Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Plant Extraction
2.2. Reagents and Chemicals
2.3. Cell Lines and Bacterial Strains
2.4. LC-MS/MS Analysis
2.5. DPPH Radical Scavenging Assay
2.6. Assay of Trolox-Equivalent Antioxidant Capacity (TEAC)/ABTS assay
2.7. Assay of the Ferric Reduction Antioxidant Potential (FRAP)
2.8. Total Phenolic Content Tested by the Folin–Ciocalteu Method
2.9. Cell Culture and Cytotoxicity Assay
2.10. Determination of Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) by Broth Microdilutions
2.11. Statistical Analysis
3. Results
3.1. LC-MS/MS Analysis of Glycyrrhiza glabra Extract
3.2. LC-MS/MS Analysis of Paeonia lactiflora Extract
3.3. LC-MS/MS Analysis of Eriobotrya japonica Extract
3.4. Antioxidant Activities and Total Phenolic Contents
3.5. Cytotoxicity
3.6. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, Z. Artemisinin anti-malarial drugs in China. Acta Pharm. Sin. B 2016, 6, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Li, S.; Kwok, C.; Benzie, I.; Szeto, Y.; Guo, D.; He, X.; Yu, P. Antioxidant activity of Chinese medicinal herbs. Pharm. Biol. 2008, 46, 587–595. [Google Scholar] [CrossRef]
- Liao, H.; Banbury, L.K.; Leach, D.N. Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics. Evid. Based Complement. Alternat. Med. 2008, 5, 429–434. [Google Scholar] [CrossRef]
- Kaushik, A.; Jijta, C.; Kaushik, J.J.; Zeray, R.; Ambesajir, A.; Beyene, L. FRAP (Ferric reducing ability of plasma) assay and effect of Diplazium esculentum (Retz) Sw. (a green vegetable of North India) on central nervous system. Indian J. Nat. Prod. Resour. 2012, 3, 228–231. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem. Biol. Interact. 1994, 91, 133–140. [Google Scholar] [CrossRef]
- Irshad, Md.; Zafaryab, Md.; Singh, M.; Rizvi, M.M.A. Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem. 2012, 2012, 157125. [Google Scholar] [CrossRef]
- Mambro, V.M.D.; Fonseca, M.J.V. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J. Pharm. Biomed. Anal. 2005, 37, 287–295. [Google Scholar] [CrossRef]
- Vaya, J.; Belinky, P.A.; Aviram, M. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic. Biol. Med. 1997, 23, 302–313. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Wink, M. Medicinal Plants of the World, 2nd ed.; Briza: Pretoria, South Africa, 2017. [Google Scholar]
- Shibata, S. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 2000, 120, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Fiore, C.; Eisenhut, M.; Ragazzi, E.; Zanchin, G.; Armanini, D. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 2005, 99, 317–324. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.; Gu, S.; Cao, Q.; Lv, Y.; Gao, J.; Wang, S. Pharmacokinetic studies of the significance of herbaceous compatibility of peony liquorice decoction. World Sci. Technol. 2009, 11, 382–387. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Q. Experimental study on the prescription of Shaoyao Gancao Decoction. Chin. Tradit. Pat. Med. 2012, 34, 1354–1358. (In Chinese) [Google Scholar]
- Zhou, J.; Wink, M. Reversal of multidrug resistance in human colon cancer and human leukemia cells by three plant extracts and their major secondary metabolites. Medicines 2018, 5, 123. [Google Scholar] [CrossRef]
- Duan, T.; Yu, M.; Liu, C.; Ma, C.; Wang, W.; Wei, S. Simultaneous determination of glycyrrhizic acid, liquiritin and fingerprint of licorice by RP-HPLC. Chin. Tradit. Pat. Med. 2006, 28, 161–165. (In Chinese) [Google Scholar]
- Yu, D.; Gu, X.; Zhang, C.; Chen, C.; Ma, Y. Comparison of different extracting processes for paeoniflorin in Paeoniae Radix Alba. Chin. J. Exp. Tradit. Med. Formul. 2013, 19, 49–51. [Google Scholar]
- Xiang, Y.; Yang, X.; Yang, G.; Huang, W. Extraction and isolation of ursolic acid from the leaves of Eriobotrya japonica. Herald Med. 2005, 12, 1105–1106. (In Chinese) [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und -Technologie 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radic. Res. 1996, 26, 195–199. [Google Scholar] [CrossRef]
- Pietta, P.; Simonetti, P.; Gardana, C.; Mauri, P. Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba flavonol and Camellia sinensis catechin metabolites. J. Pharm. Biomed. Anal. 2000, 23, 223–226. [Google Scholar] [CrossRef]
- Liu, T.Z.; Chin, N.; Kiser, M.D.; Bigler, W.N. Specific spectrophotometry of ascorbic acid in serum or plasma by use of ascorbate oxidase. Clin. Chem. 1982, 28, 2225–2228. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biomed. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed.; CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef]
- Ye, Z.; Dai, J.; Zhang, C.; Lu, Y.; Wu, L.; Gong, A.G.W.; Xu, H.; Tsim, K.W.K.; Wang, Z. Chemical differentiation of Dendrobium officinale and Dendrobium devonianum by using HPLC fingerprints, HPLC-ESI-MS, and HPTLC analyses. Evid. Based Complement. Alternat. Med. 2017. [Google Scholar] [CrossRef]
- Link, P.; Wetterauer, B.; Fu, Y.; Wink, M. Extracts of Glycyrrhiza uralensis and isoliquiritigenin counteract amyloid-β toxicity in Caenorhabditis elegans. Planta Med. 2015, 81, 357–362. [Google Scholar] [CrossRef]
- Montoro, P.; Maldini, M.; Russo, M.; Postorino, S.; Piacente, S.; Pizza, C. Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal. 2011, 54, 535–544. [Google Scholar] [CrossRef]
- Song, R.; Xu, L.; Zhang, Z.; Tian, Y.; Xu, F.; Dong, H. Determination of gallic acid in rat plasma by LC-MS-MS. Chroma 2010, 71, 1107–1111. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, S. Analysis on chemical constituents in Danggui-Shaoyao-San by LC-Q-TOF-MS and LC-IT-MSn. Chin. Tradit. Herb. Drugs 2014, 45, 1056–1062. (In Chinese) [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Wei, X.; Song, C.; Qiao, M.; Zhang, H. Metabolic profiling of Shu-Yu capsule in rat serum based on metabolic fingerprinting analysis using HPLC-ESI-MSn. Mol. Med. Rep. 2016, 13, 4191–4204. [Google Scholar] [CrossRef]
- Wu, X.; Wu, M.; Chen, X.; Zhang, H.; Ding, L.; Tian, F.; Fu, X.; Qiu, F.; Zhang, D. Rapid characterization of the absorbed chemical constituents of Tangzhiqing formula following oral administration using UHPLC-Q-TOF-MS. J. Sep. Sci. 2018, 41, 1025–1038. [Google Scholar] [CrossRef]
- Ye, M.; Liu, S.; Jiang, Z.; Lee, Y.; Tilton, R.; Cheng, Y. Liquid chromatography/mass spectrometry analysis of PHY906, a Chinese medicine formulation for cancer therapy. Rapid Commun. Mass Spectrom. 2007, 21, 3593–3607. [Google Scholar] [CrossRef]
- Shi, Y. Chemical constituents with anti-allergic activity from red peony root and a horticultural cultivar of Paeonia lactiflora and monoterpenoids profiles of peony related species. Ph.D. Thesis, University of Toyama, Toyama, Japan, March 2016. [Google Scholar]
- Dong, H.; Liu, Z.; Song, F.; Yu, Z.; Li, H.; Liu, S. Structural analysis of monoterpene glycosides extracted from Paeonia lactiflora Pall. using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3193–3199. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.; Qu, Z.; Zhou, H.; Tong, Y.; Liu, D.; Yang, H.; Gao, W. Study on the mechanisms of the bronchodilator effects of Folium Eriobotryae and the selected active ingredient on isolated gunea pig tracheal strips. Pharm. Biol. 2016, 54, 2742–2752. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Su, D.; Gao, G.; Zhou, X.; Sun, L.; Ba, X.; Chen, X.; Bi, K. A sensitive LC-MS-MS method for simultaneous quantification of two structural isomers, hyperoside and isoquercitrin: Application to pharmacokinetic studies. Chroma 2011, 73, 353–359. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, W.; Huang, M.; Xu, W.; Li, H.; Ye, M.; Zhang, X.; Chu, K. Qualitative and quantitative analysis of phenolic acids, flavonoids and iridoid glycosides in yinhua kanggan tablet by UPLC-QqQ-MS/MS. Molecules 2015, 20, 12209–12228. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Yin, M.; Ren, B.; Li, W. Analysis of sesquiterpene glycosides from loquat leaves by UPLC-Q-TOF-MS. Chin. Tradit. Pat. Med. 2015, 37, 1498–1502. (In Chinese) [Google Scholar]
- De Tommasi, N.; Aquino, R.; De Simone, F.; Pizza, C. Plant metabolites. New sesquiterpene and ionone glycosides from Eriobotrya japonica. J. Nat. Prod. 1992, 55, 1025–1032. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, X.; Huang, L.; Chen, S. Processing technology investigation of loquat (Eriobotrya japonica) leaf by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with chemometrics. PLoS ONE 2013, 8, e64178. [Google Scholar] [CrossRef]
- Lee, C.; Kwon, Y.S.; Son, K.H.; Kim, H.P.; Heo, M.Y. Antioxidative constituents from Paeonia lactiflora. Arch. Pharm. Res. 2005, 28, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, C.Y.; Kim, H.J.; Park, J.H.; Ahn, M. Differences in the chemical profiles and biological activities of Paeonia lactiflora and Paeonia obovata. J. Med. Food 2015, 18, 224–232. [Google Scholar] [CrossRef]
- Cheel, J.; Antwerpen, P.V.; Tumová, L.; Onofre, G.; Vokurková, D.; Zouaoui-Boudjeltia, K.; Vanhaeverbeek, M.; Nève, J. Free radical-scavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra L.). Food Chem. 2010, 122, 508–517. [Google Scholar] [CrossRef]
- Kato, T.; Horie, N.; Hashimoto, K.; Satoh, K.; Shimoyama, T.; Kaneko, T.; Kusama, K.; Sakagami, H. Bimodal effect of glycyrrhizin on macrophage nitric oxide and prostaglandin E2 production. In Vivo 2008, 22, 583–586. [Google Scholar] [PubMed]
- Imai, K.; Takagi, Y.; Iwazaki, A.; Nakanishi, K. Radical scavenging ability of glycyrrhizin. Free Radic. Antioxid. 2013, 3, 40–42. [Google Scholar] [CrossRef] [Green Version]
- Bors, W.; Michel, C. Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci. 2002, 957, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Zahin, M.; Aqil, F.; Ahmad, I. The in vitro antioxidant activity and total phenolic content of four Indian medicinal plants. J. Pharm. Pharm. Sci. 2009, 1, 88–95. [Google Scholar]
- Li, X.; Wu, X.; Huang, L. Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules 2009, 14, 5349–5361. [Google Scholar] [CrossRef] [PubMed]
- Tosun, M.; Ercisli, S.; Sengul, M.; Ozer, H.; Polat, T.; Ozturk, E. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol. Res. 2009, 42, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Song, F.; Gan, R.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Yokota, J.; Takuma, D.; Hamada, A.; Onogawa, M.; Yoshioka, S.; Kusunose, M.; Miyamura, M.; Kyotani, S.; Nishioka, Y. Scavenging of reactive oxygen species by Eriobotrya japonica seed extract. Biol. Pharm. Bull. 2006, 29, 467–471. [Google Scholar] [CrossRef]
- Hamoud, R.; Sporer, F.; Reichling, J.; Wink, M. Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas® Tropfen) in comparison to its individual essential oil ingredients. Phytomedicine 2012, 19, 969–976. [Google Scholar] [CrossRef]
- Gupta, V.K.; Fatima, A.; Faridi, U.; Negi, A.S.; Shanker, K.; Kumar, J.K.; Rahuja, N.; Luqman, S.; Sisodia, B.S.; Saikia, D.; et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 2008, 116, 377–380. [Google Scholar] [CrossRef]
- Sedighinia, F.; Afshar, A.S.; Soleimanpour, S.; Zarif, R.; Asili, J.; Ghazvini, K. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: An in vitro study. Avicenna J. Phytomed. 2012, 2, 118–124. [Google Scholar]
- Geetha, R.V.; Roy, A. In Vitro evaluation of antibacterial activity of ethanolic root extract of Glycyrrhiza glabra on oral microbes. Int. J. Drug Dev. Res. 2012, 4, 161–165. [Google Scholar]
- Aggarwal, H.; Ghosh, J.; Rao, A.; Chhokar, V. Evaluation of root and leaf extracts of Glycyrrhiza glabra for antimicrobial activity. J. Med.Bioeng. 2015, 4, 81–85. [Google Scholar]
- Nitalikar, M.M.; Munde, K.C.; Dhore, B.V.; Shikalgar, S.N. Studies of antibacterial activities of Glycyrrhiza glabra root extract. Int. J. PharmTech. Res. 2010, 2, 899–901. [Google Scholar]
- Park, K.; Cho, S. Antimicrobial characteristics of Paeonia lactiflora Pall. extract tested against food-putrefactive microorganisms. Korean J. Food Preserv. 2010, 17, 706–711. [Google Scholar]
- Boo, K.; Lee, D.; Woo, J.; Ko, S.H.; Jeong, E.; Hong, Q.; Riu, K.Z.; Lee, D. Anti-bacterial and anti-viral activity of extracts from Paeonia lactiflora roots. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 132–135. [Google Scholar] [CrossRef]
- Dhanya, K.N.M.; Sidhu, P. The antimicrobial activity of Azardirachta indica, Glycyrrhiza glabra, Cinnamum zeylanicum, Syzygium aromaticum, Accacia nilotica on Streptococcus mutans and Enterococcus faecalis—An in vitro study. Endodontology 2011, 23, 18–25. [Google Scholar]
- Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils of selected aromatic plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar] [CrossRef]
- Youssef, F.S.; Hamoud, R.; Ashour, M.L.; Singab, A.N.; Wink, M. Volatile oils from the aerial parts of Eremophila maculata and their antimicrobial activity. Chem. Biodivers. 2014, 11, 831–841. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Viswanad, V.; Aleykutty, N.A.; Zachariah, S.M.; Prabhakar, V. Antimicrobial potential of herbal medicines. Int. J. Pharm. Sci. Res. 2011, 2, 1651–1658. [Google Scholar]
RT (min) | [M-H]− (m/z) | MS/MS (m/z) from [M-H]− | [M-H]+ m/z | MS/MS (m/z) from [M+H]+ | PDA λmax [nm] | Tentative Identification | References |
---|---|---|---|---|---|---|---|
2.78 | 563.29 | 353.19; 443.13; 473.12; 503.16 | 565.07 | 409.11; 427.05; 445.06; 457.03; 481.05; 499.03; 511.04; 528.96; 546.95 | 217; 274; 334 | rhamnoliquiritin | [30] |
3.39 | 577.31 | 353.21; 383.21; 439.18; 457.14; 473.19; 503.09; 559.26 | 579.18 | 423.07; 441.03; 525.04; 542.95; 560.91 | 217; 272; 331 | isoviolanthin | [30,31] |
3.78 | 549.59 | 255.12; 297.14; 429.11 | 551.11 | 388.11 | 217; 270; 314 | liquiritin apioside isomer | [30,32] |
257.21 | 136.97; 146.94; 238.98 | source fragment | |||||
419.13 | 256.94; 296.73; 364.73; 399.87 | source fragment | |||||
3.99 | 549.43 | 255.09; 297.17; 417.23; 429.12 | 551.16 | 313.29; 388.11 | 227; 276; 311 | liquiritin apioside isomer | [30,32] |
419.05 | 257.01 | source fragment | |||||
257.21 | 136.96; 147.03; 238.97 | source fragment | |||||
4.28 | 417.26 | n.d. | 418.94 | 257.01 | 217; 276; 309 | liquiritin | [30,32] |
257.17 | 136.96; 147.03; 238.97 | source fragment | |||||
5.86 | 549.43 | n.d. | 551.13 | n.d. | 219; 360 | isoliquiritin apioside isomer | [30,32] |
6.05 | 549.36 | n.d. | 551.14 | n.d. | 220; 365; 380 | isoliquiritin apioside isomer | [30,32] |
6.28 | 695.42 | 531.22; 549.17 | 431.13 | 269.10 | 218; 262; 307 | licorice glycoside isomer | [30] |
6.51 | 695.33 | 531.18; 549.18 | 697.26 | 668.04 | 220; 282; 316 | licorice glycoside isomer | [30] |
725.29 | 255.32; 416.95; 531.21; 549.18 | 727.21 | 549.09; 726.16 | licorice glycoside isomer | [30] | ||
6.59 | 417.16 | 255.09 | 419.15 | 257.01 | 217; 297; 371 | isoliquiritin | [30,32] |
7.54 | 983.63 | 820.91 | 985.43 | n.d. | 216 | licorice saponin A3 | [30,32,33] |
7.78 | 695.30 | n.d. | 697.1 | 516.49 | 218; 325; 362 | licorice glycoside isomer | [30] |
725.28 | n.d. | 727.03 | 549.09; 726.16 | licorice glycoside isomer | [30] | ||
9.49 | 837.52 | 530.89; 661.45 | 839.24 | 663.02; 761.61 | 215 | licorice saponin G2 | [30,32,33] |
1675.47 | 837.42 | - | - | dimer | |||
10.25 | 821.75 | 351.07; 759.49 | 823.31 | n.d. | 217; 250 | glycyrrhizic acid | [30,32,33] |
1643.72 | 821.6 | 1645.69 | n.d. | dimer | |||
10.91 | 821.67 | n.d. | 823.31 | n.d. | 217; 245 | probably saponin | pers. com. PW |
11.19 | 821.54 | 351.12 | 823.13 | n.d. | 216; 369 | probably saponin | pers. com. PW |
11.59 | 822.91 | 351.06; 646.57; 803.97 | 825.15 | n.d. | 216 | licorice saponin J2 | [30,32,33] |
16.17 | 407.15 | n.d. | 409.07 | 203.03; 204.98; 247.05; 363.06; 391.00 | 217; 280 | 3-hydroxyglabrol | [30] |
17.81 | 391.28 | n.d. | 393.08 | 204.97; 337.00 | 216; 282 | glabrol | [30] |
782.92 | n.d. | dimer |
RT (min) | [M-H]− (m/z) | MS/MS (m/z) | PDA λmax (nm) | Tentative Identification | References |
---|---|---|---|---|---|
4.63 | 169.11 | 125.22; 126.38; 169.12 | 250 | gallic acid | [34] |
338.62 | 169.12; 253.11; 291.91; 320.43; 339.05 | gallic acid [2M-CO2-H]− | pers. com. BW | ||
6.27 | 493.26* | 169.18; 241.14; 283.26; 313.13; 331.04; 403.13 | 230; 273 | galloylsucrose isomer | [35] |
986.96 | Nl | ||||
6.97 | 493.24* | 211.22; 271.12; 313.16; 331.04; 384.22; 433.14; 475.58 | 230; 273 | galloylsucrose isomer | [35] |
986.98 | Nl | ||||
7.32 | 493.19* | 169.25; 271.45; 313.17; 331.04; 389.98; 449.02 | 230; 274 | galloylsucrose isomer | [35] |
986.88 | Nl | ||||
9.68 | 483.19 | 150.90; 169.14; 193.34; 223.18; 271.10; 295.22; 313.12; 331.11; 426.15 | 230; 273 | digalloyl glucose | [36] |
21.17 | 495.22 | 177.12; 299.13; 333.19; 387.11; 447;06; 465.17; 477.11 | 227; 253 | probably oxypaeoniflorin | [37] |
27.50 | 525.03 | 196.34; 213.42; 283.35; 317.24; 357.38; 391.56; 435.70; 475.77; 479.07; 524.58 | 221; 237; 273 | albiflorin | [38] |
29.28 | 197.17 | 124.32; 141.56; 153.01; 169.18; 197.16 | 231; 272 | probably ethyl gallate | [36] |
394.72 | - | ||||
30.14 | 635.1 | 207.31; 234.79; 313.09; 358.75; 465.13; 483.14; 524.23; 566.84; 589.17 | 233; 276 | trigalloyl glucose | [36] |
30.53 | 449.04 | 165.01; 179.34; 205.10; 261.31; 282.87; 309.03; 326.95; 398.60; 431.13 | 243; 274 | peaoniflorin [M-CH2O-H]− | Standard |
479.04 | 149.09; 177,10; 248.83; 267.08; 309.08; 326.98; 355.61; 356.96; 432.93; 449.16; 460.71; 477.94 | paeoniflorin [M-H]− | [36,39] | ||
525.01 | 176.88; 282.89; 327.09; 356.85; 449.01; 476.31; 478.83; 494.01; 506.96 | paeoniflorin [M+HCOOH-H]− | [37,38] | ||
32.08 | 463.24 | 301.30; 343.04; 394.94; 445.33; 463.25 | 253; 361; 280 | visculdulin I 2´-glycoside | [38] |
39.69 | 787.17** | 295.17; 447.22; 465.33; 483.29; 617.32; 635.17 | 232; 277 | probably tetragalloyl glucose isomer | [36] |
40.29 | 611.22 | 301.30; 343.35; 385.33; 427.35; 445.21 | 232; 272 | ||
40.93 | 477.22 | 160.70; 300.45; 315.12; 357.02; 408.88 | 227; 253; 360 | probably related to isorhamnetin 7-O-glucoside | [36] |
41.36 | 301.31 | 145.14; 185.44; 229.47; 257.47; 301.33 | 249; 367 | ||
509.10 | 202.99; 254.25; 314.06; 372.80; 440.82; 463.22; 480.12 | ||||
787.13** | 295.23; 403.40; 465.43; 530.46; 573.46; 617.18; 635.14; 679.31; 719.88 | probably tetragalloyl glucose isomer | [36] | ||
42.74 | 631.25 | 271.16; 313.23; 399.30; 465.30; 479.28; 491.23; 509.22; 585.17; 613.18 | 234; 274 | gallylpaeoniflorin isomer | [35,36,37,39,40] |
47.77 | 939.11 | 277.04; 341.21; 385.21; 447.13; 511.35; 573.25; 599.15; 617.19; 725.13; 769.12; 787.03 | 234; 269 | probably related to pentagalloyl glucose | [36] |
48.49 | 615.18 | 239.29; 263.04; 281.22; 401.27; 431.23; 447.22; 459.26; 477.22; 495.21; 567.13; 585.16; 597.17 | 232; 275 | mudanpioside H | [36] |
61.98 | 599.26 | 241.29; 281.46; 333.31; 385.39; 403.06; 429.22; 447.51; 459.42; 477.31; 569.17; 581,12 | 233; 274 | probably related to benzoyloxypaeoniflorin | [39] |
1394.92 | 599.23; 937.97; 970.98; 1090.82; 1126.36; 1165.39; 1241.78; 1257.75; 1309.67; 1318.90; 1336.64 | ||||
73.24 | 628.99 | 552.66; 582.88 | 239; 274 | probably related to benzoylpaeoniflorin | [37,39] |
1212.42 | 876.29; 1067.88 |
RT (min) | [M-H]− (m/z) | MS/MS (m/z) | PDA λmax (nm) | Tentative Identification | References |
---|---|---|---|---|---|
11.05 | 352.96 | 110.40; 143.67; 179.20; 191.20; 284.50; 312.26 | 234; 295; 325 | probably chlorogenic acid | [41] |
420.95 | 259.61; 301.23; 331.19; 343.20; 352.64; 360.36; 375.14; 385.20; 392.55; 403.15 | n.c. | |||
17.18 (16.48–17.26) | 463.17 | 151.00; 179.09; 190.34; 221.17; 255.30; 271.50; 300.25; 301.16; 325.03; 343.10; 373.35; 400.93; 418.54; 445.14 | 234; 347 | hyperoside or isoquercetin isomers | [42,43] |
547.19 | 220.44; 292.64; 310.81; 384.91; 437.90; 478.82; 500.58; 515.88 | n.c. | |||
593.04 | 255.34; 284.19; 327.19; 411.21; 429.21; 447.18; 473.09; 565.32 | n.c. | |||
855.43 | 417.31; 545.16; 563.31; 691.43; 709.34; 735.38; 864.27 | n.c. | |||
901.14 | 299.82; 439.19; 610.71; 721.14; 763.80; 854.33; 914.59 | n.c. | |||
28.12 | 821.37 | 511.74; 529.60; 657.60; 675.39; 721.14; 766.16 | 221; 234; 280 | (trans)nerolidol-trirhamnopyranosyl-glucopyranoside or loquatifolin A | [44] (compound 1 or 4) |
867.12 | 596.27; 675.92; 690.31; 721.42; 740.66; 786.99; 815.64; 820.05; 833.88 | n.c. | |||
1688.98 | 551.69; 696.87; 719.35; 821.28; 865.28; 881.05; 1275.89; 1396.00; 1541.66 | n.c. | |||
29.11 | 807.37 | 529.33; 661.43; 675.31 | 217; 234; 280 | unknown new compound | [44](compound 2) |
853.02 | 350.34; 454.48; 503.33; 649.33; 731.12; 784.53; 809.49; 839.42; 853.53 | n.c. | |||
31.52 | 675.31 | 204.97; 307.09; 383.17; 467.33; 529.20; 574.81 | 221; 234; 283; 312 | nerolidol-dirhamnopyranosyl-glucopyranoside | [44] (compound 3 or 5) |
721.21 | 490.37; 597.16; 675.29 | [M+HCOO-H]− of 675.31 [M-H]− | [44] | ||
33.12-33.67 | 967.47 | 309.10; 351.25; 395.15;437.27; 511.25; 529.48; 579.22; 639.41; 657.34; 675.47; 717.98; 743.29; 761.35; 803.44; 821.38; 848.32; 865.41; 922.75; 945.31 | 334; 289; 323 | n.c. | |
997.51 | 381.23; 467.03; 511.14; 529.05; 543.22; 567.25; 603.04; 657.15; 675.18; 697.48; 721.08; 773.26; 803.34; 821.36; 833.47; 915.25; 938.24 | probably nerolidol--rhamnopyranosyl -rhamnopyranosyl--(4-trans-feruloyl)-rhamnopyranosyl--glucopyranoside | [45] | ||
1065.21 | 405.44; 513.91; 579.73; 675.96; 1020.72; 1033.32; 1041.27; 1057.41; 1067.28 | n.c. | |||
50.02 | 633.52 | 339.61; 469.47; 487.39; 513.48; 571.44; 589.50; 615.47; 633.50 | 219; 235; 310 | probably 3-O-p-coumaroyltormetic acid | [46] |
1267.27 | 1102.55 | n.c. | |||
62.90 | 523.39 | - | 219; 235; 281 | Usolic acid (monomer adduct)* | Standard |
933.70 | 408.37; 455.50; 500.98; 584.57; 745.53; 870.99; 933.70 | Usolic acid [2M + Na+ -2H+]− | Standard | ||
1411.83 | 455.52; 501.44; 933.71; 1302.93; 1377.25; 1410.15 | Usolic acid [3M + 2Na+ -3H+]− | Standard | ||
1885.16 | 934.78; 1391.11; 1406.28; 1447.24; 1608.90; 1743.24; 1855.24 | Usolic acid [4M + 3Na+ -4H+]− | Standard |
Plant Extracts | DPPH EC50 (μg/mL) | TEAC (mM Trolox/mM) | FE (mmol Fe2+/g) | GAE (mg gallic acid/g) |
---|---|---|---|---|
Ascorbic acid | 2.31 ± 0.01 | 6363.67 ± 32.37 | 14,268.44 ± 66.18 | - |
EGCG | 9.20 ± 1.18 | 15,708.35 ± 54.72 | 25,318.57 ± 114.83 | - |
Glycyrrhiza glabra extract | 116.17 ± 0.55 | 672.19 ± 5.06 | 477.42 ± 13.00 | 34.19 ± 2.07 |
Paeonia lactiflora extract | 5.15 ± 0.05 | 2567.26 ± 32.83 | 3504.07 ± 51.07 | 323.19 ± 10.19 |
Eriobotrya japonica extract | 35.50 ± 1.99 | 758.63 ± 5.23 | 1464.28 ± 8.32 | 131.32 ± 12.33 |
Bacteria | MIC MBC | Ampicillin (μg/mL) | Ciprofloxacin (μg/mL) | Glycyrrhiza glabra Extract (mg/mL) | Paeonia lactiflora Extract (mg/mL) | Eriobotrya japonica Extract (mg/mL) |
---|---|---|---|---|---|---|
E. coli XL1-Blue MRF′ | MIC | 8 | 0.03 | >10 | 2.5 | 10 |
MBC | 16 | 0.06 | - | 5 | - | |
Acinetobacter bohemicus | MIC | 2 | 0.03 | 1.25 | 0.08 | 5 |
MBC | 8 | 0.05 | 2.5 | 1.25 | 10 | |
Kocuria kristinae | MIC | 0.13 | 0.13 | 0.63 | 1.25 | >10 |
MBC | 0.25 | 0.5 | 1.25 | 2.5 | - | |
Micrococcus luteus | MIC | 0.25 | 0.5 | 0.31 | 0.08 | 10 |
MBC | 2 | 2 | 1.25 | 0.63 | - | |
Staphylococcus auricularis | MIC | 0.5 | 0.06 | 0.63 | 1.25 | 5 |
MBC | 4 | 0.13 | 1.25 | >10 | 10 | |
Bacillus megaterium | MIC | 0.25 | 0.06 | 0.31 | 0.08 | 10 |
MBC | 1 | 0.13 | 0.63 | 0.31 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.-X.; Braun, M.S.; Wetterauer, P.; Wetterauer, B.; Wink, M. Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts. Medicines 2019, 6, 43. https://doi.org/10.3390/medicines6020043
Zhou J-X, Braun MS, Wetterauer P, Wetterauer B, Wink M. Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts. Medicines. 2019; 6(2):43. https://doi.org/10.3390/medicines6020043
Chicago/Turabian StyleZhou, Jun-Xian, Markus Santhosh Braun, Pille Wetterauer, Bernhard Wetterauer, and Michael Wink. 2019. "Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts" Medicines 6, no. 2: 43. https://doi.org/10.3390/medicines6020043
APA StyleZhou, J. -X., Braun, M. S., Wetterauer, P., Wetterauer, B., & Wink, M. (2019). Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts. Medicines, 6(2), 43. https://doi.org/10.3390/medicines6020043