Breaking the Itch–Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis
Abstract
:1. Introduction: the Pathophysiology of Pruritus
1.1. Classifying Itch
1.2. Neural Mechanisms of Itch
1.3. Endogenous Mediators of Pruritus
2. The Stratum Corneum, Atopic Dermatitis and Pruritus
3. Topical Options for the Management of Chronic Pruritus
4. The Key Lipids of the Stratum Corneum and Their Role in Maintaining a Healthy Barrier
4.1. The Chemistry of Ceramides, Cholesterol and Free Fatty Acids
4.2. The Ceramides of Note in Atopic Skin
5. Topical Ceramide Delivery for Itch Relief
6. Topical Pine Tar: Itch Relief Millennia in the Making
7. Conclusions
Funding
Conflicts of Interest
References
- Rothman, S. Physiology of itching. Physiol. Rev. 1941, 21, 357–381. [Google Scholar] [CrossRef]
- Krajnik, M.; Zylicz, Z. Understanding pruritus in systemic disease. J. Pain Symptom Manage. 2001, 21, 151–168. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Rajka, G. Diagnostic features of atopic dermatitis. Acta Dermatol. 1980, 92, 44–47. [Google Scholar]
- Morren, M.A.; Przybilla, B.; Bamelis, M.; Heykants, B.; Reynaers, A.; Degreef, H. Atopic dermatitis: Triggering factors. J. Am. Acad. Dermatol. 1994, 31 Pt 1, 467–473. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Greaves, M.W.; Schmelz, M. Itch. Lancet 2003, 361, 690–694. [Google Scholar] [CrossRef]
- Yosipovitch, G.; David, M. The diagnostic and therapeutic approach to idiopathic generalized pruritus. Int. J. Dermatol. 1999, 38, 881–887. [Google Scholar] [CrossRef]
- Garibyan, L.; Rheingold, C.G.; Lerner, E.A. Understanding the pathophysiology of itch. Dermatologic 2013, 26, 84–91. [Google Scholar] [CrossRef]
- Berger, T.G.; Steinhoff, M. Pruritus and Renal Failure. Semin. Cutan. Med. Surg. 2011, 30, 99–100. [Google Scholar] [CrossRef] [Green Version]
- Hegade, V.S.; Kendrick, S.F.; Rehman, J.; Jones, D.E. Itch and liver: Management in primary care. Br. J. Gen. Pract. 2015, 65, e418–e420. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Samuel, L.S. Neuropathic and psychogenic itch. Dermatologic 2008, 21, 32–41. [Google Scholar] [CrossRef]
- Tivoli, Y.A.; Rubenstein, R.M. Pruritus. J. Clin. Aesthet. Dermatol. 2009, 2, 30–36. [Google Scholar]
- Duan, B.; Cheng, L.; Ma, Q. Spinal Circuits Transmitting Mechanical Pain and Itch. Neurosci. Bull. 2018, 34, 186–193. [Google Scholar] [CrossRef]
- Schmelz, M. Itch and pain. Dermatol. Ther. 2005, 18, 304–307. [Google Scholar] [CrossRef]
- Potenzieri, C.; Undem, B.J. Basic Mechanisms of Itch. Clin. Exp. Allergy 2012, 42, 8–19. [Google Scholar] [CrossRef]
- Urashima, R.; Mihara, M. Cutaneous nerves in atopic dermatitis. A histological, immunohistochemical and electron microscopic study. Virchows Arch. 1998, 432, 363–370. [Google Scholar] [CrossRef]
- Andersen, H.H.; Elberling, J.; Sølvsten, H.; Yosipovitch, G.; Arendt-Nielsen, L. Nonhistaminergic and mechanical itch sensitization in atopic dermatitis. Pain 2017, 158, 1780–1791. [Google Scholar] [CrossRef] [Green Version]
- Hosogi, M.; Schmelz, M.; Miyachi, Y.; Ikoma, A. Bradykinin is a potent pruritogen in atopic dermatitis: A switch from pain to itch. Pain 2006, 126, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Steinhoff, M.; Neisius, U.; Ikoma, A.; Fartasch, M.; Heyer, G.; Skov, P.S.; Schmelz, M. Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. J. Neurosci. 2003, 23, 6176–6180. [Google Scholar] [CrossRef]
- Lee, S.E.; Jeong, S.K.; Lee, S.H. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med. J. 2010, 51, 808–822. [Google Scholar] [CrossRef]
- Sonkoly, E.; Muller, A.; Lauerma, A.I.; Pivarcsi, A.; Soto, H.; Kemeny, L.; Steinhoff, M. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 117, 411–417. [Google Scholar] [CrossRef]
- Lu, J.; Wu, K.; Zeng, Q.; Xiang, Y.; Gao, L.; Huang, J. Serum interleukin-31 level and pruritus in atopic dermatitis: A Meta-analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2018, 43, 124–130. [Google Scholar] [PubMed]
- Matsui, T.; Amagai, M. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 2015, 27, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holbrook, K.A.; Odland, G.F. Regional Differences in the Thickness (Cell Layers) of the Human Stratum Corneum: An Ultrastructural Analysis. J. Investig. Dermatol. 1974, 62, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, C.R. The stratum corneum: Structure and function in health and disease. Dermatologic 2004, 17 (Suppl. S1), 6–15. [Google Scholar] [CrossRef]
- Haftek, M. Epidermal barrier disorders and corneodesmosome defects. Cell Tissue Res. 2015, 360, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Avena-Woods, C. Overview of atopic dermatitis. Am. J. Manag. Care 2017, 23 (Suppl. S8), S115–S123. [Google Scholar]
- Saito, H. Much atopy about the skin: Genome-wide molecular analysis of atopic eczema. Int. Arch. Allergy Immunol. 2005, 137, 319–325. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Cooper, K.D.; Ho, V.C.; Kang, S.; Krafchik, B.R.; Margolis, D.J. Guidelines of care for atopic dermatitis, developed in accordance with the American Academy of Dermatology (AAD)/American Academy of Dermatology Association “Administrative Regulations for Evidence-Based Clinical Practice Guidelines”. J. Am. Acad. Dermatol. 2004, 50, 391–404. [Google Scholar] [CrossRef]
- Werner, Y.; Lindberg, M. Transepidermal water loss in dry and clinically normal skin in patients with atopic dermatitis. Acta Derm. Venereol. 1985, 65, 102–105. [Google Scholar] [PubMed]
- Langan, S.M.; Abuabara, K.; Henrickson, S.E.; Hoffstad, O.; Margolis, D.J. Increased Risk of Cutaneous and Systemic Infections in Atopic Dermatitis—A Cohort Study. J. Investig. Dermatol. 2017, 137, 1375–1377. [Google Scholar] [CrossRef]
- Rinaldi, G. The Itch-Scratch Cycle: A Review of the Mechanisms. Dermatol. Pract. Concept. 2019, 9, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, C.F. Pathophysiology of itching in urticaria and atopic dermatitis. Allergy 1992, 47 Pt 1, 65–75. [Google Scholar] [CrossRef]
- Thyssen, J.P.; Hamann, C.R.; Linneberg, A.; Dantoft, T.M.; Skov, L.; Gislason, G.H.; Egeberg, A. Atopic dermatitis is associated with anxiety, depression, and suicidal ideation, but not with psychiatric hospitalization or suicide. Allergy 2018, 73, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Sibbald, C.; Drucker, A.M. Patient Burden of Atopic Dermatitis. Dermatol. Clin. 2017, 35, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Koblenzer, C.S.; Koblenzer, P.J. Chronic intractable atopic eczema. Its occurrence as a physical sign of impaired parent-child relationships and psychologic developmental arrest: Improvement through parent insight and education. Arch. Dermatol. 1988, 124, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J. Atopic Dermatitis: Broadening the Perspective. J. Am. Acad. Dermatol. 2004, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Tadicherla, S.; Ross, K.; Shenefelt, P.D.; Fenske, N.A. Topical corticosteroids in dermatology. J. Drugs Dermatol. 2009, 8, 1093–1105. [Google Scholar] [PubMed]
- Wahlgren, C.F.; Hägermark, O.; Bergström, R.; Hedin, B. Evaluation of a new method of assessing pruritus and antipruritic drugs. Skin Pharmacol. Physiol. 1988, 1, 3–13. [Google Scholar] [CrossRef]
- Maloney, J.M.; Morman, M.R.; Stewart, D.M.; Tharp, M.D.; Brown, J.J.; Rajagopalan, R. Clobetasol propionate emollient 0.05% in the treatment of atopic dermatitis. Int. J. Dermatol. 1998, 37, 142–144. [Google Scholar] [CrossRef]
- Gilbertson, E.O.; Spellman, M.C.; Piacquadio, D.J.; Mulford, M.I. Super potent topical corticosteroid use associated with adrenal suppression: Clinical considerations. J. Am. Acad. Dermatol. 1998, 38 (Suppl. S2), 318–321. [Google Scholar] [CrossRef]
- Ohman, E.M.; Rogers, S.; Meenan, F.O.; McKenna, T.J. Adrenal Suppression following Low-Dose Topical Clobetasol Propionate. J. R. Soc. Med. 1987, 80, 422–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Vivier, A. Tachyphylaxis to topically applied steroids. Arch. Dermatol. 1976, 112, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Broeders, J.A.; Ahmed Ali, U.; Fischer, G. Systematic review and meta-analysis of randomized clinical trials (RCTs) comparing topical calcineurin inhibitors with topical corticosteroids for atopic dermatitis: A 15-year experience. J. Am. Acad. Dermatol. 2016, 75, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Ben-Eli, H.; Solomon, A. Topical antihistamines, mast cell stabilizers, and dual-action agents in ocular allergy: Current trends. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Eschler, D.C.; Klein, P.A. An evidence-based review of the efficacy of topical antihistamines in the relief of pruritus. J. Drugs Dermatol. 2010, 9, 992–997. [Google Scholar] [PubMed]
- Drake, L.; LE, M. The Antipruritic Effect of 5% Doxepin Cream in Patients with Eczematous Dermatitis. Arch. Dermatol. 1995, 131, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Anand, P. Capsaicin and menthol in the treatment of itch and pain: Recently cloned receptors provide the key. Gut 2003, 52, 1233–1235. [Google Scholar] [CrossRef]
- Yu, G.; Yang, N.; Li, F.; Chen, M.; Guo, C.J.; Wang, C.; Shi, H. Enhanced itch elicited by capsaicin in a chronic itch model. Mol. Pain 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Guay, J. Methemoglobinemia related to local anesthetics: A summary of 242 episodes. Anesth. Analg. 2009, 108, 837–845. [Google Scholar] [CrossRef]
- Choi, M.; Maibach, H. Role of Ceramides in Barrier Function of Healthy and Diseased Skin. Am. J. Clin. Dermatol. 2005, 6, 215–223. [Google Scholar] [CrossRef]
- Mizutani, Y.; Mitsutake, S.; Tsuji, K.; Kihara, A.; Igarashi, Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 2009, 91, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M.; Brown, B.E.; Fritsch, P.; Goerke, J.; Gray, G.M.; White, R.J. Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum. J. Investig. Dermatol. 1979, 73, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Van Smeden, J.; Hoppel, L.; Van der Heijden, R.; Hankemeier, T.; Vreeken, R.J.; Bouwstra, J.A. LC/MS analysis of stratum corneum lipids: Ceramide profiling and discovery. J. Lipid Res. 2011, 52, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- T’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012, 84, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Bayerle, A.; Marsching, C.; Jennemann, R.; Gröne, H.J.; Yildiz, Y.; Sandhoff, R. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid Res. 2013, 54, 3312–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Takema, Y. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.J.; Rawlings, A.V. The chemistry, function and (patho)physiology of stratum corneum barrier ceramides. Int. J. Cosmet. Sci. 2017, 39, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Vavrova, K.; Kovacik, A.; Opalka, L. Ceramides in the skin barrier. Eur. Pharm. J. 2017, 64, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Breiden, B.; Sandhoff, K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim. Biophys. Acta 2014, 1841, 441–452. [Google Scholar] [CrossRef]
- Pappas, A. Epidermal surface lipids. Dermatoendocrinol 2009, 1, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased Level of Ceramides in Stratum Corneum of Atopic Dermatitis: An Etiologic Factor in Atopic Dry Skin? J. Investig. Dermatol. 1991, 96, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, J.; Narita, H.; Kondo, N.; Hotta, M.; Takagi, Y.; Masukawa, Y.; Martin, S. Changes in the Ceramide Profile of Atopic Dermatitis Patients. J. Investig. Dermatol. 2010, 130, 2511–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, K.M.; Hwang, J.H.; Bae, S.; Nahm, D.H.; Park, H.S.; Ye, Y.M.; Lim, K.M. Relationship of ceramide–, and free fatty acid–cholesterol ratios in the stratum corneum with skin barrier function of normal, atopic dermatitis lesional and non-lesional skins. J. Dermatol. Sci. 2015, 77, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Janssens, M.; van Smeden, J.; Gooris, G.S.; Bras, W.; Portale, G.; Caspers, P.J.; Lavrijsen, A.P. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012, 53, 2755–2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Mojumdar, E.H.; Kariman, Z.; van Kerckhove, L.; Gooris, G.S.; Bouwstra, J.A. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim. Biophys. Acta 2014, 1838, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Wertz, P.W. Epidermal lipids. Semin. Dermatol. 1992, 11, 106–113. [Google Scholar]
- Engelbrecht, T.N.; Schroeter, A.; Hauß, T.; Demé, B.; Scheidt, H.A.; Huster, D.; Neubert, R.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter 2012, 8, 6599–6607. [Google Scholar] [CrossRef]
- Robson, K.J.; Stewart, M.E.; Michelsen, S.; Lazo, N.D.; Downing, D.T. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. 1994, 35, 2060–2068. [Google Scholar] [PubMed]
- Di Nardo, A.; Wertz, P.; Giannetti, A.; Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Dermatovenerol. Venereol. 1998, 78, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Macheleidt, O.; Sandhoff, K.; Kaiser, H.W. Deficiency of Epidermal Protein-Bound ω-Hydroxyceramides in Atopic Dermatitis. J. Investig. Dermatol. 2002, 119, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Man, M.Q.; Feingold, K.R.; Elias, P.M. Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Arch. Dermatol. 1993, 129, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mao-Qiang, M.; Taljebini, M.; Elias, P.M.; Feingold, K.R. Topical stratum corneum lipids accelerate barrier repair after tape stripping, solvent treatment and some but not all types of detergent treatment. Br. J. Dermatol. 1995, 133, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Mao-Qiang, M.; Feingold, K.R.; Thornfeldt, C.R.; Elias, P.M. Optimization of Physiological Lipid Mixtures for Barrier Repair. J. Investig. Dermatol. 1996, 106, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Elias, P.M.; Wakefield, J.S.; Mao-Qiang, M. Moisturizers versus Current and Next-Generation Barrier Repair Therapy for the Management of Atopic Dermatitis. SPP 2019, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, K.; Roseeuw, D.; Rogiers, V. Repair of acetone- and sodium lauryl sulphate-damaged human skin barrier function using topically applied emulsions containing barrier lipids. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Barbareschi, M.; Veraldi, S.; Pimpinelli, N. Evaluation of efficacy of a skin lipid mixture in patients with irritant contact dermatitis, allergic contact dermatitis or atopic dermatitis: A multicenter study. Contact Dermat. 2001, 45, 280–285. [Google Scholar] [CrossRef]
- Chamlin, S.L.; Kao, J.; Frieden, I.J.; Sheu, M.Y.; Fowler, A.J.; Fluhr, J.W.; Elias, P.M. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. J. Am. Acad. Dermatol. 2002, 47, 198–208. [Google Scholar] [CrossRef]
- Huang, H.C.; Chang, T.M. Ceramide 1 and ceramide 3 act synergistically on skin hydration and the transepidermal water loss of sodium lauryl sulfate-irritated skin. Int. J. Dermatol. 2008, 47, 812–819. [Google Scholar] [CrossRef]
- Kezic, S.; Jakasa, I. Filaggrin and Skin Barrier Function. Curr. Probl. Dermatol. 2016, 49, 1–7. [Google Scholar]
- Chang, A.L.S.; Chen, S.C.; Osterberg, L.; Brandt, S.; von Grote, E.C.; Meckfessel, M.H. A daily skincare regimen with a unique ceramide and filaggrin formulation rapidly improves chronic xerosis, pruritus, and quality of life in older adults. Geriatr. Nurs. 2018, 39, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Characteristics of the Aging Skin. Adv. Wound Care 2013, 2, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zirwas, M.J.; Barkovic, S. Anti-Pruritic Efficacy of Itch Relief Lotion and Cream in Patients with Atopic History: Comparison with Hydrocortisone Cream. J. Drugs Dermatol. 2017, 16, 243–247. [Google Scholar] [PubMed]
- Meckfessel, M.; Brandt, S. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J. Am. Acad. Dermatol. 2014, 71, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Draelos, Z.D.; Raymond, I. The Efficacy of a Ceramide-based Cream in Mild-to-moderate Atopic Dermatitis. J. Clin. Aesthet. Dermatol. 2018, 11, 30–32. [Google Scholar] [PubMed]
- Hon, K.; Pong, N.; Wang, S.; Lee, V.; Luk, N.; Leung, T. Acceptability and Efficacy of an Emollient Containing Ceramide-Precursor Lipids and Moisturizing Factors for Atopic Dermatitis in Pediatric Patients. Drugs R D 2013, 13, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spada, F.; Barnes, T.M.; Greive, K.A. Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems. Clin. Cosmet. Investig. Dermatol. 2018, 11, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Angelova-Fischer, I.; Rippke, F.; Richter, D.; Filbry, A.; Arrowitz, C.; Weber, T.; Zillikens, D. Stand-alone Emollient Treatment Reduces Flares After Discontinuation of Topical Steroid Treatment in Atopic Dermatitis: A Double-blind, Randomized, Vehicle-controlled, Left-right Comparison Study. Acta Derm. Venerol. 2018, 98, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Li, P.; Tang, J.; Guo, Y.; Shen, C.; Chang, J.; Kerrouche, N. Prolonging Time to Flare in Pediatric Atopic Dermatitis: A Randomized, Investigator-Blinded, Controlled, Multicenter Clinical Study of a Ceramide-Containing Moisturizer. Adv. Ther. 2017, 34, 2601–2611. [Google Scholar] [CrossRef]
- Koh, M.J.A.; Giam, Y.C.; Liew, H.M.; Foong, A.Y.W.; Chong, J.H.; Wong, S.M.Y.; Cork, M.J. Comparison of the Simple Patient-Centric Atopic Dermatitis Scoring System PEST with SCORAD in Young Children Using a Ceramide Dominant Therapeutic Moisturizer. Dermatol. Ther. 2017, 7, 383–393. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, B.M. Safety and risk assessment of ceramide 3 in cosmetic products. Food Chem. Toxicol. 2015, 84, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.; Greive, K. Topical pine tar: History, properties and use as a treatment for common skin conditions. Australas. J. Dermatol. 2017, 58, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Allen, L. Basics of Compounding with Tars. Int. J. Pharm. Compd. 2013, 17, 400–411. [Google Scholar] [PubMed]
- Paghdal, K.V.; Schwartz, R.A. Topical tar: Back to the future. J. Am. Acad. Dermatol. 2009, 11, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Braun-Falco, O.; Plewig, G.; Wolff, H.H.; Winkelmann, R.K. (Eds.) Dermatology; Springer: Berlin, Germany, 1991; pp. 1149–1150. [Google Scholar]
- Schmid, M.H.; Korting, H.C. Coal Tar, Pine Tar and Sulfonated Shale Oil Preparations: Comparative Activity, Efficacy and Safety. Dermatology 1996, 193, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Langeveld-Wildschut, E.G.; Riedl, H.; Thepen, T.; Biharia, I.C.; Bruijnzeel, P.L. Modulation of the atopy patch test reaction by topical corticosteroids and tar. J. Allery Clin. Immunol. 2000, 106, 738–743. [Google Scholar] [CrossRef]
- Hon, K.L.; Ng, W.G.G.; Kung, J.S.C.; Leung, P.C.; Leung, T.F. Pilot Studies on Two Complementary Bath Products for Atopic Dermatitis Children: Pine-Tar and Tea. Medicines 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Charman, C.R.; Venn, A.J.; Williams, H.C. The patient-oriented eczema measure: Development and initial validation of a new tool for measuring atopic eczema severity from the patients’ perspective. Arch. Dermatol. 2004, 140, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Jones, M.S.; Finlay, A.Y. The Children’s Dermatology Life Quality Index (CDLQI): Initial validation and practical use. Br. J. Dermatol. 1995, 132, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.M.; Greive, K.A. Use of bleach baths for the treatment of infected atopic eczema. Australas. J. Dermatol. 2013, 54, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Swallow, W.; Curtis, J. Levels of Polycyclic Aromatic Hydrocarbons in some Coal Tar Skin Preparations. Aust. J. Dermatol. 1980, 21, 154–157. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, I.P.; Spada, F. Breaking the Itch–Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis. Medicines 2019, 6, 76. https://doi.org/10.3390/medicines6030076
Harrison IP, Spada F. Breaking the Itch–Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis. Medicines. 2019; 6(3):76. https://doi.org/10.3390/medicines6030076
Chicago/Turabian StyleHarrison, Ian P., and Fabrizio Spada. 2019. "Breaking the Itch–Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis" Medicines 6, no. 3: 76. https://doi.org/10.3390/medicines6030076
APA StyleHarrison, I. P., & Spada, F. (2019). Breaking the Itch–Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis. Medicines, 6(3), 76. https://doi.org/10.3390/medicines6030076