Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials and Samples Preparation
2.3. Preparation of Plant Extract
2.4. Fractionation of Ethyl Acetate Fraction
2.5. Xanthine Oxidase (XO) Inhibitory Activity
2.6. Antibacterial Activity
2.7. Antioxidant Activity
2.7.1. DPPH Radical Scavenging Activity
2.7.2. ABTS Radical Scavenging Activity
2.8. Identification of Chemical Constituents by Gas Chromatography-Mass Spectrometry (GC-MS)
2.9. Statistical Analysis
3. Results
3.1. Xanthine Oxidase Inhibitory Activity of C. militaris Fractions
3.2. Antioxidant Activities of C. militaris Fractions
3.3. Antibacterial Activities of C. militaris Extracts
3.4. GC-MS of Analysis of C. militaris
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shrestha, B.; Zhang, W.; Zhang, Y.; Liu, X. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 2012, 11, 599–614. [Google Scholar] [CrossRef]
- Dong, J.Z.; Wang, S.H.; Ai, X.R.; Yao, L.; Sun, Z.W.; Lei, C.; Wang, Y.; Wang, Q. Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J. Funct. Foods 2013, 5, 1450–1455. [Google Scholar] [CrossRef]
- Das, S.K.; Matsuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospect. Fitoterapia 2010, 81, 961–968. [Google Scholar] [CrossRef]
- Koh, J.H.; Kim, K.M.; Kim, J.M.; Song, J.C.; Suh, H.J. Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol. Pharm. Bull. 2003, 26, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Smiderle, F.R.; Baggio, C.H.; Borato, D.G.; Santana-Filho, A.P.; Sassaki, G.L.; Iacomini, M.; Van Griensven, L.J.L.D. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-d-glucan. PLoS ONE 2014, 9, e110266. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Lee, J.B.; Hayashi, K.; Fujita, A.; Park, D.K.; Hayashi, T. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 2007, 55, 10194–10199. [Google Scholar] [CrossRef]
- Cho, S.H.; Kang, I.C. The inhibitory effect of cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem. Biophys. Res. Commun. 2018, 498, 431–436. [Google Scholar] [CrossRef]
- Jiang, Y.; Wong, J.H.; Fu, M.; Ng, T.B.; Liu, Z.K.; Wang, C.R.; Li, N.; Qiao, W.T.; Wen, T.Y.; Liu, F. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine 2011, 18, 189–193. [Google Scholar] [CrossRef]
- Liu, J.Y.; Feng, C.P.; Li, X.; Chang, M.C.; Meng, J.L.; Xu, L.J. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int. J. Biol. Macromol. 2016, 86, 594–598. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, G.; He, Y.I.; Tong, G. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor. Exp. Ther. Med. 2016, 12, 1812–1816. [Google Scholar] [CrossRef]
- Kim, S.B.; Ahn, B.; Kim, M.; Ji, H.J.; Shin, S.K.; Hong, I.P.; Kim, C.Y.; Hwang, B.Y.; Lee, M.K. Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. J. Ethnopharmacol. 2014, 151, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 2013, 93, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Sumardika, I.W.; Saito, S.; Ruma, I.M.W.; Kondo, E.; Shibukawa, M.; Sakaguchi, M. Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061–1062, 209–219. [Google Scholar] [CrossRef]
- Hur, H. Chemical ingredients of Cordyceps militaris. Mycobiology 2008, 36, 233–235. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, F.; Gao, H.; Sun, H.; Meng, M.; Zhang, Y.M. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2016, 93, 1090–1099. [Google Scholar] [CrossRef]
- Chiang, S.S.; Liang, Z.C.; Wang, Y.C.; Liang, C.H. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. J. Food Compost. Anal. 2017, 60, 51–56. [Google Scholar] [CrossRef]
- Jin, Y.; Meng, X.; Qiu, Z.; Su, Y.; Yu, P.; Qu, P. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J. Biol. Sci. 2018, 25, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Hatashita, M.; Fujihara, S.; Suzuki, Y.; Sakurai, A. Simple and efficient isolation of cordycepin from culture broth of a Cordyceps militaris mutant. J. Biosci. Bioeng. 2015, 120, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Ahn, H.Y.; Cho, Y.S.; Je, J.Y. Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats. Food Chem. Toxicol. 2013, 60, 52–57. [Google Scholar] [CrossRef]
- Chaicharoenaudomrung, N.; Jaroonwitchawan, T.; Noisa, P. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol. In Vitro 2018, 46, 113–121. [Google Scholar] [CrossRef]
- Lei, J.; Wei, Y.; Song, P.; Li, Y.; Zhang, T.; Feng, Q.; Xu, G. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 2018, 818, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, S.; Du, M. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr. Res. 2015, 35, 431–439. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Calhelha, R.C.; Ćirić, A.; van Griensven, L.J.L.D.; Soković, M.; Ferreira, I.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol. 2013, 62, 91–98. [Google Scholar] [CrossRef]
- Chen, R.; Jin, C.; Li, H.; Liu, Z.; Lu, J.; Li, S.; Yang, S. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep. Purif. Technol. 2014, 134, 90–99. [Google Scholar] [CrossRef]
- Dong, C.H.; Yang, T.; Lian, T. A Comparative study of the antimicrobial, antioxidant and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms 2014, 16, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Chen, Y.I.; Tzeng, C.Y.; Chen, H.C.; Tsai, C.C.; Lee, Y.C.; Lin, J.G.; Lai, Y.K.; Chang, S.L. Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats. Phytother. Res. 2012, 26, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, N.; Saxena, S. Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species. 3 Biotech 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Le Tran, Q.; Watanabe, H.; Kadota, S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol. Pharm. Bull. 2004, 2, 1414–1421. [Google Scholar] [CrossRef]
- Yong, T.; Zhang, M.; Chen, D.; Shuai, O.; Chen, S.; Su, J.; Chunwei, J.; Delong, F.; Xie, Y. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine. J. Ethnopharmacol. 2016, 194, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Deng, C.; Cao, W.; Zeng, G.; Deng, X.; Zhou, Y. Phytochemicals of Pogostemon cablin (Blanco) Benth. aqueous extract: Their xanthine oxidase inhibitory activities. Biomed. Pharmacother. 2017, 89, 544–548. [Google Scholar] [CrossRef]
- Santi, M.D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M.G. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem. 2018, 143, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Dong, C.; Yao, Y. Antioxidant activities of aqueous extract from cultivated fruit-bodies of Cordyceps militaris (L.) Link in vitro. J. Integr. Plant Biol. 2006, 48, 1365–1370. [Google Scholar] [CrossRef]
- Yu, R.; Yang, W.; Song, L.; Yan, C.; Zhang, Z.; Zhao, Y. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr. Polym. 2007, 70, 430–436. [Google Scholar] [CrossRef]
- Fengyao, W.; Hui, Y.; Xiaoning, M.; Junqing, J.; Guozheng, Z.; Xijie, G.; Zhongzheng, G. Structural characterization and antioxidant activity of purified polysaccharide from cultured Cordyceps militaris. Afr. J. Microbiol. Res. 2011, 5, 2743–2751. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.; Huang, Z. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int. J. Biol. Macromol. 2013, 58, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Dzotam, J.K.; Touani, F.K.; Kuete, V. Antibacterial activities of the methanol extracts of Canarium schweinfurthii and four other Cameroonian dietary plants against multi-drug resistant Gram-negative bacteria. Saudi J. Biol. Sci. 2016, 23, 565–570. [Google Scholar] [CrossRef]
- Chimnoi, N.; Reuk-ngam, N.; Chuysinuan, P.; Khlaychan, P.; Khunnawutmanotham, N.; Chokchaichamnankit, D.; Thamniyom, W.; Klayraung, S.; Mahidol, C.; Techasakul, S. Characterization of essential oil from Ocimum gratissimum leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. Microb. Pathog. 2018, 118, 290–300. [Google Scholar] [CrossRef]
- Mishra, M.P.; Rath, S.; Swain, S.S.; Ghosh, G.; Das, D.; Padhy, R.N. In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. J. King Saud Univ. Sci. 2017, 29, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 253–258. [Google Scholar] [CrossRef]
- Umamaheswari, M.; AsokKumar, K.; Somasundaram, A.; Sivashanmugam, T.; Subhadradevi, V.; Ravi, T.K. Xanthine oxidase inhibitory activity of some Indian medical plants. J. Ethnopharmacol. 2007, 109, 547–551. [Google Scholar] [CrossRef]
- Fukuta, M.; Xuan, T.D.; Deba, F.; Tawata, S.; Khanh, T.D.; Chung, I.M. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant and herbicidal activities of momilatones A and B. J. Plant Interact. 2007, 2, 245–251. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity. Food Chem. 2007, 103, 486–494. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Samoticha, J.; Eler, K.; Stampar, F.; Veberic, R. Traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity. J. Agric. Food Chem. 2015, 63, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Andriana, Y.; Xuan, T.D.; Quan, N.V.; Quy, T.N. Allelopathic potential of Tridax procumbens L. on radish and identification of allelochemicals. Allelopath. J. 2018, 43, 222–238. [Google Scholar] [CrossRef]
- Xuan, T.D.; Yulianto, R.; Andriana, Y.; Khanh, T.D. Chemical profile, antioxidant activities and allelopathic potential of liquid waste from germinated brown rice. Allelopath. J. 2018, 45, 1–12. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod. 2015, 70, 238–244. [Google Scholar] [CrossRef]
- Kapoor, N.; Saxena, S. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae. Appl. Biochem. Biotechnol. 2014, 173, 1360–1374. [Google Scholar] [CrossRef]
- Lin, K.W.; Chen, Y.T.; Yang, S.C.; Wei, B.L.; Hung, C.F.; Lin, C.N. Xanthine oxidase inhibitory lanostanoids from Ganoderma tsugae. Fitoterapia 2013, 89, 231–238. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Nowak, R. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem. 2017, 225, 138–145. [Google Scholar] [CrossRef]
- Yong, T.; Chen, S.; Xie, Y.; Chen, D.; Su, J.; Shuai, O.; Jiao, C.; Zuo, D. Cordycepin, a characteristic bioactive constituent in Cordyceps militaris, ameliorates hyperuricemia through URAT1 in hyperuricemic mice. Front. Microbiol. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Ouyang, H.; Hou, K.; Peng, W.; Liu, Z.; Deng, H. Antioxidant and xanthine oxidase inhibitory activities of total polyphenols from onion. Saudi J. Biol. Sci. 2017, 25, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.J.; Feng, Y.; Olatunji, O.O.; Tang, J.; Ouyang, Z.; Su, Z. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomed. Pharmacother. 2016, 81, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Ze Jaafar, H.; Ghasemzadeh, A.; Ebrahimi, M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res. 2015, 48, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.M.; Wang, B.S.; Huang, S.C.; Duh, P.D. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 2006, 54, 3132–3138. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef] [Green Version]
- Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef]
- Eleazu, C.O. Characterization of the natural products in cocoyam (Colocasia esculenta) using GC–MS. Pharm. Biol. 2016, 54, 2880–2885. [Google Scholar] [CrossRef]
- Al-Abd, N.M.; Nor, Z.M.; Mansor, M.; Zajmi, A.; Hasan, M.S.; Azhar, F.; Kassim, M. Phytochemical constituents, antioxidant and antibacterial activities of methanolic extract of Ardisia elliptica. Asian Pac. J. Trop. Med. 2017, 7, 569–576. [Google Scholar] [CrossRef]
Extracts | % XO Inhibition at 100 µg/mL | Antioxidant Activities | |
---|---|---|---|
DPPH (IC50 mg/mL) | ABTS (IC50 mg/mL) | ||
Hexane (H) | - | 3.07 ± 0.04 a | 4.45 ± 0.06 a |
Chloroform (C) | - | 1.65 ± 0.15 b | 2.52 ± 0.19 b |
Ethyl acetate (E) | 31.66 ± 2.86 | 0.60 ± 0.03 d | 1.03 ± 0.02 d |
Aqueous residue (W) | - | 1.35 ± 0.07 c | 1.65 ± 0.07 c |
Fractions | % XO Inhibition at 100 µg/mL | IC50 Value (µg/mL) |
---|---|---|
CM1 | - | - |
CM2 | - | - |
CM3 | - | - |
CM4 | 21.88 ± 0.78 f | - |
CM5 | 39.57 ± 0.56 d | - |
CM6 | 61.70 ± 0.64 b | 87.73 ± 0.81 a |
CM7 | 52.72 ± 0.74 c | 86.78 ± 1.20 a |
CM8 | 52.58 ± 1.55 c | 62.82 ± 4.48 b |
CM9 | 31.12 ± 3.71 e | - |
CM10 | 56.56 ± 2.95 c | 68.04 ± 5.85 b |
CM11 | - | - |
CM12 | 11.92 ± 1.79 g | - |
CM13 | - | - |
CM14 | - | - |
Allopurinol | 90.20 ± 6.19 a | 4.85 ± 2.19 c |
Fractions | Minimum Inhibitory Concentration (mg/mL) | |||
---|---|---|---|---|
B. subtilis | S. auereus | E. coli | P. mirabilis | |
CM1 | 25 | 25 | 30 | 25 |
CM2 | 30 | 20 | 25 | 30 |
CM3 | 30 | - | 30 | 30 |
CM4 | - | - | - | - |
CM5 | 30 | 30 | 30 | - |
CM6 | 25 | 20 | - | - |
CM7 | 25 | 30 | 25 | 30 |
CM8 | - | 30 | 20 | - |
CM9 | 15 | 25 | 25 | 20 |
CM10 | - | 30 | 30 | - |
CM11 | 10 | 25 | 15 | 25 |
CM12 | 15 | 20 | 20 | 30 |
CM13 | - | 20 | - | - |
CM14 | - | 25 | - | - |
DMSO | - | - | - | - |
Ampicillin | 0.0195 | 0.039 | 0.0097 | 0.0195 |
Streptomycin | 0.156 | 0.078 | 0.156 | 0.156 |
No. | Major Constituents | Retention Times (min) | Peak Area (%) | Fractions |
---|---|---|---|---|
1 | 1) Methyl hexadecanoate | 16.72 | 5.95 | CM1 |
2) Hexadecanoic acid | 17.09 | 17.08 | ||
3) (9Z,12E)-Octadeca-9,12-dienoic acid | 18.73 | 29.54 | ||
2 | 1) Methyl hexadecanoate | 16.72 | 2.23 | CM2 |
2) Hexadecanoic acid | 17.11 | 20.64 | ||
3) (9Z,12E)-Octadeca-9,12-dienoic acid | 18.76 | 32.16 | ||
4) (9R,10R,13R,17R)-17-[(E,2R,5R)-5,6-Dimethylhept-3-en-2-yl]-10,13-dimethyl-1,2,9,11,12,15,16,17-octahydrocyclopenta [a] phenanthren-3-one | 29.12 | 6.25 | ||
3 | 1) Pentadecanal | 14.56 | 16.02 | CM3 |
2) Methyl 2-oxohexadecanoate | 17.41 | 3.04 | ||
3) Octadecanal | 22.11 | 34.91 | ||
4) Dodecanamide | 25.55 | 2.73 | ||
4 | 1) Pentadecanal | 14.56 | 10.38 | CM4 |
2) Methyl 2-oxohexadecanoate | 17.40 | 3.20 | ||
3) Octadecanal | 22.11 | 30.13 | ||
5 | 1) Pentadecanal | 14.56 | 7.11 | CM5 |
2) Hexadecanal | 15.65 | 1.30 | ||
3) Methyl 2-oxohexadecanoate | 17.41 | 3.22 | ||
4) Octadecanal | 22.11 | 25.85 | ||
6 | 1) (1R,2R,3S,4R)-3-Deuterio-6,8-dioxabicyclo [3.2.1] octane-2,3,4-triol | 11.82 | 5.65 | CM6 |
2) Pentadecanal | 14.56 | 53.80 | ||
3) Hexadecanoic acid | 17.07 | 1.33 | ||
4) Methyl 2-hydroxyhexadecanoate | 20.30 | 1.25 | ||
5) Henicosan-1-ol | 26.33 | 1.99 | ||
7 | 1) (1R,2R,3S,4R)-3-Deuterio-6,8-dioxabicyclo [3.2.1] octane-2,3,4-triol | 11.76 | 1.92 | CM7 |
2) Pentadecanal | 14.52 | 21.35 | ||
3) Hexadecanoic acid | 17.03 | 1.75 | ||
4) Methyl 2-oxohexadecanoate | 17.37 | 1.26 | ||
5) N-(2-Hydroxyethyl) octanamide | 18.77 | 2.73 | ||
8 | 1) (1R,2R,3S,4R)-3-Deuterio-6,8-dioxabicyclo [3.2.1] octane-2,3,4-triol | 11.76 | 0.54 | CM8 |
2) Pentadecanal | 14.52 | 19.79 | ||
3) 3′-Deoxyadenosine | 21.98 | 55.38 | ||
9 | 1) Pentadecanal | 14.55 | 19.90 | CM9 |
2) Methyl 2-oxohexadecanoate | 17.40 | 0.77 | ||
3) 3′-Deoxyadenosine | 21.97 | 58.04 | ||
10 | 1) Tetradecanal | 13.39 | 0.83 | CM10 |
2) Pentadecanal | 14.56 | 45.00 | ||
3) 3′-Deoxyadenosine | 21.95 | 18.61 | ||
11 | 1) 2-hydroxybutanedioic acid | 6.18 | 1.89 | CM11 |
2) Hexadecanoic acid | 17.03 | 1.90 | ||
3) (11E,13Z)-Octadeca-1,11,13-triene | 18.67 | 0.72 | ||
4) 1,3-Dihydroxypropan-2-yl hexadecanoate | 21.89 | 3.79 | ||
12 | 1) Hexadecanoic acid | 17.03 | 1.41 | CM12 |
2) (11E,13Z)-Octadeca-1,11,13-triene | 17.68 | 1.27 | ||
3) (1R)-1-Hexadecyl-2,3-dihydro-1H-indene | 21.74 | 2.62 | ||
13 | 1) Hexadecanoic acid | 17.02 | 4.18 | CM13 |
2) (11E,13Z)-Octadeca-1,11,13-triene | 18.67 | 15.71 | ||
14 | 1) N,N-Dimethyl-1-undecanamine | 12.06 | 2.02 | CM14 |
2) Hexadecanoic acid | 17.03 | 9.95 | ||
3) (11E,13Z)-Octadeca-1,11,13-triene | 18.76 | 25.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quy, T.N.; Xuan, T.D. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines 2019, 6, 20. https://doi.org/10.3390/medicines6010020
Quy TN, Xuan TD. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines. 2019; 6(1):20. https://doi.org/10.3390/medicines6010020
Chicago/Turabian StyleQuy, Tran Ngoc, and Tran Dang Xuan. 2019. "Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body" Medicines 6, no. 1: 20. https://doi.org/10.3390/medicines6010020
APA StyleQuy, T. N., & Xuan, T. D. (2019). Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines, 6(1), 20. https://doi.org/10.3390/medicines6010020