Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Compound Isolation
2.3. Animals and Maintenance
2.4. Chemicals
2.5. Assessment of Analgesic Activities
2.5.1. Acetic Acid-Induced Writhing Method
2.5.2. Hot Plate Method
2.5.3. Tail Flick Response
2.6. Evaluation of Anti-Inflammatory Activities
2.6.1. Carrageenan-Induced Rat Paw Edema
2.6.2. Dextran-Induced Rat Paw Edema
2.6.3. Cotton Pellet-Induced Granuloma
2.7. COX-1 and COX-2 Inhibitory Assay
2.8. Statistical Analysis
3. Results
3.1. Structural Elucidation of the Test Compound
3.2. Analgesic Activity
3.3. Anti-Inflammatory Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Straub, R.H.; Schradin, C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health 2016, 2016, 37–51. [Google Scholar] [CrossRef]
- Okin, D.; Medzhitov, R. Evolution of inflammatory diseases. Curr. Biol. 2012, 22, R733–R740. [Google Scholar] [CrossRef]
- Na, Y.R.; Je, S.; Seok, S.H. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett. 2018, 413, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Rho, T.; Jeong, H.W.; Hong, Y.D.; Yoon, K.; Cho, J.Y.; Yoon, K.D. Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. J. Ginseng Res. 2018, in press. [Google Scholar] [CrossRef]
- Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2018, 139, 126–140. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Arruda, C.; El-Salam, M.A.; Bastos, J.K. Brazilian medicinal plants with corroborated anti-inflammatory activities: A review. Pharm. Biol. 2018, 56, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Oguntibeju, O.O. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J. Inflamm. Res. 2018, 11, 307–317. [Google Scholar] [CrossRef]
- Yamaki, J.; Nagulapalli Venkata, K.C.; Mandal, A.; Bhattacharyya, P.; Bishayee, A. Health-promoting and disease-preventive potential of Trianthema portulacastrum Linn. (Gadabani)-An Indian medicinal and dietary plant. J. Integr. Med. 2016, 14, 84–99. [Google Scholar] [CrossRef]
- Maione, F.; Russo, R.; Khan, H.; Mascolo, N. Medicinal plants with anti-inflammatory activities. Nat. Prod. Res. 2016, 30, 1343–1352. [Google Scholar] [CrossRef]
- Wang, Q.; Kuang, H.; Su, Y.; Sun, Y.; Feng, J.; Guo, R.; Chan, K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. 2013, 146, 9–39. [Google Scholar] [CrossRef] [PubMed]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 3rd ed.; Sri Satguru Publication: New Delhi, India, 2000; Chapter 5; p. 1618. [Google Scholar]
- Sastri, B.N. The Wealth of India. In A Dictionary of Indian Raw Materials and Industrial Products; Raw Materials CSIR: New Delhi, India, 1962; Chapter 6; p. 335. [Google Scholar]
- Mondal, A.; Maity, T.K.; Pal, D.; Sannigrahi, S.; Singh, J. Isolation and in vivo hepatoprotective activity of Melothria heterophylla (Lour.) Cogn., against chemically induced liver injuries in rats. Asian Pac. J. Trop. Med. 2011, 4, 619–623. [Google Scholar] [CrossRef]
- Mondal, A.; Singha, T.; Maity, T.K.; Pal, D.K. Evaluation of antitumor and antioxidant activity of Melothria heterophylla (Lour.) Cogn. Indian J. Pharm. Sci. 2013, 75, 515–522. [Google Scholar]
- Mondal, A.; Singha, T.; Maity, T.K.; Pal, D.K. Hypoglycaemic effect of Melothria heterophylla in streptozotocin-induced diabetic rats. Pharm. Biol. 2012, 50, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.H.; Kim, J.H.; Sim, G.S.; Lee, B.C.; Pyo, H.B.; Park, H.D. Inhibitory effects of antioxidant constituents from Melothria heterophylla on matrix metalloproteinase-1 expression in UVA-irradiated human dermal fibroblasts. J. Cosmetic. Sci. 2006, 57, 279–289. [Google Scholar]
- Mondal, A.; Maity, T.K.; Pal, D.K.; Sannigrahi, S. In vitro antioxidant activity of the roots of Melothria heterophylla (Lour) cogn. Pharmacologyonline 2009, 2, 499–509. [Google Scholar]
- Pal, D.K.; Mondal, A.; Mandal, U. Anthelmintic activity of aerial parts of Melothria heterophylla Lour. Anc. Sci. Life 2006, 26, 78–81. [Google Scholar] [PubMed]
- Koster, R.; Anderson, M.; De-Beer, E.J. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412–418. [Google Scholar]
- Franzotti, E.M.; Santos, C.V.; Rodrigues, H.M.; Mourao, R.H.; Andrade, M.R.; Antonilli, A.R. Antiinflammatory, analgesic and acute toxicity of Sida cordifolia L (Malva-branca). J. Ethnopharmacol. 2000, 72, 273–278. [Google Scholar] [CrossRef]
- D’Amour, F.D.; Smith, D.L. A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 1941, 72, 74–79. [Google Scholar]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Maity, T.K.; Mandal, S.C.; Mukherjee, P.K.; Saha, K.; Das, J.; Pal, M.; Saha, B.P. Studies on anti-inflammatory effect of Cassia tora leaf extract (fam. Leguminosae). Phytother. Res. 1998, 12, 221–223. [Google Scholar] [CrossRef]
- D’Arcy, P.F.; Haward, E.M.; Muggleton, R.W.; Townsend, S.B. The antiinflammatory action of griseofulvin in experimental animals. J. Pharm. Pharmacol. 1960, 12, 659–665. [Google Scholar] [CrossRef]
- Penroda, L.V.; Allena, R.E.; Rhoadsb, M.L.; Limesanda, S.W.; Arns, M.J. Oxytocin stimulated release of PGF2α and its inhibition by a cyclooxygenase inhibitor and an oxytocin receptor antagonist from equine endometrial cultures. Anim. Reprod. Sci. 2013, 139, 69–75. [Google Scholar] [CrossRef]
- Matsuda, M.; Huh, Y.; Ji, R.R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2018, in press. [Google Scholar] [CrossRef]
- Fan, S.H.; Ali, N.A.; Basri, D.F. Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (olivier) in rats. Evid. Based Complement. Alternat. Med. 2014, 2014, 976764. [Google Scholar] [CrossRef]
- Guo, D.; Xu, L.; Cao, X.; Guo, Y.; Ye, Y.; Chan, C.; Mok, D.K.W.; Yu, Z.; Chen, S. Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. Hips. J. Ethnopharmacol. 2011, 138, 717–722. [Google Scholar] [CrossRef]
- Rock, E.M.; Limebeer, C.L.; Parker, L.A. Effect of cannabidiolic acid and ∆9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain. Psychopharmacology 2018, 235, 3259–3271. [Google Scholar] [CrossRef]
Treatment | Number of Writhes | Inhibition (%) |
---|---|---|
Control | 45.12 ± 0.02 | - |
Test Compound (5 mg/kg) | 28.13 ± 0.31 * | 38 |
Test Compound (10 mg/kg) | 20.71 ± 0.32 * | 54 |
Test Compound (15 mg/kg) | 12.14 ± 0.01 * | 73 |
Acetyl Salicylic Acid (10 mg/kg) | 10.23 ± 0.02 ** | 77 |
Treatment | Latency Period (sec) | ||||
---|---|---|---|---|---|
At 0 min | After 15 min | After 30 min | After 45 min | After 60 min | |
Control | 6.40 ± 0.1 | 6.49 ± 0.5 | 6.12 ± 0.3 | 5.89 ± 0.5 | 5.73 ± 0.4 |
Test Compound (5 mg/kg) | 6.42 ± 0.12 * | 7.75 ± 0.2 * | 8.39 ± 0.11 * | 8.99 ± 0.23 * | 9.12 ± 0.31 * |
Test Compound (10 mg/kg) | 6.38 ± 0.21 * | 8.01 ± 0.17 * | 8.89 ± 0.12 * | 9.33 ± 0.2 * | 10.33 ± 0.33 * |
Test Compound (15 mg/kg) | 6.43 ± 0.14 * | 9.57 ± 0.5 * | 10.27 ± 0.3 * | 11.52 ± 0.12 * | 12.56 ± 0.23 * |
Morphine (5 mg/kg) | 6.41 ± 0.32 ** | 11.45 ± 0.3 ** | 13.02 ± 0.21 ** | 13.29 ± 0.1 ** | 13.45 ± 0.1 ** |
Treatment | Reaction Time (sec) |
---|---|
Control | 4.3 ± 0.12 |
Test Compound (5 mg/kg) | 5.9 ± 0.3 * |
Test Compound (10 mg/kg) | 7.5 ± 0.11 * |
Test Compound (15 mg/kg) | 8.3 ± 0.23 * |
Morphine (5 mg/kg) | 8.31 ± 0.3 * |
Treatment | Weight of Granuloma (mg) | Inhibition (%) |
---|---|---|
Control | 27.02 ± 1.92 | -- |
Test Compound (5 mg/kg) | 20.78 ± 1.23 * | 23 |
Test Compound (10 mg/kg) | 18.13 ± 0.98 * | 33 |
Test Compound (15 mg/kg) | 15.83 ± 1.02 * | 41 |
Indomethacin (10 mg/kg) | 14.55 ± 1.35 * | 46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, A.; Maity, T.K.; Bishayee, A. Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla. Medicines 2019, 6, 59. https://doi.org/10.3390/medicines6020059
Mondal A, Maity TK, Bishayee A. Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla. Medicines. 2019; 6(2):59. https://doi.org/10.3390/medicines6020059
Chicago/Turabian StyleMondal, Arijit, Tapan Kumar Maity, and Anupam Bishayee. 2019. "Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla" Medicines 6, no. 2: 59. https://doi.org/10.3390/medicines6020059
APA StyleMondal, A., Maity, T. K., & Bishayee, A. (2019). Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla. Medicines, 6(2), 59. https://doi.org/10.3390/medicines6020059