Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Extracts
2.3. Determination of Total Phenolic Contents
2.4. Determination of Total Flavonoid Contents
2.5. Antioxidant Properties
2.5.1. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Activity
2.5.2. The 2,2′-Azinobis (3-Ethylbenzothiazoline-6-sulfonic acid) (ABTS)
2.5.3. β-Carotene Bleaching Assay
2.6. Identification of Chemical Constituents by Gas Chromatography-Mass Spectrometry (GC-MS)
2.7. Electrospray Ionization-Mass Spectrometry (ESI-MS) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity, Total Phenolic Content (TPC), and Total Flavonoid Content (TFC) of C. hindsii Extracts
3.2. Total Phenolic (TPC), and Total Flavonoid Content (TFC), and Antioxidant Activity of Fractions Separated from EtOAc Extract
3.3. Correlation Between Phenolic Contents and Antioxidant Activities
3.4. Identification of Bioactive Compounds by GC-MS and ESI-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spivey, A.C.; Weston, M.; Woodhead, S. Celastraceae sesquiterpenoids: Biological activity and synthesis. Chem. Soc. Rev. 2002, 31, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Tram, L.N. Separation process of rosmarinic acid and their derivatives from Celastrus hindsii benth leaves. VJST 2016, 54, 380–387. [Google Scholar] [CrossRef]
- Sung, T.V.; Cuong, N.H.; Thuy, T.T.; Ninh, P.T.; Nhung, L.T.H. Isolation and structural characterization of phenolic glycoside and triterpenes in Celastrus hindsii Benth. Vietnam J. Chem. 2008, 46, 224–228. [Google Scholar]
- Kuo, Y.H.; Kuo, L.M.Y. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry 1997, 44, 1275–1281. [Google Scholar] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.; Quiles, J. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Khanh, T.D.; Khang, D.T.; Quan, N.T.; Elzaawely, A.A. Changes in chemical composition, total phenolics and antioxidant activity of Alpinia (Alpinia zerumbet) leaves exposed to UV. ILNS 2016, 55, 25–34. [Google Scholar] [CrossRef]
- Bajčan, D.; Árvay, J.; Vollmannová, A.; Bystrická, J.; Trebichalský, P.; Harangozo, L.; Šimanský, V. Antioxidant properties, total phenolic and total flavonoid content of the Slovak white wines-Welschriesling and Chardonnay. Slovak. J. Food Sci. 2017, 11, 266–271. [Google Scholar]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. JTUSCI 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Koyama, H.; Tawata, S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) BL Burtt. & RM Sm. Food Chem. 2007, 104, 1648–1653. [Google Scholar]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.T.; Anh, T.T.T.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants 2017, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Minh, T.N.; Van, T.M.; Viet, T.D. Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods 2019, 8, 21. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kang, S.C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci. 2013, 20, 319–325. [Google Scholar]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Efficacy from Different Extractions for Chemical Profile and Biological Activities of Rice Husk. Sustainability 2018, 10, 1356. [Google Scholar] [CrossRef]
- Högnadóttir, Á.; Rouseff, R.L. Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry. J. Chromatogr. A 2003, 998, 201–211. [Google Scholar] [CrossRef]
- Xuan, T.D.; Fukuta, M.; Wei, A.C.; Elzaawely, A.A.; Khanh, T.D.; Tawata, S. Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J. Nat. Med. 2008, 62, 188. [Google Scholar] [CrossRef]
- Zhen, J.; Villani, T.S.; Guo, Y.; Qi, Y.; Chin, K.; Pan, M.H.; Ho, C.T.; Simon, J.E.; Wu, Q. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem. 2016, 190, 673–680. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Fund. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Geetha, S.; Ram, M.S.; Mongia, S.S.; Singh, V.; Ilavazhagan, G.; Sawhney, R.C. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium (VI) induced oxidative stress in albino rats. J. Ethnopharmacol. 2003, 87, 247–251. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. JSS 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Tamboli, E.T.; Kamal, Y.T.; Ahmad, W.; Ansari, S.H.; Ahmad, S. Quality control and in vitro antioxidant potential of Coriandrum sativum Linn. J. Pharm. Bioallied Sci. 2015, 7, 280. [Google Scholar]
- Sulaiman, C.T.; Balachandran, I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J. Pharm. Sci. 2012, 74, 258. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Matsuura, H.; MacKinnon, S.; Durst, T.; Towers, G.N.; Arnason, J.T. Phytochemistry of the Meliaceae. In Phytochemical Diversity and Redundancy in Ecological Interactions; Romeo, J.T., Saunders, J.A., Barbosa, P., Eds.; Springer Science & Business Media: Boston, MA, USA, 1996; Volume 30, pp. 155–178. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Tawata, S. Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt. J. Crop Sci. Biotechnol. 2012, 15, 59–64. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D. Comparative reaction rates of various antioxidants with ABTS radical cation. J. Agric. Food Chem. 2009, 57, 1156–1161. [Google Scholar] [CrossRef]
- Xuan, T.D.; Bach, D.T.; Dat, T.D. Involvement ò phenolics, flavonoids, and phenolic acids in high yield characteristics of rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2018, 68, 19–26. [Google Scholar] [CrossRef]
- Tosun, M.; Ercisli, S.; Sengul, M.; Ozer, H.; Polat, T.; Ozturk, E. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol. Res. 2009, 42, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.N.; Shimoyamada, M.; Yamauchi, R. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. J. Agric. Food Chem. 2006, 54, 3786–3793. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Chou, C.J.; Kuo, L.M.Y.; Hu, Y.Y.; Chen, Y.C.; Chen, C.F.; Lee, K.H. A sesquiterpene ester from Celastrus hindsii. Phytochemistry 1996, 41, 549–551. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Chen, C.F.; Kuo, L.M.Y.; King, M.L.; Chen, C.F.; Lee, K.H. Celahinine A, a new sesquiterpene pyridine alkaloid from Celastrus hindsii. J. Nat. Prod. 1995, 58, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Su, X.H.; Zhang, M.L.; Zhan, W.H.; Huo, C.H.; Shi, Q.W.; Gu, Y.C.; Kiyota, H. Chemical and pharmacological studies of the plants from genus Celastrus. Chem. Biodivers. 2009, 6, 146–161. [Google Scholar] [CrossRef]
- Azevedo, M.I.; Pereira, A.F.; Nogueira, R.B.; Rolim, F.E.; Brito, G.A.C.; Wong, D.V.T.; Lima-Junior, R.C.P.; Ribeiro, R.A.; Vale, M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced painful peripheral neutrophathy. Mol. Pain 2013, 9, 53. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- De Oliveira, I.R.W.Z.; Fernandes, S.C.; Vieira, I.C. Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin. J. Pharm. Biomed. Anal. 2006, 41, 366–372. [Google Scholar] [CrossRef]
- Gullon, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J. 2015, 14, 59. [Google Scholar] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Phar. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Calabro, M.L.; Tommasini, S.; Donato, P.; Stancanelli, R.; Raneri, D.; Catania, S.; Ficarra, R. The rutin/β-cyclodextrin interactions in fully aqueous solution: Spectroscopic studies and biological assays. J. Pharm. Biomed. Anal. 2005, 36, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wei, P.; Liu, W. Combined antioxidant effects of rutin and vitamin C in triton X-100 micelles. J. Pharm. Biomed. Anal. 2007, 43, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Yu, H.; Lessard, S.; Lamoureux, G.; Ajdukovic, D.; Lacroix, M. Fenton reaction applied for screening natural antioxidants. Food Chem. 2007, 100, 542–552. [Google Scholar] [CrossRef]
- Hernandez-Vazquez, L.; Bonfill, M.; Moyano, E.; Cusido, R.M.; Navarro-Ocana, A.; Palazon, J. Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica. Biotechnol. Lett. 2010, 32, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, C.T.; Pavan, F.R.; Leite, C.Q.F.; Sannomiya, M.; Vilegas, W.; Leite, S.R.D.A.; Sato, D.N. Triterpenes and antitubercular activity of Byrsonima crassa. Quim. Nova 2008, 31, 1719–1721. [Google Scholar] [CrossRef]
- Vázquez, L.H.; Palazon, J.; Navarro-Ocaña, A. The pentacyclic triterpenes α,β,-amyrins: A review of sources and biological activities. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Venketeshwer, R., Ed.; In Tech: London, UK, 2012; pp. 487–502. Available online: http://www.intechopen.com/books/phytochemicals-a-global-perspective-of-their-role-in-nutrition-andhealth/the-pentacyclic-triterpenes-amyrins-a-review-of-sources-and-biological-activities (accessed on 28 May 2019).
- Gilani, S.J.; Khan, S.A.; Siddiqui, N.; Verma, S.P.; Mullick, P.; Alam, O. Synthesis and in vitro antimicrobial activity of novel N-(6-chlorobenzo [d] thiazol-2-yl) hydrazine carboxamide derivatives of benzothiazole class. J. Enzyme Inhib. Med. Chem. 2011, 26, 332–340. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, D.; Painuli, R.M. Screening of bioprotective properties and phytochemical analysis of various extracts of Eclipta alba whole plant. Int. J. Pharm. Pharm. Sci. 2012, 4, 554–560. [Google Scholar]
- Hamid, N.; Ma, Q.; Boulom, S.; Liu, T.; Zheng, Z.; Balbas, J.; Robertson, J. Seaweed minor constituents. In Seaweed Sustainability; Academic Press: Cambridge, MA, USA, 2015; pp. 193–242. [Google Scholar]
No. | Fraction Codes | Fractions | Quantity (mg) |
---|---|---|---|
1 | P1 | (C:M = 99:1) F1–20 | 1060 |
2 | P2 | (C:M = 99:1) F20–40 | 1015 |
3 | P3 | (C:M = 99:1) F40–60 | 145 |
4 | P4 | (C:M = 99:1) F60–80 | 345 |
5 | P5 | (C:M = 99:1) F80–100 | 350 |
6 | P6 | (C:M = 99:1) F100–120 | 150 |
7 | P7 | (C:M = 97:3) F1–20 | 160 |
8 | P8 | (C:M = 95:5) F1–20 | 420 |
9 | P9 | (C:M = 9:1) F1–20 | 350 |
10 | P10 | (C:M = 8:2) F1–20 | 40 |
11 | P11 | (C:M = 7:3) F1–20 | 300 |
12 | P12 | (C:M = 5:5) F1–20 | 230 |
13 | P13 | (C:M = 3:7) F1–20 | 380 |
14 | P14 | (C:M = 1:9) F1–20 | 260 |
Extracts | Antioxidant Activity | TPC | TFC | |
---|---|---|---|---|
IC50 DPPH (µg/mL) | IC50 ABTS (µg/mL) | (mg GAE/g Extract) | (mg GE/g Extract) | |
Aqueous Extract | 108.22 ± 0.48 a | 236.62 ± 6.67 a | 167.38 ± 0.55 c | 112.31 ± 0.16 c |
Ethyl Acetate | 53.38 ± 0.98 b | 91.08 ± 1.01 b | 371.19 ± 0.38 b | 124.77 ± 0.11 b |
Hexane | - | - | 2.381 ± 0.89 d | 8.73 ± 0.33 d |
BHT | 7.22 ± 0.89 c | 43.40 ± 3.52 d | - | - |
Fractions | Dilutions | TPC (mg GAE/ g Fraction) | TFC (mg RE/ g Fraction) | Antioxidant Activity | ||
---|---|---|---|---|---|---|
ABTS IC50 (µg/mL) | DPPH IC50 (µg/mL) | LPI (%) | ||||
P1 | (C:M = 99:1) F1–20 | 19.76 ± 0.714 k | 40.06 ± 0.16 g | - | - | 58.88 |
P2 | (C:M = 99:1) F20–40 | 15.36 ± 0.55 l | 29.08 ± 0.28 h | - | - | 58.01 |
P3 | (C:M = 99:1) F40–60 | 111.19 ± 0.36 h | 41.65 ± 0.16 g | - | - | 59.84 |
P4 | (C:M = 99:1) F60–80 | 84.52 ± 1.35 i | 41.11 ± 0.06 g | - | - | 57.74 |
P5 | (C:M = 99:1) F80–100 | 168.93 ± 0.55 e | 93.36 ± 0.67 e | 124.57 ± 4.37 a | 241.53 ± 6.52 b c | 84.25 |
P6 | (C:M = 99:1) F100–120 | 21.31 ± 0.21 k | 39.43 ± 0.16 g | - | - | 59.32 |
P7 | (C:M = 97:3) F1–20 | 159.28 ± 1.09 f | 90.96 ± 0.11 e | 132.04 ± 3.43 a | 410.60 ± 21.70 a | 82.41 |
P8 | (C:M = 95:5) F1–20 | 23.93 ± 0.74 j | 40.24 ± 0.21 g | - | - | 57.22 |
P9 | (C:M = 9:1) F1–20 | 255.29 ± 0.55 c | 120.20 ± 0.16 c | 62.78 ± 15.55 c | 134.88 ± 2.56 d | 87.40 |
P10 | (C:M = 8:2) F1–20 | 187.62 ± 0.95 d | 112.31 ± 0.16 d | 73.84 ± 5.22 b | 221.06 ± 11.86 c | 86.09 |
P11 | (C:M = 7:3) F1–20 | 150.50 ± 0.00 g | 91.05 ± 0.37 e | 129.05 ± 3.09 a | 246.98 ± 11.20 b | 83.46 |
P12 | (C:M = 5:5) F1–20 | 500.13 ± 0.55a | 138.17 ± 0.85 a | 26.57 ± 0.74 e | 78.08 ± 0.66 e | 89.76 |
P13 | (C:M = 3:7) F1–20 | 374.64 ± 0.55 b | 127.43 ± 3.55 b | 41.83 ± 5.3 ed | 79.29 ± 1.06 e | 88.71 |
P14 | (C:M = 1:9) F1–20 | 148.93 ± 0.55 g | 49.61 ± 0.76 f | 133.84 ± 1.46 a | 420.10 ± 22.50 a | 81.89 |
BHT | Standard | n.d. | n.d. | 7.22 ± 0.89 f | 43.40 ± 3.52 f | 91.86 |
MeOH | - | n.d. | n.d | n.d | n.d | 9.45 |
Fractions | Retention time (min) | Area (%) | Compounds | Formula | Molecular Weight (g/mol) | Chemical Class |
---|---|---|---|---|---|---|
P1 | 16.75 | 0.14 | Hexadecanoic acid | C17H34O2 | 270.4507 | Fatty acid |
29.04 | 38.38 | β-Amyrin | C30H50O | 426.729 | Triterpene | |
29.68 | 57.67 | α-Amyrin | C30H50O | 426.729 | Triterpene | |
P4 | 21.28 | 38.64 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
29.03 | 25.56 | β-Amyrin | C30H50O | 426.729 | Triterpene | |
29.64 | 32.71 | α-Amyrin | C30H50O | 426.729 | Triterpene | |
2.68 | 1.84 | Hydrazine carboxamide | C6H8O3 | 128.13 | Amide | |
P5 | 22.1 | 4.78 | β-Amyrin | C30H50O | 426.73 | Triterpene |
21.28 | 29.30 | (3β)-D:C-friedours-7-en-3-ol | C30H50O | 426.73 | Triterpene | |
21.45 | 43.62 | Fucosterol | C29H48O | 412.70 | Sterol | |
29.62 | 13.00 | α-Amyrin | C30H50O | 426.73 | Triterpene | |
P6 | 2.68 | 13.75 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
29.01 | 16.40 | β-Amyrin | C30H50O | 426.729 | Triterpene | |
29.81 | 1.10 | α-Amyrin | C30H50O | 426.729 | Triterpene | |
P7 | 2.68 | 9.36 | Hydrazine carboxamide | CH5N3O | 75.07 | Amide |
16.75 | 0.14 | Hexadecanoic acid | C17H34O2 | 270.45 | Fatty acid | |
28.44 | 6.64 | β-Sitosterol | C29H50O | 414.71 | Sterol | |
29.59 | 1.85 | β-Amyrin | C29H50O | 426.72 | Triterpene | |
P8 | 2.64 | 8.32 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
15.85 | 3.53 | Phytol | C20H40O | 296.53 | Diterpene | |
29.6 | 31.74 | α-Amyrin | C30H50O | 426.72 | Triterpene | |
P9 | 2.68 | 7.52 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
3.61 | 4.33 | Dihydroxyacetone | C3H6O3 | 90.078 | Glycerone | |
19.74 | 7.45 | Rutin | C27H30O16 | 610.52 | Flavonoid | |
P10 | 2.64 | 11.05 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
16.75 | 13.09 | Hexadecanoic acid | C17H34O2 | 270.45 | Fatty acid | |
P11 | 2.64 | 13.54 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
16.75 | 5.14 | Hexadecanoic acid | C17H34O2 | 270.45 | Fatty acid | |
P12 | 2.68 | 12.21 | Hydrazine carboxamide | CH5N3O | 75.07 | Amide |
4.66 | 3.43 | Glycerin | C3H8O3 | 92.09 | Glycerin | |
11.19 | 4.01 | 2’-Hydroxyacetophenone | C8H8O2 | 136.15 | Phenol | |
19.74 | 12.46 | Rutin | C27H30O16 | 610.52 | Flavonoid | |
21.92 | 6.09 | 2-Hydroxy-1-ethyl ester | C19H38O4 | 330.509 | Phenol | |
P13 | 2.69 | 21.43 | Hydrazine carboxamide | CH5N3O | 75.071 | Amide |
19.74 | 7.43 | Rutin | C27H30O16 | 610.52 | Flavonoid | |
21.92 | 20.22 | 2-Hydroxy-1-ethyl ester | C19H38O4 | 330.50 | Phenolic | |
P14 | 2.64 | 4.04 | Hydrazine carboxamide | CH5N3OCH5N3O | 75.071 | Amide |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viet, T.D.; Xuan, T.D.; Van, T.M.; Andriana, Y.; Rayee, R.; Tran, H.-D. Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves. Medicines 2019, 6, 64. https://doi.org/10.3390/medicines6020064
Viet TD, Xuan TD, Van TM, Andriana Y, Rayee R, Tran H-D. Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves. Medicines. 2019; 6(2):64. https://doi.org/10.3390/medicines6020064
Chicago/Turabian StyleViet, Tran Duc, Tran Dang Xuan, Truong Mai Van, Yusuf Andriana, Ramin Rayee, and Hoang-Dung Tran. 2019. "Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves" Medicines 6, no. 2: 64. https://doi.org/10.3390/medicines6020064
APA StyleViet, T. D., Xuan, T. D., Van, T. M., Andriana, Y., Rayee, R., & Tran, H. -D. (2019). Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves. Medicines, 6(2), 64. https://doi.org/10.3390/medicines6020064