak receptor binding Receptor binding Receptor binding | [21] [21] [21] [40] [39] [33] [38] [34] [35] [18] [43] [24] |
mAChR | S. pili oil | Rat | Delay of convulsion | [37] |
mGluR | T. parthenium/apigenin | GABAA binding | [31] | |
NMDA | S. pill oil V. officinalis Memantine, tea polyphenol M. officinalis M. officinalis, A. absinthium | Cell lines Cell lines Mice, in vivo Humans Human brain | Inhibition of convulsion Receptor binding interaction Neuroprotection Cognition, mood Dose-dependent affinity | [10] [27] [41] [20] [28] |
D1 | H. perforatum/hypericin | Cell lines | Receptor binding | [23] |
D3 | H. perforatum/amentoflavone | Cell lines | Receptor binding | [23] |
Opioid | H. perforatum/hypericin H. perforatum/amentoflavone,hypericin P. methysticum H. perforatum/amentoflavone H. perforatum/lipohilic fraction H. perforatum/hypericin, hyperforin M. speciosa/mitragynine, 7-HM N. mitis/methanolic extracts N. nucifera I. balsamina | Cell lines Cell lines Cell lines Cell lines Cell lines Cell lines Humans Mice in vivo Mice in vivo Mice in vivo | Receptor binding Receptor binding Receptor binding Receptor binding Receptor binding Receptor binding Mood, pain, drug abuse Anti-nociception in vivo Radioligand binding Anti-nociception in vivo | [23] [16] [25] [16] [23] [23] [36] [19] [45] [46] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundstrom, K.; Pham, H.T.; Dinh, L.D. Interaction of Plant Extracts with Central Nervous System Receptors. Medicines 2017, 4, 12. https://doi.org/10.3390/medicines4010012
Lundstrom K, Pham HT, Dinh LD. Interaction of Plant Extracts with Central Nervous System Receptors. Medicines. 2017; 4(1):12. https://doi.org/10.3390/medicines4010012
Chicago/Turabian StyleLundstrom, Kenneth, Huyen Thanh Pham, and Long Doan Dinh. 2017. "Interaction of Plant Extracts with Central Nervous System Receptors" Medicines 4, no. 1: 12. https://doi.org/10.3390/medicines4010012
APA StyleLundstrom, K., Pham, H. T., & Dinh, L. D. (2017). Interaction of Plant Extracts with Central Nervous System Receptors. Medicines, 4(1), 12. https://doi.org/10.3390/medicines4010012