Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Chemical Standards and Reagents
2.3. Steam Distillation of Essential Oils
2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.5. High Performance Liquid Chromatography (HPLC) Analysis of Flavonoids ana Limonoid
2.6. GC Analysis of Phytosterol Composition
2.7. Antioxidant Capacity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Volatile Essential Oils
3.2. Analysis of Bioactive Compound
3.3. Antioxidant Property
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Forsyth, J.; Damiani, J. Citrus fruits: Types on the market. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Oxford, UK, 2003; Volume 2, pp. 1329–1335. [Google Scholar]
- Tanaka, T. Fundamental discussion of Citrus classification. Stud. Citrol 1977, 14, 1–6. [Google Scholar]
- Lou, S.N.; Ho, C.T. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. J. Food Drug Anal. 2017, 25, 162–175. [Google Scholar] [CrossRef]
- Lou, S.N.; Hsu, Y.S.; Ho, C.T. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J. Food Drug Anal. 2014, 22, 290–295. [Google Scholar] [CrossRef]
- Chen, H.C.; Peng, L.W.; Sheu, M.J.; Lin, L.Y.; Chiang, H.M.; Wu, C.T.; Chen, Y.C. Effects of hot water treatment on the essential oils of calamondin. J. Food Drug Anal. 2013, 21, 363–368. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zeng, W.C.; Xu, P.Y.; Lan, Y.J.; Zhu, R.X.; Zhong, K.; Huang, Y.N.; Gao, H. Chemical composition and antibacterial activity of the essential oil of Kumquat (Fortunella crassifolia Swingle) peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.N.; Lai, Y.C.; Huang, J.D.; Ho, C.T.; Ferng, L.H.A.; Chang, Y.C. Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chem. 2015, 171, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Liu, Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Economos, C.; Clay, W.D. Nutritional and health benefits of citrus fruits. Food Nutr. Agric. 1999, 24, 11–18. [Google Scholar]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon's by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- García, B.F.; Torres, A.; Macías, F.A. Synergy and Other Interactions between Polymethoxyflavones from Citrus Byproducts. Molecules 2015, 20, 20079–20106. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Peng, C.C.; Liang, Y.J.; Yeh, W.T.; Wang, H.E.; Yu, T.H.; Peng, R.Y. Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters. J. Agric. Food Chem. 2008, 56, 4435–4443. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, K.; Chen, Y.; Chen, Q. Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation. Food Chem. 2005, 93, 599–605. [Google Scholar] [CrossRef]
- Jun-Hua, H.A.N.; Yue-Xin, Y.A.N.G.; Mei-Yuan, F.E.N.G. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed. Environ. Sci. 2008, 21, 449–453. [Google Scholar]
- Lou, S.N.; Lin, Y.S.; Hsu, Y.S.; Chiu, E.M.; Ho, C.T. Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chem. 2014, 161, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from bauhinia t arapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Pellegrin, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol. 1998, 299, 379–389. [Google Scholar]
- Chen, Q.; Hu, Z.; Yao, F.Y.D.; Liang, H. Study of two-stage microwave extraction of essential oil and pectin from pomelo peels. LWT-Food Sci. Technol. 2016, 66, 538–545. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Agostini, F.; Muniz, L.A.R.; Pauletti, G.F. Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. J. Food Eng. 2016, 178, 90–94. [Google Scholar] [CrossRef]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Rouseff, R.L.; Ruiz Perez-Cacho, P.; Jabalpurwala, F. Historical review of citrus flavor research during the past 100 years. J. Agric. Food Chem. 2009, 57, 8115–8124. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, Y.; Zhang, H.; Deng, X.; Chen, F.; Xu, J. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. J. Agric. Food Chem. 2012, 60, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Torres-Alvarez, C.; Núñez González, A.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J.G. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA J. Food 2017, 15, 129–135. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Rondanelli, M.; Monteferrario, F.; Faliva, M.A.; Perna, S.; Antoniello, N. Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. J. Sci. Food Agric. 2013, 93, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R.; Participants, S.W. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef]
- Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospects. J. Agric. Food Chem. 2007, 55, 8285–8294. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, D.; Chen, J.; Ye, X.; Ma, Y.; Shi, J. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 2008, 106, 545–551. [Google Scholar] [CrossRef]
- Chen, M.H.; Huang, T.C. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Sadek, E.S.; Makris, D.P.; Kefalas, P. Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Food Hum. Nutr. 2009, 64. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3. [Google Scholar] [CrossRef]
- Tan, S.; Zhao, X.; Yang, Y.; Ke, Z.; Zhou, Z. Chemical Profiling Using Uplc Q-Tof/Ms and Antioxidant Activities of Fortunella Fruits. J. Food Sci. 2016, 81, C1646–C1653. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Yu, C.W.; Wu, S.C.; Yih, K.H. DPPH Free-Radical Scavenging Activity, Total Phenolic Contents and Chemical Composition Analysis of Forty-Two Kinds of Essential Oils. J. Food Drug Anal. 2009, 17, 386–395. [Google Scholar]
- Choi, H.S.; Song, H.S.; Ukeda, H.; Sawamura, M. Radical-scavenging activities of citrus essential oils and their components: Detection using 1, 1-diphenyl-2-picrylhydrazyl. J. Agric Food Chem. 2000, 48, 4156–4161. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Colica, C.; Menichini, F. Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem. 2005, 53, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
Compounds 3 | RI 2 | Formula | Composition (%) 1 | |
---|---|---|---|---|
Calamondin | Kumquat | |||
Monoterpene | ||||
α-pinene | 934 | C10H16 | 1.41 | 1.28 |
camphene | 948 | C10H16 | 0.04 | 0.01 |
sabinene | 968 | C10H16 | n.d. 4 | 0.05 |
β-pinene | 974 | C10H16 | 0.39 | 0.03 |
β-myrcene | 983 | C10H16 | 4.75 | 4.42 |
α-phellandrene | 997 | C10H16 | 0.25 | 0.18 |
α-terpinene | 1011 | C10H16 | 0.24 | 0.02 |
limonene | 1036 | C10H16 | 87.52 | 89.60 |
β-ocimene | 1045 | C10H16 | 0.11 | 0.03 |
γ-terpinene | 1055 | C10H16 | 0.26 | 0.12 |
α-terpinolene | 1082 | C10H16 | 0.68 | 0.17 |
Sesquiterpene | ||||
δ-elemene | 1338 | C15H24 | 0.06 | 0.15 |
α-copaene | 1379 | C15H24 | n.d. | 0.04 |
β-elemene | 1389 | C15H24 | n.d. | 0.08 |
β-caryophyllene | 1422 | C15H24 | 0.01 | 0.03 |
α-caryophyllene | 1455 | C15H24 | 0.01 | 0.03 |
α-muurolene | 1477 | C15H24 | n.d. | 0.04 |
germacrene-D | 1481 | C15H24 | n.d. | 1.16 |
bicyclogermacrene | 1494 | C15H24 | n.d. | 0.28 |
δ-cadinene | 1501 | C15H24 | n.d. | 0.04 |
γ-cadinene | 1509 | C15H24 | n.d. | 0.02 |
β-cadinene | 1516 | C15H24 | n.d. | 0.13 |
α-gurjunene | 1532 | C15H24 | n.d. | 0.02 |
germacrene-B | 1556 | C15H24 | 0.01 | 0.03 |
Esters | ||||
heptyl acetate | 1092 | C9H18O2 | 0.01 | n.d. |
octyl acetate | 1191 | C10H20O2 | 0.05 | 0.13 |
nonyl acetate | 1289 | C11H22O2 | 0.01 | n.d. |
citronellyl acetate | 1331 | C12H22O2 | n.d. | 0.08 |
neryl acetate | 1340 | C12H20O2 | 0.07 | 0.05 |
geranyl acetate | 1357 | C12H20O2 | 0.40 | 0.36 |
Ketones | ||||
carvone | 1217 | C10H14O | 0.04 | 0.03 |
Alcohols | ||||
3-hexene-1-ol | 837 | C6H12O | 0.02 | 0.01 |
linalool | 1085 | C10H18O | 0.19 | 0.13 |
myrcenol | 1098 | C10H18O | 0.02 | n.d. |
α-fenchol | 1100 | C10H18O | 0.03 | n.d. |
β-terpineol | 1129 | C10H18O | 0.42 | 0.19 |
4-terpinenol | 1165 | C10H18O | 0.26 | 0.15 |
α-terpineol | 1176 | C10H18O | 1.51 | 0.55 |
carveol | 1198 | C10H16O | 0.02 | 0.06 |
geraniol | 1234 | C10H18O | n.d. | 0.01 |
nerolidol | 1546 | C15H26O | n.d. | 0.02 |
ledol | 1579 | C15H26O | n.d. | 0.05 |
10-epi-γ-eudesmol | 1622 | C15H26O | 0.08 | 0.01 |
muurolol | 1630 | C15H26O | 0.02 | 0.04 |
β-eudesmol | 1641 | C15H26O | 0.08 | n.d. |
α-cadinol | 1642 | C15H26O | n.d. | 0.07 |
α-eudesmol | 1646 | C15H26O | 0.03 | n.d. |
Aldehydes | ||||
hexanal | 774 | C6H12O | 0.01 | n.d. |
2-hexenal | 825 | C6H10O | 0.06 | 0.02 |
heptanal | 878 | C7H14O | 0.01 | n.d. |
octanal | 980 | C8H16O | 0.19 | n.d. |
decanal | 1184 | C10H20O | 0.39 | 0.08 |
2-decenal | 1238 | C10H18O | 0.06 | n.d. |
citral | 1243 | C10H16O | 0.02 | n.d. |
perillal | 1248 | C10H14O | 0.02 | 0.02 |
2,4-decadienal | 1268 | C10H16O | 0.07 | n.d. |
undecanal | 1285 | C11H22O | 0.10 | n.d. |
dodecanal | 1386 | C12H24O | 0.06 | n.d. |
terpene compounds | 95.75 | 97.96 | ||
oxygenated compounds | 4.25 | 2.04 |
Compounds | Calamondin | Kumquat |
---|---|---|
flavonoids (μg/g dry base) | ||
naringin | 1.66 ± 0.11 b | 0.52 ± 0.02 a |
hesperidin | 0.42 ± 0.02 b | 0.05 ± 0.01 a |
diosmin | 5.99 ± 0.36 b | 0.35 ± 0.03 a |
quercetin | 0.53 ± 0.02 b | n.d. 1 |
hesperitin | 3.31 ± 0.05 b | 0.08 ± 0.01 a |
phytosterols (μg/g dry base) | ||
campesterol | 4.43 ± 0.28 b | 1.02 ± 0.08 a |
stigmasterol | 4.52 ± 0.32 b | 1.33 ± 0.11 a |
sitosterol | 1.54 ± 0.75 a | 7.04 ± 0.52 b |
amyrin | 2.07 ± 0.14 a | 10.45 ± 0.83 b |
lupenone | n.d. | 8.43 ± 0.36 a |
limonoid (μg/g dry base) | ||
limonin | 1.85 ± 0.11 b | 1.44 ± 0.08 a |
nomilin | 0.19 ± 0.04 a | 0.16 ± 0.03 a |
Antioxidant Capacity | Calamondin | Kumquat |
---|---|---|
EtOH extracted of fruit dry base | ||
Total phenolic (GAE mg/g) | 5.77 ± 0.34 b | 2.29 ± 0.15 a |
Total flavonoid (QE mg/g) | 2.71 ± 0.15 b | 1.36 ± 0.07 a |
DPPH (Tr mg/g) | 1.15 ± 0.06 b | 0.82 ± 0.02 a |
ABTS (Tr mg/g) | 3.83 ± 0.08 b | 0.95 ± 0.03 a |
Essential oil | ||
DPPH (Tr ug/mL) | 29.38 ± 0.62 a | 54.63 ± 0.83 b |
ABTS (Tr ug/mL) | 85.21 ± 0.51 a | 115.6 ± 1.02 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-H.; Yang, K.-M.; Huang, T.-C.; Wu, M.-L. Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. Medicines 2017, 4, 28. https://doi.org/10.3390/medicines4020028
Chen M-H, Yang K-M, Huang T-C, Wu M-L. Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. Medicines. 2017; 4(2):28. https://doi.org/10.3390/medicines4020028
Chicago/Turabian StyleChen, Min-Hung, Kai-Min Yang, Tzou-Chi Huang, and Mei-Li Wu. 2017. "Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity" Medicines 4, no. 2: 28. https://doi.org/10.3390/medicines4020028
APA StyleChen, M. -H., Yang, K. -M., Huang, T. -C., & Wu, M. -L. (2017). Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. Medicines, 4(2), 28. https://doi.org/10.3390/medicines4020028