Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical
2.2. Plant Material
2.3. Extraction and Isolation of Pristimerin and Tingenone
2.4. Preparation of Plant Extracts for HPLC Analysis
2.5. HPLC-PDA Apparatus and Conditions
2.6. Preparation of Samples
2.7. Method Validation
2.7.1. Calibration, Linearity and Quality Control Samples
2.7.2. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3. Results and Discussion
3.1. Isolation of Pristimerin and Tingenone from Maytenus chiapensis
3.2. HPLC Analysis
3.3. Simultaneous Quantification of Pristimerin and Tingenone
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González, A.G.; Bazzocchi, I.L.; Moujir, L.M.; Jiménez, I.A. Ethnobotanical uses of Celastraceae: Bioactive metabolites. In Studies in Natural Products Chemistry Bioactive Natural Product (Part D); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 23, pp. 649–738. [Google Scholar]
- Gunatilaka, A.A.L. Triterpenoid quinonemethides and related compounds (Celastroloids). In Progress in the Chemistry of Organic Natural Products; Springer-Verlag/Wien: New York, NY, USA, 1996; Volume 67, pp. 1–123. [Google Scholar]
- Alvarenga, N.; Ferro, E.A. Bioactive triterpenes and related compounds from Celastraceae. In Studies in Natural Products Chemistry (Part K); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 33, pp. 239–307. [Google Scholar]
- Brüning, R.; Wagner, H. Übersicht über die celastraceen-inhaltsstoffe: Chemie, chemotaxonomie, biosynthese, pharmakologie. Phytochemistry 1978, 17, 1821–1858. [Google Scholar] [CrossRef]
- Muñoz, O.; Gonzalez, A.; Ravelo, A.; Estevez, A. Triterpenoid and phenolic compounds from two Chilean Celastraceae. Z. Naturforsch 1999, 54c, 144–145. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, D.Y.; Guo, J. 3-Oxo-11β-hydroxyfriedelane from the roots of Celastrus monospermus. J. Chem. Res. 2010, 34, 114–117. [Google Scholar] [CrossRef]
- Brinker, A.M.; Ma, J.; Lipsky, P.E.; Raskin, I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 2007, 68, 732–766. [Google Scholar] [CrossRef] [PubMed]
- Li, P.P.; He, W.; Yuan, P.F.; Song, S.S.; Lu, J.T.; Wei, W. Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma Bel-7402 cells. Am. J. Chin. Med. 2015, 43, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.B.C.; Oliveira, F.P.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Costa, E.V.; Silva, F.M.A.; Rocha, W.C.; Koolen, H.H.F.; et al. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). J. Ethnopharmacol. 2019, 231, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Wang, X.; Teng, H.; Li, C.; Wang, B.; Wang, J. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int. Immunopharmacol. 2019, 66, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.A.F.F.M.; Santos, D.P.; Castro-Gamboa, I.; Zanoni, M.V.B.; Furlan, M. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules 2010, 15, 6956–6973. [Google Scholar] [PubMed]
- de León, L.; López, M.R.; Moujir, L. Antibacterial properties of zeylasterone, a triterpenoid isolated from Maytenus blepharodes, against Staphylococcus aureus. Microbiol. Res. 2010, 165, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.M.; Silva, G.A.; Monteiro, M.R.; Albuquerque, S. Trypanocidal activity of quinonemethide triterpenoids from Cheiloclinium cognatum (Hippocrateaceae). Z. Naturforsch. C 2008, 63, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Avilla, J.; Teixidó, A.; Velázquez, C.; Alvarenga, N.; Ferro, E.; Canela, R. Insecticidal activity of Maytenus species (Celastraceae) nortriterpene quinone methides against Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). J. Agric. Food Chem. 2000, 48, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.Q.; Mei, P.F. The principle of Chinese drug Lei-Kung-Teng, Tripterygium wilfordii Hook. The coloring substance and the sugars. Chin. J. Physiol. 1936, 10, 259–534. [Google Scholar]
- Bhatnagar, S.S.; Divekar, P.V. Pristimerin, the antibacterial principle of Pristimera indica. I. Isolation, toxicity, and antibacterial action. J. Sci. Ind. Res. 1951, 10B, 56–61. [Google Scholar]
- Brown, P.M.; Moir, M.; Thomson, R.H.; King, T.J.; Krishnamoorthy, V.; Seshadri, T.R. Tingenone and hydroxytingenone, triterpenoid quinone methides from Euonymus tingens. J. Chem. Soc. Perkin Trans. 1 1973, 22, 2721–2725. [Google Scholar] [CrossRef]
- Cevatemre, B.; Erkısa, M.; Aztopal, N.; Karakas, D.; Alper, P.; Tsimplouli, C.; Sereti, E.; Dimas, K.; Armutak, E.I.I.; Gurevin, E.G.; et al. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol. Res. 2018, 129, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.Y.; Bai, J.P.; Xie, Y.; Yu, J.Z.; Ma, C.G. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol. Lett. 2013, 5, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-O.; Kim, J.-S.; Lee, M.-S.; Lee, H.-J. Anti-cancer effect of pristimerin by inhibition of HIF-1a involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer 2016, 16, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Deeb, D.; Gao, X.; Liu, Y.B.; Pindolia, K.; Gautam, S.C. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/ mTOR signaling proteins and anti-apoptotic Bcl-2. Int. J. Oncol. 2014, 44, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-κB/mTOR signaling. J. Exp. Ther. Oncol. 2014, 10, 275–283. [Google Scholar] [PubMed]
- Park, J.-H.; Kim, J.-K. Pristimerin, a naturally occurring triterpenoid, attenuates tumorigenesis in experimental colitis-associated colon cancer. Phytomedicine 2018, 42, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Tan, F.; Zhou, J.; Pan, J. Pristimerin targeting NF-κB pathway inhibits proliferation, migration, and invasion in esophageal squamous cell carcinoma cells. Cell Biochem. Funct. 2018, 36, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mizoshiri, N.; Hayashi, D.; Arai, Y.; Kishida, T.; Mazda, O.; Kubo, T. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo. OncoTargets Ther. 2017, 10, 5703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, J.; Pan, J. Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF-kB pathway. Int. J. Oncol. 2017, 51, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Yousef, B.A.; Hassan, H.M.; Zhang, L.-Y.; Jiang, Z.-Z. Anticancer potential and molecular targets of pristimerin: A Mini-Review. Curr. Cancer Drug Targets 2017, 17, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Veloso, C.C.; Ferreira, R.C.M.; Rodrigues, V.G.; Duarte, L.P.; Klein, A.; Duarte, I.D.; Romero, T.R.L.; Perez, A.C. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice. Inflammopharmacol. 2018, 26, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Roca-Mézquita, C.; Graniel-Sabido, M.; Moo-Puc, R.E.; Leon-Déniz, L.V.; Gamboa-Leon, R.; Arjona-Ruiz, C.; Tun-Garrido, J.; Miron-Lopez, G.; Mena-Rejón, G.J. Antiprotozoal activity of extracts of Elaeodendron trichotomum (Celastraceae). Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Inácio, M.C.; Paz, T.A.; Pereira, A.M.S.; Furlan, M. Endophytic Bacillus megaterium and exogenous stimuli affect the quinonemethide triterpenes production in adventitious roots of Peritassa campestris (Celastraceae). Plant Cell Tissue Organ Cult. PCTOC 2017, 131, 15–26. [Google Scholar] [CrossRef]
- Núñez, M.J.; Cortés-Selva, F.; Bazzocchi, I.L.; Jiménez, I.A.; González, A.G.; Ravelo, A.G.; Gavin, J.A. Absolute configuration and complete assignment of 13C NMR data for new sesquiterpenes from Maytenus chiapensis. J. Nat. Prod. 2003, 16, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M.J.; Guadaño, A.; Jiménez, I.A.; Ravelo, A.G.; González-Coloma, A.; Bazzocchi, I.L. Insecticidal sesquiterpene pyridine alkaloids from Maytenus chiapensis. J. Nat. Prod. 2004, 67, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M.J.; Jiménez, I.A.; Mendoza, C.R.; Chavez-Sifontes, M.; Martínez, M.L.; Ichiishi, E.; Tokuda, R.; Tokuda, H.; Bazzocchi, I.L. Dihydro-β-agarofuran sesquiterpenes from Celastraceae species as anti-tumour-promoting agents: Structure-activity relationship. Eur. J. Med. Chem. 2016, 111, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M.J.; López, M.R.; Jiménez, I.A.; Moujir, L.M.; Ravelo, A.G.; Bazzocchi, I.L. First examples of tetracyclic triterpenoids with a D:B-friedobaccharane skeleton. A tentative biosynthetic route. Tetrahedron Lett. 2004, 45, 7367–7370. [Google Scholar] [CrossRef]
- Núñez, M.J.; Reyes, C.P.; Jiménez, I.A.; Moujir, L.; Bazzocchi, I.L. Lupane triterpenoids from Maytenus species. J. Nat. Prod. 2005, 68, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.P.; Núñez, M.J.; Jiménez, I.A.; Busserolles, J.; Alcaraz, M.J.; Bazzocchi, I.L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg. Med. Chem. 2006, 14, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- González, A.G.; Alvarenga, N.L.; Rodríguez, F.; Ravelo, A.G.; Jiménez, I.A.; Bazzocchi, I.L.; Gupta, M.P. New phenolic and quinone-methide triterpenes from Maytenus species (Celastraceae). Nat. Prod. Lett. 1995, 7, 209–218. [Google Scholar] [CrossRef]
- Gunatilaka, A.A.L.; Fernando, H.C. 1H and 13C NMR analysis of three quinone-methide triterpenoids. Magn. Reson. Chem. 1989, 27, 803–811. [Google Scholar] [CrossRef]
- Filho, W.B.; Corsino, J.; Bolzani, V.S.; Furlan, M.; Pereira, A.M.S.; França, S.C. Quantitative determination of cytotoxic friedo-nor-oleanane derivatives from five morphological types of Maytenus ilicifolia (Celastraceae) by reverse-phase highperformance liquid chromatography. Phytochem. Anal. 2002, 13, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Nossack, A.C.; Celeghini, R.M.S.; Lanças, F.M.; Yariwake, J.H. HPLC-UV and LC-MS Analysis of quinonemethides triterpenes in hydroalcoholic extracts of “espinheira santa” (Maytenus aquifolium Martius, Celastraceae) leaves. J. Braz. Chem. Soc. 2004, 15, 582–586. [Google Scholar] [CrossRef]
- Leon, J.-A.A.; Ciau, D.-V.R.; Martinez, T.-I.C.; Ciau, Z.-O.C. Comparative fingerprint analyses of extracts from the root bark of wild Hippocratea excelsa and “cancerina” by high-performance liquid chromatography. J. Sep. Sci. 2015, 38, 3870–3875. [Google Scholar] [CrossRef] [PubMed]
Compound | Linearity Range (µg/mL) | Slope | Intercept | Determination Coefficient (r2) |
---|---|---|---|---|
Pristimerin | 1–100 | 74653–79342 | −19550 to −4325 | 0.9981 |
Tingenone | 1–100 | 45234–49342 | −2345 to 13456 | 0.9990 |
Parameters | Pristimerin | Tingenone |
---|---|---|
Theoretical a | 15.0 | |
Mean back-calculated a | 14.90 | 15.02 |
RSD% | 4.45 | 2.34 |
Bias% | 1.45 | 2.65 |
Theoretical a | 50.0 | |
Mean back-calculated a | 50.10 | 49.80 |
RSD% | 4.60 | 2.80 |
Bias% | 1.80 | 2.10 |
Theoretical a | 80.0 | |
Mean back-calculated a | 89.87 | 88.99 |
RSD% | 5.76 | 6.42 |
Bias% | 4.56 | 4.1 |
Solvent | Extraction Method | Content in Pristimerin | Content in Tingenone | ||||
---|---|---|---|---|---|---|---|
µg/mL a | mg/g Extract | mg/g dry Material | µg/mL | mg/g Extract | mg/g Dry Material | ||
n-hexane–Et2O (1:1) | Maceration | 46.41 ± 0.10 | 46.41 mg | 6.50 mg | 31.66 ± 0.15 | 31.66 mg | 4.43 mg |
Methanol | Maceration | 18.01 ± 0.20 | 18.01 mg | 5.04 mg | 10.15 ± 0.18 | 10.15 mg | 2.84 mg |
H2O | UAE b | ND c | ND c | ND c | ND c | ND c | ND c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taddeo, V.A.; Castillo, U.G.; Martínez, M.L.; Menjivar, J.; Jiménez, I.A.; Núñez, M.J.; Bazzocchi, I.L. Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis. Medicines 2019, 6, 36. https://doi.org/10.3390/medicines6010036
Taddeo VA, Castillo UG, Martínez ML, Menjivar J, Jiménez IA, Núñez MJ, Bazzocchi IL. Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis. Medicines. 2019; 6(1):36. https://doi.org/10.3390/medicines6010036
Chicago/Turabian StyleTaddeo, Vito Alessandro, Ulises Guardado Castillo, Morena Lizette Martínez, Jenny Menjivar, Ignacio Antonio Jiménez, Marvin José Núñez, and Isabel López Bazzocchi. 2019. "Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis" Medicines 6, no. 1: 36. https://doi.org/10.3390/medicines6010036
APA StyleTaddeo, V. A., Castillo, U. G., Martínez, M. L., Menjivar, J., Jiménez, I. A., Núñez, M. J., & Bazzocchi, I. L. (2019). Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis. Medicines, 6(1), 36. https://doi.org/10.3390/medicines6010036