Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Plant Material
2.3. Quantification of Reducing Sugars
2.4. Cell Culture
2.5. Cell Treatment with EC or Vr
2.6. Evaluation of Cell Viability and ROS Production
2.7. Determination of GSH Concentration and GPx and GR Activity
2.8. Determination of Carbonyl Groups
2.9. Statistics
3. Results
3.1. Quantification of Reducing Sugars
3.2. Cell Viability and ROS Production
3.3. GSH Concentration and GPx and GR Activity
3.4. Carbonyl Groups
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Geldenhuys, W.J.; van der Schyf, C.J. Oxidative stress and Alzheimer's disease: Dietary polyphenols as potential therapeutic agents. Expert Rev. Neurother. 2010, 10, 729–745. [Google Scholar] [CrossRef] [PubMed]
- Favero, G.; Paganelli, C.; Buffoli, B.; Rodella, L.F.; Rezzani, R. Endothelium and its alterations in cardiovascular diseases: Life style intervention. BioMed Res. Int. 2014, 2014, 801896. [Google Scholar] [CrossRef] [PubMed]
- Polovina, M.M.; Potpara, T.S. Endothelial dysfunction in metabolic and vascular disorders. Postgrad. Med. 2014, 126, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences and medical therapy: Part I. Eur. Heart J. 2013, 34, 2436–2443. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Valls, N.; Brito, R.; Rodrigo, R. Essential hypertension and oxidative stress: New insights. World J. Cardiol. 2014, 6, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zou, M.H. Redox regulation of endothelial cell fate. Cell. Mol. Life Sci. 2014, 71, 3219–3239. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V. Flowering Plants of the World; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Mayworm, M.A.S.; Buckeridgeb, M.S.; Marquez, U.M.L.; Salatino, A. Nutritional reserves of Vochysiaceae seeds: Chemical diversity and potential economic uses. An. Acad. Bras. Cienc. 2011, 83, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Mayworm, M.A.S.; Buckeridgeb, M.S.; Salatino, A. Monomer composition of polysaccharides of seed cell walls and the taxonomy of the Vochysiaceae. Phytochemistry 2000, 55, 581–587. [Google Scholar] [CrossRef]
- Zucaro, Y.L.; Compagnone, R.S.; Hess, S.C.; Delle, F. Hydroxymaslinic acid, a triterpen from Vochysia. ferruginosa. J. Braz. Chem. Soc. 2000, 2, 241–244. [Google Scholar] [CrossRef]
- Silva, M.A.B. Levantamento etnobotanico e triagem hipolipidemica de Plantas Medicinais doCerrado Mato-grossense: Avaliacao da actividade hipolipidemica de Simaba. ferruginea St. Hil. e Vochysia. rufa Mart. Ph.D. Thesis, Facultade de Ciencias Medicas, Universidade Federal de Mato-Grosso, Cuiaba, Brazil, 2009. [Google Scholar]
- Barbosa, I.; Manzan-Martins, C.; Moura, N.; Calábria, L.K.; Nakamura, K.R.; da Silva, A.L.; Salmen, F. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos, 4th ed.; IAL: Sao Paulo, Brazil, 2004. [Google Scholar]
- Gouveia, N.M.; Rodrigues, W.F.; Palomino, O.; Sousa, R.; Oliveira, A.; Lago, J.; Santos, V.; Lago, C.; Goya, L.; Espindola, F. Phytochemical characterization of Vochysia. rufa (Sapotaceae) stem bark and its protective effect against oxidative stress on endothelial cells. In Proceedings of the XXIV Simpósio de Plantas Medicinais do Brasil, Belo Horizonte, Brazil, 21–24 September 2016.
- Palomino, O.M.; Gouveia, N.M.; Ramos, S.; Martín, M.A.; Goya, L. Protective effect of Silybum marianum on endothelial cells submitted to high glucose concentration. Planta Med. 2016, 82, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Granado-Serrano, A.B.; Martín, M.A.; Izquierdo-Pulido, M.; Goya, L.; Bravo, L.; Ramos, S. Molecular mechanisms of (−)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J. Agric. Food Chem. 2007, 55, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.A.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res. 2014, 58, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Granado-Serrano, A.B.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem. Toxicol. 2009, 47, 2499–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, N.M.; Sousa, R.M.F.; Calábria, L.K.; Mundim, A.V.; Miguel, C.B.; Rodrigues, W.F.; Oliveira, C.J.; Lazo-Chica, J.E.; Oliveira, A.; Lago, J.H.G.; et al. Phytochemical Characterization of the Vochysia rufa (Vochysiaceae) Extract and its Effects on Oxidative Stress in the Pancreata of Streptozotocin-Induced Diabetic Rats. PLoS ONE 2016, in press. [Google Scholar]
- Martín, M.A.; Ramos, S.; Mateos, R.; Marais, J.; Bravo, L.; Khoo, C.; Goya, L. Chemical characterization and chemo-protective activity of cranberry phenolic extracts in a model cell culture. Response of the antioxidant defences and regulation of signaling pathways. Food Res. Int. 2015, 71, 68–82. [Google Scholar] [CrossRef]
- Jiang, S.; Du, P.; An, L.; Yuan, G.; Sun, Z. Antidiabetic effect of Coptis chinensis polysaccharide in high-fat diet with STZ-induced diabetic mice. Int. J. Biol. Macromol. 2013, 55, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Meng, H.; Yang, H.S. Antidiabetic activity of Taxus cuspidate polysaccharides in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2012, 50, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramiro, I.; Ramos, S.; Bravo, L.; Goya, L.; Martin, M.A. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem. 2011, 22, 1186–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ramiro, I.; Martín, M.A.; Ramos, S.; Bravo, L.; Goya, L. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress in Caco2 cells. Eur. J. Nutr. 2011, 50, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Herrera, I.; Martín, M.A.; Goya, L.; Ramos, S. Cocoa flavonoids protect hepatic cells against high glucose-induced oxidative stress: Relevance of MAPKs. Mol. Nutr. Food Res. 2015, 59, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Herrera, I.; Martín, M.A.; Goya, L.; Ramos, S. Cocoa intake ameliorates hepatic oxidative stress in young Zucker Diabetic Fatty rats. Food Res. Int. 2015, 69, 194–201. [Google Scholar] [CrossRef]
- Ramos, S.; Rodríguez-Ramiro, I.; Martín, M.A.; Goya, L.; Bravo, L. Dietary flavanols exert different effects on antioxidant defences and apoptosis in Caco-2 and SW480 colon cancer cells. Toxicol. In Vitro 2011, 25, 1771–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Condition | Cell Viability ± SD | |
---|---|---|
Direct Effect | Protective Effect (+30 mM Glu) | |
Control | 100.37 a ± 1.34 | 100 c ± 5.17 |
30 mM Glu | - | 54.80 a ± 1.29 |
5 µM EC | - | 115.1 c ± 11.0 |
0.5 µg/mL V. rufa | 99.06 a ± 1.83 | 57.85 a ± 4.39 |
1 µg/mL V. rufa | 99.59 a ± 1.12 | 66.93 b ± 3.53 |
5 µg/mL V. rufa | 100.08 a ± 2.22 | 123.64 d ± 3.48 |
10 µg/mL V. rufa | 99.15 a ± 1.35 | 123.31 d ± 3.94 |
25 µg/mL V. rufa | 99.96 a ± 1.52 | 126.50 d ± 2.09 |
50 µg/mL V. rufa | 99.05 a ± 1.24 | 122.16 d ± 3.61 |
100 µg/mL V. rufa | 98.23 a ± 1.03 | 108.48 c ±.6.10 |
Condition | ROS ± SD | |
---|---|---|
Direct Effect | Protective Effect (+30 mM Glu) | |
Control | 100 a ± 8.64 | 100 a ± 3.48 |
5 µM EC | 86.02 b ± 2.25 | 113.27 b ± 3.80 |
30 mM Glu | - | 298.07 d ± 6.30 |
5 µg/mL V. rufa | 98.00 a ± 9.17 | 214.91 c ± 4.97 |
10 µg/mL V. rufa | 103.63 a ± 6.02 | 122.74 b ± 4.74 |
25 µg/mL V. rufa | 100.68 a ± 8.21 | 94.11 a ± 0.74 |
50 µg/mL V. rufa | 95.96 a ± 9.20 | 91.63 a ± 1.55 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura de Gouveia, N.; Ramos, S.; Martín, M.Á.; Espindola, F.S.; Goya, L.; Palomino, O.M. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage. Medicines 2017, 4, 9. https://doi.org/10.3390/medicines4010009
Moura de Gouveia N, Ramos S, Martín MÁ, Espindola FS, Goya L, Palomino OM. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage. Medicines. 2017; 4(1):9. https://doi.org/10.3390/medicines4010009
Chicago/Turabian StyleMoura de Gouveia, Neire, Sonia Ramos, María Ángeles Martín, Foued Salmen Espindola, Luis Goya, and Olga M. Palomino. 2017. "Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage" Medicines 4, no. 1: 9. https://doi.org/10.3390/medicines4010009
APA StyleMoura de Gouveia, N., Ramos, S., Martín, M. Á., Espindola, F. S., Goya, L., & Palomino, O. M. (2017). Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage. Medicines, 4(1), 9. https://doi.org/10.3390/medicines4010009