Next Article in Journal
Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae)
Next Article in Special Issue
A Review on Ethno-Medicinal and Pharmacological Activities of Sphenocentrum jollyanum Pierre
Previous Article in Journal
Antioxidant and Antimicrobial Activities of the Essential Oil of Achillea millefolium L. Grown in France
Previous Article in Special Issue
Successful Pregnancy after Treatment with Chinese Herbal Medicine in a 43‐Year‐Old Woman with Diminished Ovarian Reserve and Multiple Uterus Fibrosis: A Case Report
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Medicinal Plants Used for Neuropsychiatric Disorders Treatment in the Hauts Bassins Region of Burkina Faso

1
Laboratoire de Biochimie et Chimie Appliquées, Université Ouaga I-Pr Joseph KI-ZERBO, 03 PB 7021 Ouagadougou 03, Burkina Faso
2
Laboratoire de Biologie et écologie végétale, Université Ouaga I-Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
3
“Alexandru Ioan Cuza” University of Iasi, Faculty of Biology, Department of Research, Carol I Avenue, No. 20A, Iasi 700505, Romania
*
Author to whom correspondence should be addressed.
Medicines 2017, 4(2), 32; https://doi.org/10.3390/medicines4020032
Submission received: 16 December 2016 / Revised: 11 May 2017 / Accepted: 15 May 2017 / Published: 19 May 2017
(This article belongs to the Special Issue Plant Medicines for Clinical Trial)

Abstract

:
Background: In Burkina Faso, phytotherapy is the main medical alternative used by populations to manage various diseases that affect the nervous system. The aim of the present study was to report medicinal plants with psychoactive properties used to treat neuropsychiatric disorders in the Hauts Bassins region, in the western zone of Burkina Faso. Methods: Through an ethnobotanical survey using structured questionnaire, 53 traditional healers (TH) were interviewed about neuropsychiatric disorders, medicinal plants and medical practices used to treat them. The survey was carried out over a period of three months. Results: The results report 66 plant species used to treat neuropsychiatric pathologies. Roots (36.2%) and leaves (29%) were the main plant parts used. Alone or associated, these parts were used to prepare drugs using mainly the decoction and the trituration methods. Remedies were administered via drink, fumigation and external applications. Conclusions: It appears from this study a real knowledge of neuropsychiatric disorders in the traditional medicine of Hauts Bassins area. The therapeutic remedies suggested in this work are a real interest in the fight against psychiatric and neurological diseases. In the future, identified plants could be used for searching antipsychotic or neuroprotective compounds.

1. Introduction

Nowadays, medicinal plant use in traditional therapy is increasing and diversifying. These plants were a precious patrimony for the humanity in general and particularly very important for developing countries people’s healthcare and their subsistence [1]. They are invaluable resources for the great majority of rural populations in Africa, where more than 80% use them to ensure their primary healthcare [2]. According to the World Health Organization (WHO), neuropsychiatric disorders are a whole of “mental health problems”, which are characterized by anomalies of the thought, emotions, behavior and relationship with others. These pathologies handicap the person concerned and assign people of its circle. Factors causing these disorders are essentially genetic, social, environmental and psychotropic drugs. Mental and neurological disorders represent 13% of the burden of total morbidity in the world [3]. Thirteen per cent to 49% of the world’s populations develop neuropsychiatric disorders at some point in their life [4]. These pathologies affect all categories of person, race, sex and age [5]. Epilepsy is one of the most common neurological disorders. It affects more than 50 million persons in the world including 80% in developing countries [6]. High prevalence was observed in Africa where about 75% of patients do not receive adequate treatment [7]. The prejudices that surround neuropsychiatric diseases are causes of stigmatization of unwell persons who are often marginalized [3,8]. In Burkina Faso, 175‰ of the cases of disability are caused by neuropsychiatric disorders [6].
Many natural or synthetic psychoactive molecules such as neuroleptics, antidepressants, anxiolytics are used in modern medicine to treat these pathologies, particularly epilepsy, schizophrenia and the others psychotic disorders [8,9,10]. However, these modern treatments are expensive, complex and inaccessible for African populations in rural area [8,11]. Many of these psychoactive molecules have plant origins [12,13], which could justify plants use in the African traditional medicine to treat neuropsychiatric diseases [14,15]. In Burkina Faso, medicinal plants are widely used by peoples. Disapproved a long time after independences period for allopathic drugs [16], the government allowed in 1994 the traditional medicine practice. Since this time, it appeared a craze more and more growing for phytotherapy within the population, already predisposed to be directed there [17]. Moreover, many studies were undertaken to document plant species used in this therapy practice [18,19,20,21,22]. However, little research has approached the specific case of plants used to treat nervous system disorders in Burkina Faso. In the Hauts Bassins region, these pathologies were frequently denoted in psychiatric consultation [23,24]. Except Millogo’s group works on “epilepsy and traditional medicine in Bobo-Dioulasso” [25], the traditional therapy of these pathologies is quoted only in other parallel studies. The present study aims to provide information about medicinal plants used to treat neuropsychiatric disorders in the Hauts Bassins region of Burkina Faso. It was necessary to report psychic and neurological disorders treated by traditional healers, medicinal plants and medical practices used for these treatments.

2. Materials and Methods

2.1. Study Area

The study was carried out in the Hauts Bassins region, located in western part of Burkina Faso (Figure 1). This area is known for its high phytogenetical and cultural diversity. Located at the West of Burkina Faso, between 9°21’N latitude and 2°27’W longitude, the Hauts Bassins region belongs to the phytogeographical sector of south-soudanien, characterized by average annual precipitations higher than 900 millimeters and average temperatures oscillating between 25 °C and 30 °C [26]. This sector is dominated by vegetable formations of savannas type timbered, arboreous or shrubby [27]. Several ethnics groups live in this area with a great diversity of cultural practices. The main spoken languages are Mooré (29.5%), Dioula (27.1%) and Bobo (18.8%) [28]. This region is characterized by a high number of traditional healers (TH) resulting from various ethnic groups. In addition to plant diversity and neuropsychiatric diseases frequency [24], the area was chosen because of the presence of various TH.

2.2. Ethnobotanical Data Collection

The ethnobotanical survey was carried out during a three month period from October to December 2015. Data were collected using a structured interview with traditional healers (TH) who are organized in association. Through the association, a preliminary phone call was had with TH to inform them about objectives of the study. After that, an appointment were fixed with each one for individual interview. The approach was based on a dialogue using one of the three languages (Mooré, Dioula or French) to the TH choice. Pre-established questionnaires were used and a local person acting as a guide was necessary. Data were collected and transcribed on survey card-guides. It concerned medicinal plants used to treat the main psychiatric and neurological diseases such as epilepsy, mental disorders or madness, evils related to charm or witchcraft, hallucination or consciousness loss. These pathologies were reported to be more frequent in this area of Burkina Faso [24]. We gathered some of them because of their names in the local languages. Other collected information related to local names (in Mooré and/or Dioula) of plants, organs used of plants and medical practices such as drugs preparation and administration methods. Fifty-three TH including 35 men and 18 women, old from 31 to 82 years and having experience of plants use in traditional medicine were interviewed. Plants mentioned in the interview were collected in order to make the herbal constitution.

2.3. Data Analysis

Samples of plants collected were identified by botanists of the Ecology Department of University of Ouaga I-Pr Joseph Ki Zerbo (Burkina Faso). Then, voucher specimens were deposited in the herbarium of this University. The adopted nomenclature is that of “the tropical flora of Western Africa” [29], “medicinal plants and traditional medical practices in Burkina Faso” [30], “the catalogue of vascular plants of Burkina Faso” [31] and some enumerations of tropical Africa plants [32,33,34]. Plant parts used and medical practices were listed. Data were analyzed using SPSS software version 17.0 for window (SPSS Inc., Chicago, USA), and graphs were made on Excel of Office 2013.

3. Results

3.1. Plants Species Used

Sixty-six plant species including 51 woody and 15 herbaceous used to treat psychiatric and neurological diseases were identified. They belonged to 56 genera and 32 families (Table 1). Acacia and Ficus Genera were the most represented with 4 species each. The most represented families were Mimosaceae (8 species), Fabaceae (5 species) and Rubiaceae (5 species). Among these plants, the most used were showed on Table 2. A high use of Securidaca longepedunculata (45.3%), Calotropis procera (20.75%), Khaya senegalensis (20.75%), Allium sativum (20.75%), Daniellia oliveri (19%) and Annona senegalensis (17%) was observed by the majority of traditional healers (TH). Datura innoxia and Zanthoxlum zanthoxyloïdes were used by the oldest TH (more than 60 year old). Six species: S. longepedunculata, C. procera, K. senegalensis, A. senegalensis, Diospyros mespiliformis and Guiera Senegalensis were used to treat the main diseases targeted. Most of the plants were used alone and in association with other plants.

3.2. Plant Parts Used and Medical Practices

Various plant parts were used to prepare remedies (Figure 2a). Roots were mainly used (36.2%), followed by leaves (29%), mistletoes (9.3%) and stem barks (9%). Drugs preparation modes were the decoction (46.7%), the trituration (31%), the calcination (11.6%) and the aqueous maceration (10.7%) (Figure 2b). The drink (40.8%), the bath (33.8%), the fumigation (14.8%) and the massage (8.4%) are the main modes of administration (Figure 2c).

3.3. Neuropsychiatric Pathologies Treated

Diseases or regrouping diseases treated by traditional healers were registered in Table 3. From these results, hallucination or consciousness loss were most treated, followed by epilepsy, mental disorders and witchcraft or evils related to charm. In addition to these target pathologies, other cases such as insomnia and nerves diseases are also treated. Several plant species intervene in the treatment of each listed disorders. Thus, 37 plants were used to treat hallucination or consciousness loss, 32 to treat mental disorders, 31 to fight against epilepsy and 25 against diseases related to charm or witchcraft.

4. Discussion

Traditional medicine practice in Hauts Bassins area is rich and diversified. The most often treated neuropsychiatric disorders are hallucination, epilepsy and mental disorders, respectively treated by 79.2%, 49% and 47.2% of traditional healers (TH). These data correspond to those of other works [7,25,35], which revealed that these pathologies are well-known and treated in the traditional medicine of many African countries.
Sixty-six (66) plant species belonging to various families used in the treatment of neuropsychiatric disorders were listed. This result testifies TH knowledge about plants diversity of this area and their therapeutic virtues. Similar results were observed by previous studies [19,21] which showed that local populations of Burkina Faso were known to profit from the best part of biodiversity in traditional medicine. More than 77% of plants identified are ligneous. This rate could be justified by the relative abundance of these species in the phytogeographical sector of this area, and their availability during all the year. These results were in the same order with those of Traoré’s group in the province of Comoé [36], Olivier’s group on “Dozo” traditional healers [21] and Zerbo’s group in western area [22], which indicates a prevalence of ligneous use in the pharmacopeia of this zone of Burkina Faso. S. longepedunculata, C. procera, K. senegalensis, A. sativum, D. oliveri, A. senegalensis were identified as the main species used and D. innoxia, Z. zanthoxyloïdes were only used by older TH. They were cited like plant species intervening in the treatment of neuropsychiatric disorders in others African countries [8,35,37]. According to many authors, all these plants have phytochemical components with effects on the nervous system [38,39]. They contain alkaloids, terpenoids, steroids, flavonoids, tannins, saponins and cardiac glycosides (Table 4). These chemical constituents were considered as the main bioactive compounds of medicinal plants [30,40,41]. C. procera root bark used in the treatment of anxiety, epilepsy, and madness contain alkaloids such as α-amyrin, β-amyrin, while its leaf and its latex possess cardenolides such as calactin, calotoxin, calotropin and uscharin [42,43].
These chemical contents could be responsible of the traditional use of this plant. Besides, C. procera extracts were reported to possess significant anticonvulsant and analgesic properties [42,44]. Tropanic alkaloids as scopolamin, atropin, hyoscianin isolated in D. innoxia are known for their anticholinergic effects. They act as acetylcholin antagonists [15]. Scopolamine is an antimuscarinic agent used as analgesic and relaxant [45]. Anticholinergic and antimuscarinic effect of these compounds could explain in part Datura use in mental diseases treatement. Securidine, an alkaloid isolated from S. longepedunculata root, has a stimulating effect on the spinal cord. Used in a non-toxic dose, it influenced the function of the autonomic nervous system [46]. Some flavonoids were reported to possess anxiolytic effects and neuroprotective activities; they are capable of binding to GABAA receptors with significant affinity [47]. As examples, 6-methylapigenin is a benzodiazepine binding site ligand and 2S(-)-hesperidin has sedative and sleep-enhancing properties [48]. Quercetin significantly decreased the brain ischemic lesion [49]. Hesperidin was identified in C. aurantifolia and Z. zanthoxyloïdes, while apigenin was isolated from S. longepedunculata and Quercetin in most of plants listed in this study (Table 4).
These bioactive compounds could explain plants efficacy in the treatment of neuropsychiatric diseases [50,51]. Mechanisms through which these compounds act on the central nervous system are various including regulation of neurotransmitters activity [52,53,54]. However, benefical activities of these plants do not occult their toxic effects. Indeed, they have also cytotoxic and cardiotoxic effects [42]. Securinine in the range 5–30 g/kg act like strychnine, causing spasms and death by respiratory arrest [46]. Tropanic alkaloids are potential neurotoxic agents [15]. Therefore, a controlled use of these plants should be promoted.
Roots (36.2%) and leaves (29%) were the most used organs for the preparation of remedies. These data are in agreement with those observed by Olivier’s group [21] and Kantati’s group [35]. That would be explained by the availability of these plant parts at all periods in this region, but their effectiveness would be related to the significant accumulation of chemical compounds in these organs [140,113]. However, roots use should lead to some species disappearance. Thus, conservation measures of those are necessary.
Methods of remedies preparation are similar to those observed in other works. The decoction (46.7%) was the most used, followed by the trituration, calcination and aqueous maceration. These results are comparable to those of Zerbo’s group works in Sanan’s region and Western area of Burkina Faso [16,22], Adetutu’s group in the South-western of Nigeria [141] and Kantati’s group in Togo [35]. They noted that these methods were the main ones used by traditional healers in these different areas. In phytochemistry, the decoction is considered to be a method allowing complete extraction of bioactive chemical compounds of plants [142]. The aqueous maceration was quoted as being a good method of alkaloids and polyphenols extraction [142,143]. Likewise, the trituration and the calcination methods allow reducing vegetable material to powder or paste, while preserving bioactive molecules. These data could justify the main use of these modes of preparation.
The majority of drugs are administrated orally (drink, 40.8%), the preferential mode of administration in the traditional medicine [67]. However, some are preferentially used by external ways. That would be related to risks that oral use presents for some plants, because of their toxicity or the specificity of the disease [21]. The nasal way is the third most used mode of administration. It has the advantage of allowing a fast access of the active substances in the brain and their best absorption [144].
Results of the ethnobotanical survey corroborate with previous phytochemical studies about traditional uses of plants listed [7,35] and their psychoactive compounds content [69,91]. Indeed, alkaloids are the most known of molecules possessing psychoactive properties [67,145]. Likewise, some flavonoids, steroids and terpenoids were quoted to have psychoactive effect [47,53,146]. These chemical constituents intervene to disturb neurotransmitters activities. They stimulate, inhibit or block liberation, reception or elimination of neurotransmitters [147,148]. Pharmacological results show that the main plants used possess anticonvulsant, anxiolytic, antispasmodic, antinociceptive, analgesic or sedative properties [44,85,111]. This result could confirm the presence of psychoactive compounds in these plants.

5. Conclusions

This study made it possible to report 66 plant species belonging to 51 genera and 32 families used for the treatment of neuropsychiatric diseases. Roots and leaves were the most organs used, the decoction and the trituration were the principal modes of drug preparation. The administration of remedies was done mainly by oral way. Plants identified were quoted to possess psychoactive properties and some chemical contents which could justify that.
Traditional remedies suggested in this study are a real interest in the fight against neuropsychiatric disorders. Then, further researches will be necessary to identify psychoactive compounds from these plants and their acting mechanisms for neuropsychiatric diseases treatment.

Acknowledgments

The authors wish to thank Sidonie Yabré and traditional healers of “Hauts Bassins” region from Burkina Faso for their availability and assistance during survey.

Author Contributions

M.K. and P.Z. conceived and designed the survey; P.T.K. realized the survey; P.T.K. and M.C. analyzed the data; P.T.K. wrote the paper; P.Z. identified the plant specimen; S.G., M.K. and A.C. corrected the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hele, B.; Metowogo, K.; Mouzou, A.P.; Tossou, R.; Ahounou, J.; Eklu-Gadegbeku, K.; Dansou, P.; Aklikokou, A.K. Enquête ethnobotanique sur les plantes utilisées dans le traitement traditionnel des contusions musculaires au Togo. Rev. Ivoir. Sci. Technol. 2014, 24, 112–130. (In French) [Google Scholar]
  2. Organisation Mondiale de la Santé (OMS). Rapport de l’atelier Interrégional de l’OMS sur l’utilisation de la Médecine Traditionnelle dans les soins de santé Primaires; OMS: Genève, Suisse, 2009. (In French) [Google Scholar]
  3. Organisation Mondiale de la Santé (OMS). Projet Zéro de Plan D’action Mondial Sur la Santé Mentale 2013–2020; OMS: Genève, Suisse, 2012. (In French) [Google Scholar]
  4. Yasamy, M.T.; Maulik, P.K.; Tomlinson, M.; Lund, C.; Van Ommeren, M.; Saxena, S. Responsible Governance for Mental Health Research in Low Resource Countries. PLoS Med. 2011, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
  5. Fusar-Poli, P.; Deste, G.; Smieskova, R.; Barlati, S.; Yung, A.R.; Howes, O.; Stieglitz, R.-D.; Vita, A.; McGuire, P.; Borgwardt, S. Cognitive Functioning in Prodromal Psychosis: A meta-analysis. Arch. Gen. Psychiatry 2012, 69, 562–571. [Google Scholar] [CrossRef] [PubMed]
  6. World Health Organization (WHO). Mental Health Gap Action Programme : Scaling up Care for Mental, Neurological, and Substance Use Disorders; WHO: Geneva, Switzerland, 2008. [Google Scholar]
  7. Moshi, M.J.; Kagashe, G.A.B.; Mbwambo, Z.H. Plants used to treat epilepsy by Tanzanian traditional healers. J. Ethnopharmacol. 2005, 97, 327–336. [Google Scholar] [CrossRef] [PubMed]
  8. Diaby, M.A. Etude de la chimie et des activités biologiques de Daniellia oliveri (Rolfe, Hutch et Dalz), une plante utilisée dans la prise en charge de l’épilepsie au Mali. Thèse d’Etat, USTT-B, Bamako, Mali, 2014. (In French). [Google Scholar]
  9. Starling, J.; Feijo, I. Schizophrénie et autres troubles psychotiques à début précoce. IACAPAP E-textb. Child Adolesc. Ment. Health 2012, 1–24. (In French) [Google Scholar]
  10. Rey-bellet, P. Quoi de neuf dans le traitement des psychoses. Curr. Opin. Psychiatry 2015, 1–26. [Google Scholar]
  11. World Health Organization (WHO). Regional Strategy for Mental Health 2000–2010; WHO: Geneva, Switzerland, 2000. [Google Scholar]
  12. Comité Français d’Education pour la Santé (CFES) et MILDT. Médicaments Psychoactifs; EURO RSCG: Puteaux, France, 2000; (In French). Available online: http://perso.mediaserv.net/ganja/sarah/sarah/106_fin.pdf (accessed on 8 October 2016).
  13. Fouchey, M. Etat des lieux sur l’industrie du médicament. Rev. Neuropsychol. 2010, 1–8. (In French). Available online: http://psychologie-m-fouchey.psyblogs.net/ (accessed on 8 October 2016).
  14. Sobiecki, J.F. A preliminary inventory of plants used for psychoactive purposes in southern African healing traditions. Trans. R. Soc. S. Afr. 2002, 57, 1–24. [Google Scholar] [CrossRef]
  15. Taïwe, G.S.; Kuete, V. Neurotoxicity and Neuroprotective Effects of African Medicinal Plants. In Toxicological Survey of African Medicinal Plants; Elsevier: London, UK, 2014; pp. 423–444. [Google Scholar]
  16. Zerbo, P.; Millogo-rasolodimby, J.; Nacoulma-ouedraogo, O.G.; Van Damme, P. Plantes médicinales et pratiques médicales au Burkina Faso : Cas des Sanan. Bois Forêts des Tropiques 2011, 307, 41–53. (In French) [Google Scholar]
  17. Millogo, H.; Guissou, I.P.; Nacoulma, O.G.; Traoré, A.S. Savoir traditionnel et médicament traditionnels améliorés. In Proceedings of the Colloque : Développement durable et santé dans les pays du sud, le médicament, de la recherche au terrain, Centre Européen de Santé Humanitaire, Lyon, France, Decembre 2005. (In French). [Google Scholar]
  18. Tapsoba, H.; Deschamps, J.-P. Use of medicinal plants for the treatment of oral diseases in Burkina Faso. J. Ethnopharmacol. 2006, 104, 68–78. [Google Scholar] [CrossRef] [PubMed]
  19. Dakuyo, V. Contribution à l’étude de la pharmacopée traditionnelle burkinabé : Enquête ethnopharmacologique dans la région des Cascades. Ph.D. Thesis, Université de Ouagadougou, Ouagadougou, Burkina Faso, 2010. (In French). [Google Scholar]
  20. Nadembega, P.; Boussim, J.I.; Nikiema, J.B.; Poli, F.; Antognoni, F. Medicinal plants in Baskoure, Kourittenga Province, Burkina Faso: An ethnobotanical study. J. Ethnopharmacol. 2011, 133, 378–395. [Google Scholar] [CrossRef] [PubMed]
  21. Olivier, M.; Zerbo, P.; Boussim, J.I. Les plantes des galeries forestières à usage traditionnel par les tradipraticiens de santé et les chasseurs Dozo Sénoufo du Burkina Faso. Int. J. Biol. Chem. Sci. 2012, 6, 2170–2191. (In French) [Google Scholar] [CrossRef]
  22. Zerbo, P.; Compaore, M.; Meda, N.T.R.; Lamien-Meda, A.; Kiendrebeogo, M. Potential medicinal plants used by traditional healers in western areas of Burkina Faso. World J. Pharm. Pharm. Sci. 2013, 2, 6706–6719. [Google Scholar]
  23. Millogo, A.; Kaboré, J.; Preux, P.-M.; Dumas, M. Traitement des adultes épileptiques en milieu hospitalier à Bobo-Dioulasso (Burkina-Faso). Epilepsies 2003, 15, 37–40. (In French) [Google Scholar]
  24. Traore, M. Etude du profil et de la prise en charge des cas d’abus de drogues dans la ville de Bobo-Bioulasso (Burkina Baso). Ph.D. Thesis, Université de Ouagadougou, Ouagadougou, Burkina Baso, 2012. (In French). [Google Scholar]
  25. Millogo, A.; Ratsimbazafy, V.; Nubukpo, P.; Barro, S.; Zongo, I.; Preux, P. Epilepsy and traditional medicine in Bobo-Dioulasso (Burkina Faso). Acta Neurol. Scand. 2004, 109, 250–254. [Google Scholar] [CrossRef] [PubMed]
  26. Ministère de l’Economie et du Développement (MED). Profil des Regions du Burkina Faso : La région des Hauts Bassins; MED: Ouagadougou, Burkina Faso, 2005. (In French) [Google Scholar]
  27. Fontès, J.; Guinko, S. CARTE de la Végétation et de L’occupation du Sol du Burkina Faso: Notice Explicative; Université de Toulouse III: Toulouse, France, 1995. (In French) [Google Scholar]
  28. Institut National de la Statistique et de la Démographie (INSD). Etat et structure de la population; INSD: Ouagadougou, Burkina Faso, 2009. (In French) [Google Scholar]
  29. Hutchinson, J.; Dalziel, J.M. Flora of West Tropical Africa; The Whitefriars Press: Londre/Tonbridge, UK, 1963. [Google Scholar]
  30. Nacoulma-Ouedraogo, O.G. Plantes médicinales et pratiques médicinales traditionnelles au Burkina Faso : Cas du plateau central. Thèse d’Etat, Université de Ouagadougou, Ouagadougou, Burkina Faso, 1996. (In French). [Google Scholar]
  31. Thiombiano, A.; Schmidt, M.; Dressler, S.; Ouédraogo, A.; Hahn, K.; Zizka, G. Catalogue Des Plantes Vasculaires Du BURKINA Faso. Conservatoire et jardin botaniques de la ville de genève. 2012. Available online: http://www.worldcat.org/title/ (accessed on 8 October 2016).
  32. Kerharo, J.; Bouquet, A. Plantes Médicinales Et Toxiques De La Côte-d’Ivoire-Haute-Volta. Mission D'étude De La Pharmacopée Indigène En A.O.F; Editions Vigot Frères: Paris, France, 1950. (In French) [Google Scholar]
  33. Pageard, R. Plantes à brûler chez les Bambara. J. Soc. Afr. 1967, 37, 87–130. [Google Scholar] [CrossRef]
  34. Moreau, R. Quelques Plantes de Haute-volta : Leurs noms Vernaculaires en Langues Mossi, dioula, bobo-oulé, Dagari et Peul-wassolo; Publications des scientifiques de l'IRD: Haute-Volta, French, 1970. (In French) [Google Scholar]
  35. Kantati, Y.T.; Kodjo, K.M.; Dogbeavou, K.S.; Vaudry, D.; Leprince, J.; Gbeassor, M. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo. J. Ethnopharmacol. 2016, 181, 214–220. [Google Scholar] [CrossRef] [PubMed]
  36. Traoré, A.; Derme, A. I.; Sanon, S.; Gansane, A.; Ouattara, Y.; Nebié, I.; Sirima, S.B. Connaissances ethnobotaniques et pratiques phytothérapeutiques des tradipraticiens de santé de la Comoé pour le traitement du paludisme : Processus d’une recherche scientifique de nouveaux antipaludiques au Burkina Faso. Ethnopharmacologia 2009, 43, 35–46. (In French) [Google Scholar]
  37. Sobiecki, J.F. A review of plants used in divination in southern Africa and their psychoactive effects. S. Afr. Humanit. 2008, 20, 333–351. [Google Scholar]
  38. Perveen, T.; Haider, S.; Zubairi, N.A.; Ahmed, W.; Batool, Z.; Begum, S. Effect of herbal combination on biochemical and behavioral responses in rats. Pak. J. Biochem. Mol. Biol. 2012, 45, 20–22. [Google Scholar]
  39. Sucher, N.J.; Carles, M.C. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav. 2015, 52, 308–318. [Google Scholar] [CrossRef] [PubMed]
  40. Bruneton, J. Pharmacognosie, Phytochimie, Plantes Médicinales, 2ème ed.; Tec. et Doc.: Lavoisier, Paris, 1993. [Google Scholar]
  41. Sereme, A.; Millogo-Rasolodimby, J.; Guinko, S.; Nacro, M. Proprietes Therapeutiques Des Plantes a Tanins Du Burkina Faso. Pharmacopée Méd. Tradit. Afr. 2008, 15, 41–49. (In French) [Google Scholar]
  42. Al-snafi, A.E. The constituents and pharmacological properties of Calotropis procera-an overview. Int. J. Pharm. Rev. Res. 2015, 5, 259–275. [Google Scholar]
  43. Mohamed, N.H.; Liu, M.; Abdel-mageed, W.M.; Alwahibi, L.H.; Dai, H.; Ahmed, M.; Badr, G.; Quinn, R.J.; Liu, X.; Zhang, L.; et al. Cytotoxic cardenolides from the latex of Calotropis procera. Bioorg. Med. Chem. Lett. 2015, 25, 4615–4620. [Google Scholar] [CrossRef] [PubMed]
  44. Lima, R.C.D.S.; Silva, M.C.C.; Aguiar, C.C.T.; Chaves, E.M.C.; Dias, K.C.F.; Macêdo, D.S.; Sousa, F.C.F.; Carvalho, K.M.; Ramos, M.V.; Mendes, V.M. Anticonvulsant action of Calotropis procera latex proteins. Epilepsy Behav. 2012, 23, 123–126. [Google Scholar] [CrossRef] [PubMed]
  45. Steenkamp, P.A.; Harding, N.M.; Van Heerden, F.R.; Van Wyk, B.E. Fatal Datura poisoning: Identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci. Int. 2004, 145, 31–39. [Google Scholar] [CrossRef] [PubMed]
  46. Maiga, A.; Diallo, D.; Fane, S.; Sanogo, R.; Paulsen, B.S.; Cisse, B. A survey of toxic plants on the market in the district of Bamako, Mali : Traditional knowledge compared with a literature search of modern pharmacology and toxicology. J. Ethnopharmacol. 2005, 96, 183–193. [Google Scholar] [CrossRef] [PubMed]
  47. Zhang, Z. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 2004, 75, 1659–1699. [Google Scholar] [CrossRef] [PubMed]
  48. Marder, M.; Wasowski, C.; Medina, J.H.; Paladini, A.C. 6-Methylapigenin and hesperidin : New valeriana flavonoids with activity on the CNS. Pharmacol. Biochem. Behav. 2003, 75, 537–545. [Google Scholar] [CrossRef]
  49. Dajas, F.; Rivera, F.; Blasina, F.; Arredondo, F.; Lafon, L.; Morquio, A.; Heizen, H. Cell Culture Protection and in vivo Neuroprotective Capacity of Flavonoids. Neurotox. Res. 2003, 5, 425–432. [Google Scholar] [CrossRef] [PubMed]
  50. Lake, J. Natural product-derived treatments of neuropsychiatric disorders: Review of progress and recommendations. Stud. Nat. Prod. Chem. 2000, 24, 1093–1137. [Google Scholar]
  51. Guenne, S.; Balmus, I.M.; Hilou, A.; Ouattara, N.; Kiendrebéogo, M.; Ciobica, A.; Timofte, D. The relevance of Asteraceae family plants in most of the neuropsychiatric disorders treatment. Int. J. Phyt. 2016, 8, 176–182. [Google Scholar]
  52. Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
  53. Becaud-Boyer, A.-S. Salvia divinorum, hallucinogène d'aujourd'hui, outil thérapeutique de demain? Thèse d’Etat, Université Joseph FOURIER, Grenoble, France, 2011. (In French). [Google Scholar]
  54. Charlene, B. La soumission chimique. Thèse d’Etat, Université Toulouse III, Toulouse, France, 2013. [Google Scholar]
  55. Eldeen, S.; Mohamed, I. Pharmacological investigation of some trees used in South African traditional medicine. Ph.D. Thesis, University of KwaZulu–Natal, Pietermaritzburg, South Africa, 2005. [Google Scholar]
  56. Seigler, D.S.; Butterfield, C.S.; Dunn, J.E.; Conn, E.E. Dihydroacacipetalin–a new cyanogenic glucoside from Acacia sieberiana var. Woodii. Phytochemistry 1975, 14, 1419–1420. [Google Scholar] [CrossRef]
  57. Salisu, A.; Ogbadu, G.H.; Onyenekwe, P.C.; Olorode, O.; Ndana, R.W.; Segun, O. Evaluating the Nutritional Potential of Acacia Sieberiana Seeds (Dc) Growing in North West of Nigeria. J. Biol. Life Sci. 2014, 5, 25–36. [Google Scholar] [CrossRef]
  58. Zeuko´o, M.E.; Jurbe, G.G.; Ntim, P.S.; Ajayi, T.A.; Chuwkuka, J.U.; Dawurung, C.J.; Makoshi, M.S.; Elisha, I.L.; Oladipo, O.O.; Lohlum, A.S. Phytochemical Screening and Antidiarrheal Evaluation of Acetone Extract of A cacia sieberiana var woodii (Fabaceae) stem bark in wistar rats. Acad. J. Pharm. Pharmacol. 2015, 3, 1–6. [Google Scholar]
  59. Uchenna, A.; Nkiruka, V.; Eze, P. Nutrient and Phytochemical Composition of Formulated Diabetic Snacks Made from Two Nigerian Foods Afzelia africana and Detarium microcarpium Seed Flour. Pak. J. Nutr. 2013, 12, 108–113. [Google Scholar] [CrossRef]
  60. Olajide, O.B.; Fadimu, O.Y.; Osaguona, P.O.; Saliman, M. Botanical and phytochemical studies of some selected species of leguminoseae of northern nigeria: A study of borgu local government area, niger state. Nigeria. Analysis 2013, 4, 546–551. [Google Scholar]
  61. Igwenyi, I.O.; Azoro, B.N. Proximate and Phytochemical Compositions of Four Indigenous Seeds Used As Soup Thickeners in Ebonyi State Nigeria. Food Technol. 2014, 8, 35–40. [Google Scholar]
  62. Egwujeh, S.I.; Yusufu, P.A. Chemical compositions of aril cap of African oak (afzelia africana) seed. J. Food Sci. 2015, 3, 41–47. [Google Scholar]
  63. Gebreyohannes, G.; Gebreyohannes, M. Medicinal values of garlic: A review. Int. J. Med. Méd. Sci. 2013, 5, 401–408. [Google Scholar]
  64. Bhandari, S.R.; Yoon, M.K.; Kwak, J. Contents of Phytochemical Constituents and Antioxidant Activity of 19 Garlic ( Allium sativum L.) Parental Lines and Cultivars. Hort. Environ. Biotechnol. 2014, 55, 138–147. [Google Scholar] [CrossRef]
  65. Mallet, A.C.T.; Cardoso, M.G.; Souza, P.E.; Machado, S.M.F.; Andrade, M.A.; Nelson, D.L.; Piccoli, R.H. Chemical characterization of the Allium sativum and Origanum vulgare essential oils and their inhibition effect on the growth of some food pathogens. Rev. Bras. Plant. Med. 2014, 16, 804–811. [Google Scholar] [CrossRef]
  66. Johnson, O.O.; Ayoola, G.A.; Adenipekun, T. Antimicrobial Activity and the Chemical Composition of the Volatile Oil Blend from Allium sativum (Garlic Clove) and Citrus reticulata (Tangerine Fruit). Int. J. Pharm. Sci. Drug Res. 2013, 5, 187–193. [Google Scholar]
  67. Yinyang, J.; Mpondo, M.E.; Tchatat, M.; Ndjib, R.C.; Mvogo-Ottou, P.B.; Dibong, S.D. Les plantes à alcaloïdes utilisées par les populations de la ville de Douala (Cameroun). J. Appl. Biosci. 2014, 78, 6600–6619. [Google Scholar] [CrossRef]
  68. Rainy, G.; Amita, S.; Preeti, M. Study of chemical composition of garlic oil and comparative analysis of co-trimoxazole in response to in vitro antibacterial activity. Int. Res. J. Pharm. 2014, 5, 1–5. [Google Scholar]
  69. Mustapha, A.A. Annona senegalensis Persoon : A Multipurpose shrub, its Phytotherapic, Phytopharmacological and Phytomedicinal Uses. Int. J. Sci. Technol. 2013, 2, 862–865. [Google Scholar]
  70. Konate, A.; Sawadogo, W.R.; Dubruc, F.; Caillard, O.; Ouedraogo, M. Phytochemical and Anticonvulsant Properties of Annona senegalensis Pers. (Annonaceae ), Plant Used in Burkina Folk Medicine to Treat Epilepsy and Convulsions. Br. J. Pharmacol. Toxicol. 2012, 3, 245–250. [Google Scholar]
  71. Awa, E.P.; Ibrahim, S.; Ameh, D.A. GC/MS Analysis and antimicrobial activity of Diethyl ether fraction of Methanolic extract from the stem bark of Annona senegalensis pers. Int. J. Pharm. Sci. Res. 2012, 3, 4213–4218. [Google Scholar]
  72. Ibrahim, S.R.M.; Mohamed, G.A.; Shaala, L.A.; Moreno, L.; Banuls, Y.; Van Goietsenoven, G.; Kiss, R.; Youssef, D.T.A. New ursane-type triterpenes from the root bark of Calotropis procera. Phytochem. Lett. 2012, 5, 490–495. [Google Scholar] [CrossRef]
  73. Patil, S.G.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. In vitro lipase inhibitory effect and kinetic properties of di-terpenoid fraction from Calotropis procera (Aiton). Biocatal. Agric. Biotechnol. 2015, 4, 579–585. [Google Scholar] [CrossRef]
  74. Sayed, A.E.H.; Mohamed, N.H.; Ismail, M.A.; Abdel-mageed, W.M.; Shoreit, A.A.M. Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol. Ecotoxicol. Environ. Saf. 2016, 128, 189–194. [Google Scholar] [CrossRef] [PubMed]
  75. Nenaah, G.E. Potential of using flavonoids, latex and extracts from Calotropis procera (Ait.) as grain protectants against two coleopteran pests of stored rice. Ind. Crop. Prod. 2013, 45, 327–334. [Google Scholar] [CrossRef]
  76. Kerharo, J.; Adam, J.G. La Pharmacopée sénégalaise traditionnelle. Plantes médicinales et toxiques. ournal d’agriculture Trop. Bot. Appl. 1974, 21, 76–77. [Google Scholar]
  77. Jeong-Hyun, L.; Jae-Sug, L. Chemical Composition and Antifungal Activity of Plant Essential Oils against Malassezia furfur. Kor. J. Microbiol. Biotechnol. 2010, 38, 315–321. [Google Scholar]
  78. Dongmo, P.M.J.; Tchoumbougnang, F.; Boyom, F.F.; Sonwa, E.T.; Zollo, P.H.A.; Menut, C. Antiradical, antioxidant activities and anti-inflammatory potential of the essential oils of the varieties of citrus limon and citrus aurantifolia growing in Cameroon. J. Asian Sci. Res. 2013, 3, 1046–1057. [Google Scholar]
  79. Ouedrhiri, W.; Bouhdid, S.; Balouiri, M.; Lalami, A.E.O.; Moja, S.; Chahdi, F.O.; Greche, H. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J. Chem. Pharm. Res. 2015, 7, 78–84. [Google Scholar]
  80. Ahmadu, A.; Haruna, A.K.; Garba, M.; Ehinmidu, J.O.; Sarker, S.D. Phytochemical and antimicrobial activities of the Daniellia oliveri leaves. Fitoterapia 2004, 75, 729–732. [Google Scholar] [CrossRef] [PubMed]
  81. Kaboré, A. Activité anthelminthique de deux plantes tropicales testée in vitro et in vivo sur les strongles gastro-intestinaux des ovins de race mossi du Burkina Faso. Thèse de Doctorat, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso, 2009. [Google Scholar]
  82. Muanda, F.N.; Dicko, A.; Soulimani, R. Assessment of polyphenolic compounds, in vitro antioxydant and anti-inflammation properties of securidaca longepedunculata root barks. C. R. Biol. 2010, 333, 663–669. [Google Scholar] [CrossRef] [PubMed]
  83. SOPCFC (Scientific Opinion of the Panel on Contaminants in the Food Chain). Request from the European Commission Tropane alkaloids (from Datura sp.) as undesirable substances in animal feed. EFSA J. 2008, 691, 1–55. [Google Scholar]
  84. Mahmood, A.; Mahmood, A.; Mahmood, M. In vitro Biological Activities of Most Common Medicinal Plants of Family Solanaceae. World Appl. Sci. J. 2012, 17, 1026–1032. [Google Scholar]
  85. Maheshwari, N.O.; Khan, A.; Chopade, B.A. Rediscovering the medicinal properties of Datura sp.: A review. J. Med. Plant. Res. 2013, 7, 2885–2897. [Google Scholar]
  86. Berkov, S.; Zayed, R. Comparison of Tropane Alkaloid Spectra Between Datura innoxia Grown in Egypt and Bulgaria. Z. Naturforsch. C 2004, 59, 184–186. [Google Scholar] [CrossRef] [PubMed]
  87. Lamien-Meda, A.; Lamien, C.E.; Compaoré, M.M.Y.; Meda, R.N.T.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.F.; Nacoulma, O.G. Polyphenol Content and Antioxidant Activity of Fourteen Wild Edible Fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef] [PubMed]
  88. Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L. Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture. J. Zhejiang Univ. Sci. B 2006, 7, 56–63. [Google Scholar] [CrossRef] [PubMed]
  89. Abdulmalik, I.A.; Sule, M.I.; Musa, A.M.; Yaro, A.H.; Abdullahi, M.I.; Abdulkadir, M.F.; Yusuf, H. Isolation of Steroids from Acetone Extract of Ficus iteophylla. Br. J. Pharmacol. Toxicol. 2011, 2, 270–272. [Google Scholar]
  90. Soha, P.M.; Benoit-Vical, F. Are West African plants a source of future antimalarial drugs? J. Ethnopharmacol. 2007, 114, 130–140. [Google Scholar] [CrossRef] [PubMed]
  91. Somboro, A.A.; Patel, K.; Diallo, D.; Sidibe, L.; Chalchat, J.C.; Figueredo, G.; Ducki, S.; Troin, Y.; Chalard, P. An ethnobotanical and phytochemical study of the African medicinal plant Guiera senegalensis J. F. Gmel. J. Med. Plants Res. 2011, 5, 1639–1651. [Google Scholar]
  92. Ouédraogo, F. Etude in vitro de l’activité antiplasmodiale d’extraits de feuilles, de fleurs et de galles de Guiera senegalensis J. F. Gmel (combretaceae). Thèse Doctorat, Université de Ouagadougou, Ouagadougou, Burkina Faso, 2011. [Google Scholar]
  93. Androulakis, X.M.; Muga, S.J.; Chen, F.; Koita, Y.; Toure, B.; Michael Wargovich, J. Chemopreventive Effects of Khaya senegalensis Bark Extract on Human Colorectal Cancer. Anticancer Res. 2006, 26, 2397–2406. [Google Scholar] [PubMed]
  94. Idu, M.; Igeleke, C.L. Antimicrobial Activity and Phytochemistry of Khaya senegalensis Roots. Int. J. Ayurvedic Herb. Med. 2012, 2, 415–422. [Google Scholar]
  95. Wakirwa, J.H.; Idris, S.; Madu, S.J.; Dibal, M.; Malgwi, T. Assessment of the In-vitro antimicrobial potential of Khaya Senegalensis ethanol leaf extract. J. Chem. Pharm. Res. 2013, 5, 182–186. [Google Scholar]
  96. Nwodo, N.J.; Ibezim, A.; Ntie-Kang, F.; Adikwu, M.U.; Mbah, C.J. Anti-Trypanosomal Activity of Nigerian Plants and Their Constituents. Molecules 2015, 2, 7750–7771. [Google Scholar] [CrossRef] [PubMed]
  97. Atawodi, S.E.; Atawodi, J.C.; Pala, Y.; Idakwo, P. Assessment of the Polyphenol Profile and Antioxidant Properties of Leaves, Stem and Root Barks Of Khaya senegalensis (Desv.) A.Juss. Electron. J. Biol. 2009, 5, 80–84. [Google Scholar]
  98. Khalid, S.A.; Friedrichsen, G.M.; Kharazmi, A.; Theander, T.G.; Olsen, C.E.; Christensen, S.B. Limonoids from Khaya senegalensis. Phytochemistry 1998, 49, 1769–1772. [Google Scholar] [CrossRef]
  99. Zongo, C.; Akomo, E.-F.O.; Sawadogo, A.; Obame, L.C.; Koudou, J.; Traore, A.S. In vitro antibacterial properties of total alkaloids extract from Mitragyna inermis (Will) O. Kuntze, a West African traditional medicinal plant. Asian J. Plant Sci. 2009, 8, 172–177. [Google Scholar] [CrossRef]
  100. Uthman, G.S.; Gana, G.; Zakama, S. Anticonvulsant Screening of the Ethanol Leaf Extract of Mitragyna inermis (Willd) in Mice and Chicks. Int. J. Res. Pharm. Biomed. Sci. 2013, 4, 1354–1357. [Google Scholar]
  101. Alowanou, G.G.; Olounlade, A.P.; Azando, E.V.B.; Dedehou, V.F.G.N.; Daga, F.D.; Hounzangbeadote, S.M. A review of Bridelia ferruginea, Combretum glutinosum and Mitragina inermis plants used in zootherapeutic remedies in West Africa: Historical origins, current uses and implications for conservation. J. Appl. Biosci. 2015, 87, 8003–8014. [Google Scholar] [CrossRef]
  102. Konkon, N.G.; Adjoungoua, A.L.; Manda, P.; Simaga, D.; N’Guessan, K.E.; Kone, B.D. Toxicological and phytochemical screening study of Mitragyna Inermis (willd.) O ktze (Rubiaceae), anti-diabetic plant. J. Med. Plan. Res. 2008, 2, 279–284. [Google Scholar]
  103. Takayama, H.; Ishikawa, H.; Kitajima, M.; Aimi, N.; Aji, B.M. Anew 9-methoxyyohimbine-type indole alkaloid from Mitragyna inermis. Chem. Pharm. Bull. 2004, 52, 359–361. [Google Scholar] [CrossRef] [PubMed]
  104. Cheng, Z.H.; Yua, B.Y.; Yang, X.W. 27-Nor-terpenoid glycosides from Mitragyna inermis. Phytochemistry 2002, 61, 379–382. [Google Scholar] [CrossRef]
  105. Karou, S.D.; Tchacondo, T.; Ilboudo, D.P.; Simpore, J. Sub-saharan Rubiaceae : A review of their traditional uses, phytochemistry and biological activities. Pak. J. Biol. Sci. 2011, 14, 149–169. [Google Scholar] [CrossRef] [PubMed]
  106. Ajaiyeoba, E.O. Phytochemical antibacterial properties of parkia biglobosa and parkia bicolor leaf extracts. Afr. J. Riomed. Res. 2002, 5, 125–129. [Google Scholar] [CrossRef]
  107. Bukar, A.; Uba, A.; Oyeyi, T.I. Phytochemical Analysis and Antimicrobial Activity of Parkia Biglobosa (Jacq.) Benth. Extracts Againt Some Food – Borne Microrganisms. Adv. Environ. Biol. 2010, 4, 74–79. [Google Scholar]
  108. Komolafe, K.; Akinmoladun, A.C.; Olaleye, M.T. Methanolic leaf extract of Parkia biglobosa protects against doxorubicin-induced cardiotoxicity in rats. Int. J. Appl. Res. Nat. Prod. 2013, 6, 39–47. [Google Scholar]
  109. Ezekwe, C.I.; Ada, A.C.; Okechukwu, P.C.U. Effects of Methanol Extract of Parkia biglobosa Stem Bark on the Liver and Kidney Functions of Albino Rats. Glob. J. Biotechnol. Biochem. 2013, 8, 40–50. [Google Scholar]
  110. Adebiyi, R.A.; Elsa, A.T.; Agaie, B.M.; Etuk, E.U. Antinociceptive and antidepressant like effects of Securidaca longepedunculata root extract in mice. J. Ethnopharmacol. 2006, 107, 234–239. [Google Scholar] [CrossRef] [PubMed]
  111. Adeyemi, O.O.; Akindele, A.J.; Yemitan, O.K.; Aigbe, F.R.; Fagbo, F.I. Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen. J. Ethnopharmacol. 2010, 130, 191–195. [Google Scholar] [CrossRef] [PubMed]
  112. Okomolo, C.M.; Mbafor, J.T.; Bum, E.N.; Kouemou, N.; Kandeda, A.K.; Talla, E.; Dimo, T.; Rakotonirira, A.; Rakotonirira, S.V. Evaluation of the sedative and anticonvulsant properties of three Cameroonnian plant. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 181–190. [Google Scholar] [PubMed]
  113. Nébié, R.H.C.; Yaméogo, R.T.; Bélanger, A.; Sib, F.S. Salicylate de méthyle, constituant unique de l’huile essentielle de l'écorce des racines de Securidaca longepedunculata du Burkina Faso. C. R. Chim. 2004, 7, 1003–1006. (In French) [Google Scholar] [CrossRef]
  114. Mitaine-offer, A.; Pénez, N.; Miyamoto, T.; Delaude, C.; Mirjolet, J.; Duchamp, O.; Lacaille-dubois, M. Phytochemistry Acylated triterpene saponins from the roots of Securidaca longepedunculata. Phytochemistry 2010, 71, 90–94. [Google Scholar] [CrossRef] [PubMed]
  115. Sow, P.G. Enquête Ethnobotanique et Ethnopharmacologique des Plantes Médicinales de la pharmacopée Sénégalaise Dans le Traitement des Morsures de Serpents. Le Pharmacien Hospitalier et Clinicien 2012, 47, 37–41. [Google Scholar] [CrossRef]
  116. Van Wyk, B.E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa, 1st ed.; Briza Publications: Pretoria, South Africa, 2005. [Google Scholar]
  117. Diakité, B. La susceptibilite des larves d’Anopheles gambiae S.L. à des extraits de plantes medicinales du Mali. PhD Thesis, Université de Bamako, Bamako, Mali, 2008. [Google Scholar]
  118. Dibwe, D.F.; Awale, S.; Kadota, S.; Morita, H.; Tezuka, Y. Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorg. Med. Chem. 2013, 21, 7663–7668. [Google Scholar] [CrossRef] [PubMed]
  119. Bhadoriya, S.S.; Mishra, V.; Raut, S.; Ganeshpurkar, A.; Jain, S.K. Anti-Inflammatory and Antinociceptive Activities of a Hydroethanolic Extract of Tamarindus indica Leaves. Sci. Pharm. 2012, 80, 685–700. [Google Scholar] [CrossRef] [PubMed]
  120. Tariq, M.; Chaudhary, S.; Rahman, K.; Hamiduddin; Zaman, R.; Shaikh, L. Tamarindus indica: An overview. J. Biol. Sci. Opin. 2013, 1, 128–131. [Google Scholar] [CrossRef]
  121. Yusha’u, M.; Gabari, D.A.; Dabo, N.T.; Hassan, A.; Dahiru, M. Biological activity and phytochemical constituents of Tamarindus indica stem bark extracts. Sky J. Microbiol. Res. 2014, 2, 67–71. [Google Scholar]
  122. Doughari, J.H. Antimicrobial Activity of Tamarindus indica Linn. Trop. J. Pharm. Res. 2006, 5, 597–603. [Google Scholar] [CrossRef]
  123. Kapur, M.A.; John, S.A. Antimicrobial Activity of Ethanolic Bark Extract of Tamarindus indica against some Pathogenic Microorganisms. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 589–593. [Google Scholar]
  124. Ahmed, A.O.E.E.; Ayoub, S.M.H. Chemical composition and antimalarial activity of extracts of Sudanese Tamarindus indica L. (Fabaceae). Pharma Innov. J. 2015, 4, 90–93. [Google Scholar]
  125. Isha, D.; Milind, P. IMLII: A Craze Lovely. Int. Res. J. Pharm. 2012, 3, 110–115. [Google Scholar]
  126. Maikai, V.A.; Kobo, P.I.; Maikai, B.V.O. Antioxidant properties of Ximenia Americana. Afr. J. Biotechnol. 2010, 9, 7744–7746. [Google Scholar]
  127. Monte, F.J.Q.; de Lemos, T.L.G.; de Araújo, M.R.S.; Gomes, E.S. Ximenia americana: Chemistry, Pharmacology and Biological Properties, a Review. 2012. Available online: www.intechopen.com (accessed on 12 December 2016).
  128. Araújo, M.R.S.; Assunção, J.C.C.; Dantas, I.N.F.; Costa-Lotufo, L.V.; Monte, F.J.Q. Chemical Constituents of Ximenia americana. Nat.Prod. Commun. 2008, 3, 857–860. [Google Scholar]
  129. Fatope, M.O.; Adoum, O.A.; Takeda, Y. C18 Acetylenic Fatty Acids of Ximenia americana with Potential Pesticidal Activity. J. Agric. Food Chem. 2000, 4, 1872–1874. [Google Scholar] [CrossRef]
  130. Saeed, A.E.M.; Bashier, R.S.M. Physico-chemical analysis of Ximenia americana L. oil and structure elucidation of some chemical constituents of its seed oil and fruit pulp. J. Pharmacogn. Phytother. 2010, 2, 49–55. [Google Scholar]
  131. Kouri, F.C. Investigation phytochimique d’une brosse à dents africaine Zanthoxylum zanthoxyloides (Lam.) Zepernick et Timler (Syn. Fagara zanthoxyloides L.) (Rutaceae). Thèse, Université de Lausanne, Lausanne, Suisse, 2004. [Google Scholar]
  132. Gansane, A.; Sanon, S.; Ouattara, P.L.; Hutter, S.; Olivier, E.; Azas, N.; Traore, A.S.; Guissou, I.P.; Nebie, I.; Sirima, B.S. Antiplasmodial activity and cytotoxicity of semi purified fraction: Zanthoxylum zanthoxyloïdes Lam. Bark of trunk. Int. J. Pharm. 2010, 6, 921–925. [Google Scholar] [CrossRef]
  133. Ouedraogo, S.; Traore, A.; Lompo, M.; Some, N.; Sana, B.; Guissou, I.P. Vasodilator effect of Zanthoxylum zanthoxyloïdes, Calotropis procera and FACA, a mixture of these two plants. Int. J. Biol. Chem. Sci. 2011, 5, 1351–1357. [Google Scholar] [CrossRef]
  134. Olounladé, P.A.; Hounzangbé-Adoté, M.S.; Azando, E.V.B.; TAmha, T.B.; Brunet, S.; Moulis, C.; Fabre, N.; Fouraste, I.; Hoste, H.; Valentin, A. Etude in vitro de l’effet des tanins de Newbouldia laevis et de Zanthoxylum zanthoxyloïdes sur la migration des larves infestantes de Haemonchus contortus. Int. J. Biol. Chem. Sci. 2011, 5, 1414–1422. [Google Scholar]
  135. Affouet, K.M.; Tonzibo, Z.F.; Attioua, B.K.; Chalchat, J.C. Chemical Investigations of Volatile Oils from Aromatic Plants Growing in Côte d’ivoire: Harisonia abyssinica Oliv., Canarium schwerfurthii Engl. Zanthoxylum gilletti (De wild) Waterm. And Zanthoxylum zanthoxyloides Lam. Anal. Chem. Lett. 2012, 2, 367–372. [Google Scholar]
  136. Ouattara, B.; Angenot, L.; Guissou, P.; Fondu, P.; Dubois, J.; Frédérich, M.; Jansen, O.; Van Heugen, J.C.; Wauters, J.N.; Tits, M. LC/MS/NMR analysis of isomeric divanilloylquinic acids from the root bark of Fagara zanthoxyloides Lam. Phytochemistry 2004, 65, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
  137. Sameera, N.S.; Mandakini, B.P. Investigations into the antibacterial activity of Ziziphus mauritiana Lam. and Ziziphus xylopyra (Retz.) Willd. Int. Food Res. J. 2015, 22, 849–853. [Google Scholar]
  138. Ashraf, A.; Sarfraz, R.A.; Anwar, F.; Shahid, S.A.; Alkharfy, K.M. Chemical composition and biological activities of leaves of Ziziphus mauritiana l. Native to Pakistan. Pak. J. Bot. 2015, 47, 367–376. [Google Scholar]
  139. Parmar, P.; Bhatt, S.; Dhyani, D.S.; Jain, A. Phytochemical studies of the secondary metabolites of Ziziphus mauritiana Lam. Leaves. Int. J. Curr. Pharm. Res. 2012, 4, 153–155. [Google Scholar]
  140. Springer, T.L.; Mcgraw, R.L.; Aiken, G.E.; Michx, L. Variation of Condensed Tannins in Roundhead Lespedeza Germplasm. Crop Sci. 2002, 42, 2157–2160. [Google Scholar] [CrossRef]
  141. Adetutu, A.; Morgan, W.A.; Corcoran, O. Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. J. Ethnopharmacol. 2011, 137, 50–56. [Google Scholar] [CrossRef] [PubMed]
  142. Kalla, A. Etude et valorisation des principes actifs de quelques plantes du sud algérien : Pituranthos scoparius, Rantherium adpressum et Traganum nudatum. Ph.D. Thesis, Université Mentouri-Constantine, Constantine, Algérie, 2012. [Google Scholar]
  143. Feknous, S.; Saidi, F.; Said, R.M. Extraction, caractérisation et identification de quelques métabolites secondaires actifs de la mélisse ( Melissa officinalis L.). Nat. Technol. 2014, 11, 7–13. [Google Scholar]
  144. Mohagheghzadeh, A.; Faridi, P.; Shams-ardakani, M.; Ghasemi, Y. Medicinal smokes. J. Ethnopharmacol. 2006, 108, 161–184. [Google Scholar] [CrossRef] [PubMed]
  145. Ujváry, I. Psychoactive natural products : Overview of recent developments. Ann Ist Super Sanità 2014, 50, 12–27. [Google Scholar] [PubMed]
  146. Amar, B.M. La Polyconsommation de Psychotropes et les Principales Interactions Pharmacologiques Associées; Centre québécois de lutte aux dépendances: Québec, QC, Canada, 2007. [Google Scholar]
  147. Organisation Mondiale de la Santé (OMS). Neurosciences : Usage de Substances Psychoactives et Dépendance; OMS: Genève, Suisse, 2004. [Google Scholar]
  148. Stafford, G.I.; Jäger, A.K.; Van Staden, J. African Psychoactive Plants. Challenges 2009, 1021, 323–346. [Google Scholar]
Figure 1. Study area localization (Hauts Bassins region of Burkina Faso).
Figure 1. Study area localization (Hauts Bassins region of Burkina Faso).
Medicines 04 00032 g001
Figure 2. Plant parts used, modes of preparation and administration of remedies.
Figure 2. Plant parts used, modes of preparation and administration of remedies.
Medicines 04 00032 g002
Table 1. Global information on plants used in various treatments.
Table 1. Global information on plants used in various treatments.
Scientific Name (Genera and Specie)FamilyLocal Name
(Mooré)
Local Name
(Dioula)
Parts UsedMode of PreparationMode of AdministrationPathologies Treated
Abrus precatorius L. FabaceaeNoraog-niniNoronhaFrCalMasMA-MD
Acacia ataxacantha DC. MimosaceaeKanguin pèelga Ro, BaDecBat, DriEP
Acacia nilotica (L.) Willd. Ex Del. MimosaceaePeg-nengaBanganaRoDecBat, DriMA-MD
Acacia pennata (L.) Willd MimosaceaeKanguinga RoDecBat, DriEP
Acacia sieberiana DC. MimosaceaeGor-ponsegoWenekassangoLe, Ro, BaMac, Dec, TriBat, Dri, Fum, MasMA-MD, HA-CL
Adansonia digitata L. BombacaceaeTohègaSira-yiriLe, RoDec, CalBat, Dri, FumMA-MD, HA-CL
Afzelia africana Smith ex Pers.CaesalpiniaceaeKankalgaLingué, Lingué yiriLe, Ro, Ba, MiDec, Cal, TriBat, Dri, FumMA-MD, HA-CL
Allium cepa L. LiliaceaeZéyonDjabaBuTriFumEP
Allium sativum L. LiliaceaeLayi BuDec, Cal, TriBat, Dri, Fum, Pur, MasMA-MD, HA-CL
Annona senegalensis Pers.AnnonaceaeBarkudgaMandé sunsun, BarkandéWp, Le, Ro, BaDec, Cal, TriBat, Dri, Fum, MasEP, MA-MD, CH-WI, HA-CL
Anogeissus leiocarpus (DC) Guill. & Perr. CombretaceaeSiiga BaMacBat, DriHA-CL
Balanites aegyptiaca L.BalanitaceaeKyeguelgaZèguenèLe, RoDecBat, DriMA-MD, CH-WI
Boscia senegalensis (Pers) Lam. ex Poir.CapparidaceaeLambwetgaBereLe, RoDecBat, DriEP
Boswellia dalzielii HutchBurseraceaeGondregneogo, Kondregneogo Ro, BaMac, Dec, TriBat, Dri, FumHA-CL
Calotropis procera (Ait) Ait. F. AsclepiadaceaePutrepuugaFogofogoWp, Le, Ro, Mi, LaMac, Dec, TriBat, Dri, Fum, IngEP, MA-MD, CH-WI, HA-CL
Ceiba pentandra (L.) Gaertn BombacaceaeGoungaBana-yiriRoCalDriEP
Cissus quadrangularis L. VitaceaeWob-ZanréOulouyorokoStCalDriEP
Citrus aurantifolia (Christm.) Swingle RutaceaeLembur-tiigaLaimbourouFr, MiMac, Dec, CalBat, Dri, MasMA-MD, CH-WI, HA-CL
Crateva adansonii DC. CapparidaceaeKalguem-tohèga LeDecDriCH-WI
Cymbopogon giganteus Chiov. PoaceaeKuwaréTiékalaLe, RoDecBat, DriMA-MD, HA-CL
Cymbopogon proximus (Hochst ex A. Rich) StapfPoaceaeSoompiiga Wp, RoCalDriCH-WI
Dalbergia melanoxylon Guill. & Perr. FabaceaeGuirdiandéga RoMacFumMA-MD, HA-CL
Daniellia oliveri (Rolfe) Hutch et Dalz CaesalpiniaceaeAoga, Anwga sana, sana yiriLe, Ro, Ba, MiMac, Dec, Cal, TriBat, Dri, FumMA-MD, CH-WI, HA-CL
Datura innoxia Mill. SolanaceaeBarassé, ZèèblaAlomoukaïkaïLe, FrCalDri, MasMA-MD,CH-WI, HA-CL,IN,ND
Detarium microcarpum Guill. & Perr. CaesalpiniaceaekagadégaTamakoumaLe, RoDecBat, DriEP, CH-WI, HA-CL
Diospyros mespiliformis Hochst ex A. DC EbenaceaeGaaka, GaankaSounsoun, SounsounfiLe, RoMac, DecBat, DriEP, MA-MD, CH-WI, HA-CL
Entada africana Guill. & Perr. MimosaceaeSéonego RoDecBat, DriEP
Faidherbia albida (Del.) A. Chev. MimosaceaeZaangaBalanzan, BalãzãLe, RoDecBat, DriCH-WI
Ficus ingens (Miq.) Miq. MoraceaeKunkwiga RoDecDriEP
Ficus iteophylla Miq. MoraceaeKunkwi-pèelgaDjetigui faaga, DiatiguifagaLe, Ro, BaMac, DecBat, DriEP, MA-MD, HA-CL
Ficus sycomorus L. MoraceaeKankangaToro, toro yiriLe, Ro, MiDec, TriBat, DriEP, HA-CL
Ficus vallis-choudae Delile Moraceae Torossaba, TorobaLeDecBat, DriEP
Flueggea virosa (Roxb ex. Willd) Voigt. EuphorbiaceaeSugdin-daagaBalabala, Bala-balaLe, RoDecBat, DriCH-WI
Gardenia sp.RubiaceaeSubudga, LambrezungaBure, Buré yiriWp, Le, St, RoDec, CalBat, DriEP, CH-WI, HA-CL
Guiera senegalensis J.F. Gmel CombretaceaeWilin-wiiga Koungouè, KungouèWp, Le, Ro, MiDec, Cal, TriBat, DriEP, MA-MD, CH-WI, HA-CL
Hygrophila senegalensis (Nees) T. Anderson Acanthaceae Kelebetokala, Klebato-yiriLeMac, DecBat, DriEP
Hyptis spicigera Lam. LamiaceaeRung-runguiTimitimini.WpDecBat, DriEP
Indigofera tinctoria L. FabaceaeGarga LeTriPurHA-CL
Khaya senegalensis (Desr) A. Juss MeliaceaeKukaDiala, DjalaLe, Ba, MiMac, Dec, Cal, TriBat, Dri, FumEP, MA-MD, CH-WI, HA-CL
Lannea acida A. Rich AnacardiaceaeLabtulga Le, Ro, BaDec, TriBat, DriEP, HA-CL
Leptadenia hastata (Pers.) Decne AsclepiadaceaeLelongo KosaflaWp, Le, St, RoDecBat, DriMA-MD, HA-CL
Mitracarpus villosus (SW.) DC.RubiaceaeYod-pèelga WpTriFumMA-MD
Mitragyna inermis (Willd) O. Ktze RubiaceaeYiilgaDjou, Diou, Jun, dioumWp, Le, RoDec, TriBat, Dri, FumEP, MA-MD, HA-CL
Moringa oleifera Lam. MoringaceaeArzan-tiigaMasa yiriRoDecBat, Dri, FumMA-MD
Nicotiana rustica L. SolanaceaeKinkirs taba, Waamb-tabréFlavourouLeTriFumHA-CL
Nicotina tabacum L. SolanaceaeTabaKotabaLeCalDri, MasCH-WI
Ocimum americanum L. LamiaceaeYulin-gnu-raagaSukuolaWp, LeDec, TriBat, FumEP, HA-CL
Ocimum basilicum L. LamiaceaeYulin-gnuugaSukuola-sinaLeTriFumHA-CL
Parkia biglobosa (Jacq.) R. BR. ex G. Don. F MimosaceaeRoaagaNèrèLe, Ro, MiMac, DecBat, DriEP, MA-MD, CH-WI
Pennisetum americanum Stapf Poaceae KazuiSagnonFrTriPurEP, CH-WI
Pericopsis laxiflora (BentH ex Bak.) V. Meeawen FabaceaeTaankoniliga,Kolo-kolo, Kolokolo yiriLe, StDec, TriBat, Dri, FumMA-MD, HA-CL
Prosopis africana (Guill. Perr. & Rich) Taub. MimosaceaeDuanduanga, yamaguiGoulé, GouéléRo, FrDec, CalBat, DriCH-WI
Pseudocedrela kotschyi (Schweinf.) Harms MeliaceaeSiguédré LeDecBat, DriMA-MD, HA-CL
Saba senegalensis (A. DC) Pichon ApocynaceaewèdgaZaban yiriRoDecBatHA-CL
Sclerocarya birrea (A. Rich) Hochst Anacardiaceaenoabga Le, BaDecDriEP
Scoparia dulcis L. ScrophulariaceaeKafremaandé WpTriFumMA-MD, HA-CL
Securidaca longepedunculata FresenPolygalaceaePèlgaDjoro, DiouroLe, Ro, BaMac, Dec, Cal, TriBat, Dri, Fum, Pur, MasEP, MA-MD, CH-WI, HA-CL
Sterculia setigera Del. SterculiaceaePonsemporgo, Putermuka Congo-sera, KongossiraRo, MiDecBat, DriEP
Strychnos spinosa Lam. LoganiaceaeKatrepoaga, KaterpoaghaKogobaranie, Fouflé baraniFrTriIngCH-WI
Stylosanthes erecta P. Beauv. FabaceaeSakwisabelga WpCalMasCH-WI
Tamarindus indica L. CaesalpiniaceaePusgaNtomi, ToniLe, Ro, Fr, MiMac, Dec, TriBat, Dri, FumEP, MA-MD, HA-CL
Vitellaria paradoxa C.F. Gaertn SapotaceaeTaangaSchi yiri, Si yiriLe, Ro, MiDec, TriBat, Dri, FumMA-MD, CH-WI, HA-CL
Vitex doniana Sweet VerbenaceaeAadgaKoto Le, RoDecBat, DriMA-MD
Ximenia americana L. OlacaceaeLeenga Le, RoDec, CalBat, DriMA-MD, CH-WI, HA-CL
Zanthoxylum zanthoxyloïdes Lam. Zep et Timl RubiaceaeRapeokaWoRo, BaTriDri, Fum, MasEP, MA-MD, HA-CL, IN
Zizyphus mauritiana Lam. RhamnaceaeMugunuga TomononLe, Ro, MiDec, TriBat, DriEP, HA-CL
Part used: Whole plants (Wp); Leaves (Le); Stems (St); Roots (Ro); Barks (Ba); Flowers (Fl); Fruits (Fr); Mistletoes (Mi); Bulbs (Bu); Latex (La). Mode of preparation: Maceration (Mac); Decoction (Dec); Calcination (Cal); Trituration (Tri). Mode of administration: Bath (Bat); Drink (Dri); Fumigation (Fum); Purging (Pur); Massage (Mas); Ingestion (Ing). Pathologies: Epilepsy (EP); Madness or Mental Disorders (MA-MD); Charm or Witchcraft (CH-WI); Hallucination or Consciousness Loss (HA-CL); Insomnia (IN); Nerves diseases (ND).
Table 2. Main plants used, rate and age of TH user, rate of treated diseases and type of use.
Table 2. Main plants used, rate and age of TH user, rate of treated diseases and type of use.
PlantsUser TH Rate (%)Average Age of THTreated Diseases Rate (%)Use Alone or Associated
Acacia sieberiana DC.7.54575alone
Afzelia africana Smith ex Pers.11.34275alone, associated
Allium sativum L.20.7557.550associated
Annona senegalensis Pers.1755.5100alone, associated
Calotropis procera (Ait) Ait. F.20.7557100alone, associated
Citrus aurantifolia (Christm.) Swingle7.55175associated
Daniellia oliveri (Rolfe) Hutch. et Dalz.1945.575alone, associated
Datura innoxia Mill.13.260.575alone, associated
Detarium microcarpum Guill. et Perr.5.73975associated
Diospyros mespiliformis Hochst ex A. DC.13.239100alone, associated
Ficus iteophylla Miq.7.53975alone, associated
Guiera senegalensis J.F. Gmel.13.250100alone, associated
Khaya senegalensis (Desr) A. Juss20.7547100alone, associated
Mitragyna inermis (Willd) O. Ktze7.535.575alone, associated
Parkia biglobosa (Jacq.) R. BR. ex G. Don.F7.54875alone
Securidaca longepedunculata Fresen45.348100alone, associated
Tamarindus indica L.11.34675associated
Ximenia americana L.5.74675alone, associated
Zanthoxylum zanthoxyloïdes Lam. Zep &Timl7.56075alone, associated
Zizyphus mauritiana Lam.5.74775alone, associated
Table 3. Pathologies treated, traditional healers (TH) rate and medicinal plants used.
Table 3. Pathologies treated, traditional healers (TH) rate and medicinal plants used.
PathologiesTreating TH Rate (%)Number of Plants Used
English NameLocal Name (Mooré)Local Name (Dioula)
EpilepsyKisinkindouCricromansian4931
Hallucination or Consciousness lossNingyilinga, sobgréDjina bana79.237
InsomniaGueim BaanséSinõgõtan ya3.82
Mental disorders or MadnessGuimdo, JougkolgoFaatõ ya47.232
Nerves diseasesGuiin BaanséFassadjourou bana3.81
Witchcraft or Charm diseasesRabsgo, SoondoSoubaga ya35.825
Table 4. Phytochemical constituents and pharmacological properties of main plants used.
Table 4. Phytochemical constituents and pharmacological properties of main plants used.
PlantsPharmacological PropertiesPhytochemical ConstituentsChemical Compounds Identified
Acacia sieberiana DC.Inhibition of acetylcholinesterase,
anti-inflammatory [55].
Alkaloids, cyanogenic glucoside, tannins, terpenoids, Saponins, Flavonoids, essential oils, Cardiac glycosides, steroid, resins [56,57,58].Dihydroacacipetalin; acacipetalin [56].
Manganese; calcium; magnesium, cupper, iron, zinc, nickel [57].
Afzelia africana Smith ex Pers. Alkaloids, tannins, saponins, fiber, flavonoids, cyanides, beta-carotenes, cyanogenic glycosides, terpenoids, steroids, anthocyanins [59,60,61].Sodium; potassium; calcium; magnesium; phosphorus; iron; zinc; vitamins A, C, E, B1, B2, B6, B12 [59,62].
Allium sativum L.Stimulant, antioxydant, anti-inflammatory, antimicrobial, fungicidal, antibacterial, anticancerous, chemopreventive, anti-tumoral, antidiabétic [63,64,65].Alkaloids, phenolics, flavonoids, essential oils [64,66,67]Trisulphide-di-2-propenyl; artumerone; tetrazolo [1,5-b] pyridazine; 2-hydroxyethyl ethyl disulfide; cyclic octa-atomic sulphur [66]. Alliin; allicin [63]. Diallyl trisulfide; diallyl disulfide; methyl allyl trisulfide [65]. Diallyl monosulfide; trisulfide méthyl-2-propenyl; diméthyl tétrasulfide [68].
Annona senegalensis Pers.Anticonvulsant, anxiolytic, sedative, antibacterial, anti-inflammatory, cytotoxic, antioxydant, anti-nociceptive, antivenenous [15,69].Alkaloids, flavonoids, saponins, sterols, flavonols, triterpenes, diterpenoids phenols, antraquinones, anthocyanes, coumarines [15,70].1,2-benzenediol; butylate hydroxytoluene; methylcarbamate; n-hexadecanoique acid; hexadecane; acide oleique; etracosane; 9- octylheptadecane; heneicosane; 13-octadecadien-1-ol; octadecanoique acid; 9,17-octadecandienal; pentadecane; tetratriacontane; squalene [71]. Kaurenoic acid [69]
Calotropis procera (Ait) Ait. F.Anticonvulsant, analgesic, anti-inflammatory,antitumoral, hepatoprotective, antioxidant, spasmolytic, cytotoxifc, cardio-stimulantg, lipase inhibitory, anti-apoptotic [42,72,73,74].Alkaloids, cardenolides, triterpenes, flavonoids, sterols, saponins, diterpenes, resines, tannins, steroides [43,75].Calactin; calotropagenin; calotropin; calotoxin; uscharin; syriogenin, afrogenin [42,43]. Flavonoid 5-hydroxy-3,7-dimethoxyflavone-4’-O-β-glucopyranoside; 3-O-rutinosides of quercetin; kaempferol; isorhamnetin [75]. Cholin; uscharin; uscharidin; voruscharidin; α-amyrine; β-amyrine [30,76].
Citrus aurantifolia (Christm.) SwingleAntioxidant, anti-inflammatory, fungicidal, antibactérial [77,78,79].Essential oils, glucosides, carotenoïds, flavonoids [67,77].α-pinene; camphene; sabinene; β-pinene; myrcene; ∆3-carene; limonene; (Z)-β-ocimene; α-terpinene; γ-terpinene ; terpinolene; linalool; citronnelal; isocamphene; borneol; terpinen-4-ol; myrtenal; δ-cadinene; caryophyllen oxide; α-eudesmol; myrcene; p-cymene; benzoic acid; α-cedrene; α-bergamotene; α-bisabolene [77,78,79]. Hespéridine, vitamine C [67].
Daniellia oliveri (Rolfe) Hutch. et Dalz.Analgésic, antihistaminic, relaxant, anti-inflammatory, antimicrobial, antidiabetic, antispasmodic, antipyretic, antidiarrhoeal [80,81,82]Alkaloids, saponosides, flavonoids, glycosides, diterpenoids, sitosterol,
coumarines, antracenosides, tanins, hétérosides cardiotoniques, trierpènes, Sterols [8,81,82].
Rutin; quertcitin-3/-O–methyl–3–O-a-rhamnopyranosyl-(→)-β-D-glucopyranoside (Narcissin); quercitrin; quercimeritrin [80,81].
Datura innoxia Mill.Hallucinogen, analgesic, hypnotic, narcotic, anti-cholinergic, antiparkinsonien, sedative, cytotoxic, aphrodisiac, antispasmodic, antiemetic, anti-aflatoxine, anti-bradycardic, anti-inflammatory, anti-dizziness, antitumor [83,84,85] Alkaloids tropanics [83,86].Hyoscyamine; scopolamine; tropinone; tropine; pseudotropine; scopoline; scopine; 3-acetoxytropane; 3-acetoxy-6-hydroxytropane; cuscohygrine; aposcopolamine; 3(α’),6-ditigloyloxytropane; 3(β’),6-ditigloyloxytropane; 3-(‘-acetoxytropoyloxy)-tropane; 3,6-Ditigloyloxy-7-hydroxytropane; 7-hydroxyhyoscyamine; 6-hydroxyhyoscyamine; 3-tropoyloxy-6-isovaleroyloxytropane; 6-tigloylhyoscyamine; luteoline [83,85,86].
Detarium microcarpum Guill. et Perr. Alkaloid, fibers, tannins, saponins, flavonoids, cyanides, beta carotenes, cyanogenic glycosides, terpenoids, steroids, anthocyanines [59,61].Calcium; phosphorus; iron; zinc; vitamins A, E [59].
Diospyros mespiliformis Hochst ex A. DC.Antioxydant, astringent,
spasmolytic, antibacterial, homeostatic [87].
Alkaloids, polyphenols, flavonoids, anthraquinones, tannins, triterpenes, saponins, saponosides, anthocyanes, anthracenosides, steroids [87,88].
Ficus iteophylla Miq.Analgesic, anti-inflammatory, antibacterial [89] Steroids, furanocoumarines, flavonoids glycosides [80,89] 3β-cholest-5-ene-3, 23diol; 24 ethyl cholest-5-ene- 3β-ol [89].
Guiera senegalensis J.F. Gmel.Psychoactive, detoxicant, anti-plasmodial, antimicrobial, antifungal, antioxydant, anticancerous, antiviral, [90,91].Alkaloids, flavonoids, triterpenes, tannins, cardenolides, anthracene, coumarines, sterols, saponosides [91,92].
Khaya senegalensis (Desr) A. JussAnticonvulsant, Anxiolytic, sedative, antioxydant, anti-tumoral, chemopreventive, anti-inflammatory [15,93,94,95].Alkaloids, saponins, tannins, triterpenes, flavonoids, glucosides, carbohydrate, phylates, oxalates, triterpenoids [15,94,95].Gedunin; methyl-angolensate; methyl-6-hydroxyangolensate [96]. Catechin; rutin; quercetin rhamnoside; procyanidins [97].
Fissinolide; 2,6-dihydroxyfissinolide; methyl 3b-acetoxy-6-hydroxy-1-oxomeliac-14-enoate [98]. Magnesium, calcium, potassium, sodium, zinc, iron, manganese, lead, chromium [94].
Mitragyna inermis (Willd) O. Ktze Anticonvulsant, cardiovascular affects, antibactérial, antiplasmodial, anti-diabetic [99,100,101].Alkaloids, polyphenols, sterols, polyterpenes, quinones, tannins,
saponins, flavonoids,
saponosides [99,100,102].
Rhynchophylline; isorhynchophylline; corynoxeine; isocorynoxeine; ciliaphylline; rhynchociline; isospcionoxeine; 9-methoxy-3-epi-α-yohimbine [103].
27-nor-terpenoid glucoside [104,105].
Parkia biglobosa (Jacq.) R. BR. ex G. Don. FAntibacterial, antifungal, antioxidant, antihyperlipidemic, cardioprotective [106,107,108].Alkaloids, cardiac glycosides, tannins, steroids, tannins, alkaloids, flavonoids, saponins, terpenes, glycosides [106,109].
Securidaca longepedunculata Fresen Anticonvulsant; antidepressant, anxiolytic, antioxydant,
anti-nociceptive, cytotoxic, antivenomous, antibactérial, aphrodisiac, sedative, [110,111,112]
Alkaloids, saponosides, flavonoids, phenols, xanthones, anthraquinones, essential oils [113,114,115].Gallic acide; quercetin; cafeic acid; chlorogenic acid; epicatechin; p-coumaric acid; cinnamic acid; rutin; apigenin [82]
Phelandrene; pinene; z-sabinol; limonene; p-cymene [110]
Securinin [116,117]. Muchimangine E, muchimangine F [118].
Tamarindus indica L.Analgesic, antinociceptive, antivenin, hepatoprotective, anti-inflamatory, anti-helminthic, antioxydant, antibacterial [119,120,121].Alkaloids, saponins, glycosides, tannins, terpenoids, flavonoids, coumarins, naphthoquinones, anthraquinones, xanthonones [121,122,123,124].C-glycosidesorientin; vitexin; isoorientin; isovitexin; tartaric acid; malic acid [120].
Limonene; methyl salicylate; pyrazine; alkylthiazole; calcium; iron; zinc; vitamins B and C [125].
Ximenia americana L.Anti-plasmodiale, antioxidant, anticancer, antineoplastic,
antitrypanosomal, antirheumatic, antioxidant, analgesic antipyretic [90,126,127].
Alkaloids, anthraquinones, cardiac
glycosides, flavonoids, pylobatannins, saponnins, tannins, terpenoids, isoprenoids, triterpenes, sesquiterpenes, quinones [126,127,128].
Norisoprenoid isophorane; ximenynic acid; methyl-14,14-dimethyl-18-hydroxyheptatracont-27,35-dienoate; dimethyl-5-Methyl-28,29-dihydroxydotriacont-3,14,26-triendioate; 10Z,14E,16E-octadeca-10,14,16-triene-12-ynoic acid, tariric acid; β-sitosterol; oleanene palmitates [127,129,130] .
Zanthoxylum zanthoxyloïdes Lam. Zep &TimlAntiplasmodial, vasorelaxant, antifungal, antibacterial, inhibition of acetylcholinesterase, antiradical, [131,132,133].Alkaloids, tannins [132,134].Myrcene; germacrene D; limonene, β-caryophyllene; decanal [135]. Acide 3,4-O-divanilloylquinique, acide 3,5-O-divanilloylquinique, acide 4,5-O-divanilloylquinique [136].fagaramide; (+)-sésamine; lupéol; hespéridine; Dihydrochélérythrine; N,N-diméthyllindcarpine; Chélérythrine; Norchélérythrine; 6-(2-oxybutyl) dihydrochélérythrine; 6-hydroxy-dihydrochélérythrine; avicine; arnottianamide [131] .
Zizyphus mauritiana Lam.Antitumor, antibacterial, antioxidant, antimicrobial, anticancer [137,138].Alkaloids, flavonoids, triterpenoids, tannins, glycoside, phenol, lignin, saponins [137,139].2H-1-benzopyran-2-one; 9, stigmasterol; stigmastane-3,6-dione [137]. 3-methyl piperidine; o-methyl delta-tochopherol; octacosane; cyclobarbital; squalene; 2,4-dimethyl; thymol TMS; benzoquinoline; γ-sitosterol; hydroprogesterone [138].

Share and Cite

MDPI and ACS Style

Kinda, P.T.; Zerbo, P.; Guenné, S.; Compaoré, M.; Ciobica, A.; Kiendrebeogo, M. Medicinal Plants Used for Neuropsychiatric Disorders Treatment in the Hauts Bassins Region of Burkina Faso. Medicines 2017, 4, 32. https://doi.org/10.3390/medicines4020032

AMA Style

Kinda PT, Zerbo P, Guenné S, Compaoré M, Ciobica A, Kiendrebeogo M. Medicinal Plants Used for Neuropsychiatric Disorders Treatment in the Hauts Bassins Region of Burkina Faso. Medicines. 2017; 4(2):32. https://doi.org/10.3390/medicines4020032

Chicago/Turabian Style

Kinda, Prosper T., Patrice Zerbo, Samson Guenné, Moussa Compaoré, Alin Ciobica, and Martin Kiendrebeogo. 2017. "Medicinal Plants Used for Neuropsychiatric Disorders Treatment in the Hauts Bassins Region of Burkina Faso" Medicines 4, no. 2: 32. https://doi.org/10.3390/medicines4020032

APA Style

Kinda, P. T., Zerbo, P., Guenné, S., Compaoré, M., Ciobica, A., & Kiendrebeogo, M. (2017). Medicinal Plants Used for Neuropsychiatric Disorders Treatment in the Hauts Bassins Region of Burkina Faso. Medicines, 4(2), 32. https://doi.org/10.3390/medicines4020032

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop