Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of the Essential Oil
2.3. GC-MS Analysis
2.4. In vitro Antioxidant Activity
2.5. Antimicrobial Activity
3. Results
3.1. Chemical Composition of Essential Oil
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thatoi, H.; Samantaray, D.; Swagat, K.D. The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review. Front. Life Sci. 2016, 09, 267–291. [Google Scholar] [CrossRef]
- Fardin, K.M.; Young, M.C.M. Antifungal potential of Avicennia schaueriana Stapf & Leech. (Acanthaceae) against Cladosporium and Colletotrichum species. Lett. Appl. Microbiol. 2015, 61, 50–57. [Google Scholar] [PubMed]
- Bousquet-Mélou, A.; Fauvel, M. Inter-specific variation in the concentration of two iridoid glucosides in Avicennia L. (Avicenniaceae Endl.). Biochem. Syst. Ecol. 1998, 26, 935–940. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.M.; Duan, X.J.; Wang, B.G. Iridoid glucosides and flavones from the aerial parts of Avicennia marina. Chem. Biodivers. 2006, 03, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, C.; Kumar, S.R.; Reddy, G.D. Bioactive diterpenes from the mangrove Avicennia officinalis Linn. Indian J. Chem. 2006, 45, 2556–2557. [Google Scholar] [CrossRef]
- Ito, C.; Katsuno, S.; Kondo, Y.; Tan, H.T.; Furukawa, H. Chemical constituents of Avicennia alba. Isolation and structural elucidation of a new naphthoquinones and their analogues. Chem. Pharm. Bull. 2000, 48, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Basyuni, M.; Baba, S.; Kinjo, Y.; Oku, H. Salinity increases the triterpenoid content of a salt secretor and a non-salt secretor mangrove. Aquat. Bot. 2012, 97, 17–23. [Google Scholar] [CrossRef]
- Santos, S.C.; Ferreira, F.S.; Damião, A.O.; Damião, A.O.; Barros, T.F.; Rossi-Alva, J.C.; Fernandez, L.G. Avaliação da atividade antibacteriana dos extratos de Avicennia schaueriana Stapf & Leechm. ex Moldenke, Verbenaceae. Braz. J. Pharmacog. 2010, 20, 124–129. [Google Scholar]
- Jones, W.P.; Lobo-Echeverri, T.; Mi, Q.; Chai, H.; Lee, D.; Soejarto, D.D.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Kinghorn, D. Antitumor activity of 3-chlorodeoxylapachol, a naphthoquinone from Avicennia germinans collected from an experimental plot in southern Florida. J. Pharm. Pharmacol. 2005, 57, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, A.; El-Ansari, M.A.; Saleh, N.A.M. New flavonoids from Avicennia marina. Fitoterapia 2000, 71, 274–277. [Google Scholar] [CrossRef]
- Manilal, A.; Tsalla, T.; Zerdo, Z.; Ameya, G.; Merdekios, B.; John, S.E. Evaluating the antibacterial and anticandidal potency of mangrove, Avicennia marina. Asian Pac. J. Trop. Dis. 2016, 6, 136–140. [Google Scholar] [CrossRef]
- Guo, X.; Zhen, T.; Wen-dong, S. Characteristics of chemical constituents of volatile oil from leaves of mangrove plant Avicennia marina by gas chromatography/mass spectrometry. Trop. Oceanogr. 2008, 27, 57–59. [Google Scholar]
- Huang, L.; Zhu, F.; Huang, M. GC/MS analysis of the chemical constituents of the essential oil from the fruits of Avicennia marina. Fine Chem. 2009, 3, 11. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Chicago, IL, USA, 2007; p. 804. [Google Scholar]
- NIST. National Institute of Standards and Technology. U.S. Department of Commerce. Available online: webbook.nist.gov (accessed on 14 July 2016).
- CLSI. Clinical and Laboratory Standards Institute (Old NCCLS National Committee for Clinical Laboratory Standards). Método de Referência Para Testes de Diluição em Caldo Para a Determinação da Sensibilidade a Terapia Antifúngica dos Fungos Filamentosos: Norma Aprovada. Document M38-A, 2002, 22. Available online: anvisa.gov.br (accessed 21 April 2016).
- CLSI. Clinical and Laboratory Standards Institute (old NCCLS National Committee for Clinical Laboratory Standards). Metodologia Dos Testes de Sensibilidade a Agentes Antimicrobianos Por Diluição Para Bactéria de Crescimento Aeróbico: Norma Aprovada. Document M7-A6, 2003, 23. Available online: anvisa.gov.br (accessed 21 April 2016).
- Murakami, C.; Lago, J.H.G.; Perazzo, F.F.; Ferreira, K.S.; Lima, M.E.L.; Moreno, P.R.H.; Young, M.C.M. Chemical composition and antimicrobial activity of essential oils from Chromolaena laevigata during flowering and fruiting stages. Chem. Biodivers. 2013, 10, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Dhayanithi, N.B.; Kumar, T.T.A.; Murthy, R.G.; Kathiresan, K. Isolation of antibacterials from the mangrove, Avicennia marina and their activity against multi drug resistant Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 1892–1895. [Google Scholar] [CrossRef]
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia, da Planta ao Medicamento, 5th ed.; UFRGS: Porto Alegre, RS, Brazil, 2003; p. 1102. [Google Scholar]
- Kachroo, A.; Kachroo, P. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 2009, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 2002, 50, 2231–2234. [Google Scholar] [CrossRef] [PubMed]
- Sarikahya, N.B.; Ucar, E.O.; Kayce, P.; Gokturk, R.S.; Sumbul, H.; Arda, N.; Kirmizigul, S. Fatty acid composition and antioxidant potential of ten Cephalaria species. Rec. Nat. Prod. 2015, 09, 116–123. [Google Scholar]
- Gulçin, I. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.P.; Deolu-Sobogun, S.A.; Saleh, M.A. Comprehensive assessment of antioxidant activity of essential oils. J. Food Sci. 2012, 77, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Lincy, M.P.; Paulpriya, K.; Mohan, V.R. In vitro antioxidant activity of Avicennia marina (Forssk) Vierh pneumatophoroe (Avicenniaceae). Sci. Res. Rep. 2013, 03, 106–114. [Google Scholar]
- Selvasundhari, L.; Vembu, B.; Vinola, J.; Jeyasudha, S.; Govindasamy, T. Screening of antioxidant potential compounds from Avicennia marina bark. IJCR 2014, 6, 5490–5496. [Google Scholar]
- Moreno, P.R.H.; Costa-Issa, F.I.C.; Rajca-Ferreira, A.K.; Pereira, M.A.A.; Kaneko, T.M. Native Brazilian plants against nosocamial infections: A critical review on their potential and the antimicrobial methodology. Curr. Top. Med. Chem. 2013, 13, 3040–3078. [Google Scholar] [CrossRef]
- Sharma, G.; Rao, S.; Bansal, A.; Dang, S.; Gupta, S.; Gabrini, R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals 2014, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, T.; Koyama, N.; Matsuda, J.; Aoyama, Y.; Hirakata, Y.; Kamihira, S.; Kohno, S.; Nakashima, M.; Sasaki, H. Antimicrobial activity of saturated fatty acids and fatty amines against Methicillin-Resistant Staphylococcus aureus. Biol. Pharm. Bull. 2004, 27, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Nieman, C. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev. 1954, 18, 147–163. [Google Scholar] [PubMed]
- Choi, J.S.; Park, N.H.; Hwang, S.Y.; Sohn, J.H.; Kwak, I.; Cho, K.K.; Choi, I.S. The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens. J. Environ. Biol. 2013, 34, 673–676. [Google Scholar] [PubMed]
- Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Fujita, K.; Nihei, K. Antimicrobial and cytotoxic evaluation of eugenol derivatives. J. Sci. Food Agric. 2008, 88, 242–247. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
Compounds | RI a | RI (lit.) b | % | |
---|---|---|---|---|
1 | 2 | |||
1-octen-3-one | 977 | 977 | - | 0.7 |
1-octen-3-ol | 981 | 979 | 1.8 | 4.3 |
n-nonanal | 1103 | 1100 | 0.9 | 2.6 |
1,2-dihydronaphthalene | 1151 | 1166 | 3.1 | 2.4 |
n-decanal | 1205 | 1201 | 0.7 | 1.1 |
(2E)-decenal | 1262 | 1263 | 2.5 | 3.4 |
N.I. 1: M+ 207, 119 (100%), 105 (55%), 91 (55%) | 1326 | - | 0.7 | 0.8 |
N.I. 2: M+ 212, 43 (100%), 69 (91%), 109 (52%) | 1332 | - | - | 1.1 |
eugenol | 1350 | 1359 | - | 19.7 |
(E)-β-damascenone | 1376 | 1384 | 3.6 | 3.5 |
N.I. 3: M+ 192, 159 (100%), 91 (73%), 105 (63%) | 1382 | - | 3.7 | 4.8 |
N.I. 4: M+ 211, 157 (100%), 142 (70%), 172 (51%) | 1385 | - | - | 1.1 |
N.I. 5: M+ 186, 157 (100%), 142 (72%), 172 (50%) | 1388 | - | - | 1.3 |
N.I. 6: M+ 207, 44 (100%), 43 (82%), 159 (68%) | 1399 | 0.8 | ||
methyl decyl ketone | 1400 | 1389 | 1.0 | - |
N.I. 7: M+ 218, 159 (100%), 119 (99%), 91 (34%) | 1406 | - | 4.8 | 6.8 |
cis-geranylacetone | 1445 | 1436 | - | 1.3 |
N.I. 8: M+ 220, 135 (100%), 79 (67%), 150 (58%) | 1456 | - | 1.0 | 1.2 |
N.I. 9: M+ 227, 133 (100%), 91 (80%), 105 (58%) | 1459 | - | - | 0.7 |
eugenol acetate | 1511 | 1522 | - | 12.9 |
caryophyllene oxide | 1576 | 1583 | - | 1.6 |
epi-β-bisabolol | 1667 | 1671 | 1.3 | - |
pentadecanal | 1712 | 1713 | - | 1.0 |
myristic acid | 1765 | 1770 | 11.6 | 3.0 |
hexahydrofarnesyl acetone | 1839 | 1843 | 6.1 | 6.1 |
diisobutyl phthalate | 1853 | 1866 | 0.7 | 0.7 |
pentadecanoic acid | 1860 | 1870 | 1.0 | - |
N.I. 10: M+ 208, 84 (100%), 43 (72%), 85 (72%) | 1882 | - | 0.7 | - |
musk ambrette | 1895 | 1925 | - | 0.7 |
palmitic acid | 1977 | 1960 | 46.5 | 15.1 |
linoleic acid | 2128 | 2133 | 1.2 | - |
oleic acid | 2136 | 2142 | 5.1 | - |
n-tetracosane | 2497 | 2400 | 0.8 | - |
heptacosane | 2697 | 2700 | 1.1 | 1.2 |
Total identified | 89.1% | 81.3% | ||
Fatty acids | 65.3% | 18.1% | ||
Hydrocarbons | 1.9% | 1.2% | ||
Phenylpropanoids | - | 32.6% | ||
Oxygenated sesquiterpenes | 1.3% | 1.6% | ||
Other | 20.6% | 27.7% | ||
N.I. | 10.9% | 18.7% |
Sample | IC50 (mg/mL) |
---|---|
1 | 0.90 ± 0.011 a |
2 | 1.13 ± 0.028 b |
IC50 (μg/mL) | |
Quercetin | 10.47 ± 0.91 c |
Sample | Growth Inhibition (%) for 217 μg/mL (Mean ± CI95, n = 3) | ||||
---|---|---|---|---|---|
S. aureus (ATCC 6538) | E. coli (ATCC 8739) | P. aeruginosa (ATCC 9027) | C. albicans (ATCC 10231) | A. brasiliensis (ATCC 16404) | |
1 | - | 13.5 ± 11.6 | 66.8 ± 4.8 | 15.3 ± 5.8 | - |
2 | 16.0 ± 10.6 | 33.7 ± 2.2 | 74.5 ± 9.3 | 12.1 ± 7.3 | - |
Ciprofloxacin (50 µg/mL) a | 95.0 | 100 | 100 | N.A. | N.A. |
Nystatin (50 µ g/mL) a | N.A. | N.A. | N.A. | 100 | + |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, K.N.; Kaneko, T.M.; Young, M.C.M.; Murakami, C.; Cordeiro, I.; Moreno, P.R.H. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations. Medicines 2017, 4, 26. https://doi.org/10.3390/medicines4020026
Machado KN, Kaneko TM, Young MCM, Murakami C, Cordeiro I, Moreno PRH. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations. Medicines. 2017; 4(2):26. https://doi.org/10.3390/medicines4020026
Chicago/Turabian StyleMachado, Kamilla N., Telma M. Kaneko, Maria Cláudia M. Young, Cynthia Murakami, Inês Cordeiro, and Paulo Roberto H. Moreno. 2017. "Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations" Medicines 4, no. 2: 26. https://doi.org/10.3390/medicines4020026
APA StyleMachado, K. N., Kaneko, T. M., Young, M. C. M., Murakami, C., Cordeiro, I., & Moreno, P. R. H. (2017). Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations. Medicines, 4(2), 26. https://doi.org/10.3390/medicines4020026