Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Extraction
2.3. Isolation of Bioactive Compounds
2.4. Determination of Total Phenolic Content
2.5. Determination of Total Flavonoid Content
2.6. Antioxidant Activity
2.7. Porcine Pancreatic α-Amylase Inhibition Assay
2.8. Identification of Phytochemical Component by Gas Chromatography-Mass Spectrometry (GC-MS)
2.9. Statistical Analysis
3. Results
3.1. Extraction Yield and Total Phenolic and Flavonoid Contents of Extracts from C. indica Fruits
3.2. Antioxidant and Anti-α-Amylase Activities of C. indica Fruit Extracts
3.3. Fraction Yields from C. indica Fruit Hexane and Ethyl Acetate Extracts
3.4. Antioxidant and Anti-α-Amylase Activities of Isolated Fractions from C. indica Fruit Extracts
3.5. Identification of Compounds by Gas Chromatography-Mass Spectrometry (GC-MS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diep, P.T.M.; Pawlowska, A.M.; Cioni, P.L.; Van, M.C.; Huong, L.M.; Braca, A. Chemical composition and antimicrobial activity of Clausena indica (Dalz) Oliv. (Rutaceae) essential oil from Vietnam. Nat. Prod. Commun. 2009, 4, 869–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, J.A.; Kurup, S.R.R.; Pradeep, N.S.; Sabulal, B. Chemical composition and antibacterial activity of the leaf oil of clausena indica from south india. J. Essent. Oil Bear. Plants 2011, 14, 776–781. [Google Scholar] [CrossRef]
- Joshi, B.; Gawad, D. Isolation and structure of indizoline, a new carbazole alkaloid from Clausena indica Oliv. Indian J. Chem. 1974, 12, 437–440. [Google Scholar]
- Joshi, B.S.; Gawad, D.H. Isolation of some furanocoumarins from Clausena indica and identity of chalepensin with xylotenin. Phytochemistry 1971, 10, 480–481. [Google Scholar] [CrossRef]
- Joshi, B.S.; Gawad, D.H.; Williams, D.J. The structure of clausantalene, a new sesquiterpene from Clausena indica Oliv. Experientia 1975, 31, 138–139. [Google Scholar] [CrossRef]
- Joshi, B.S.; Kamat, V.N.; Gawad, D.H. Clausindine, a novel cyclopropylcoumarin. J. Chem. Soc. Perkin Trans. 1 1974, 1, 1561–1564. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Anh, L.H.; Tran, H.D. Bio-guided isolation of prospective bioactive constituents from roots of Clausena indica (Dalzell) oliv. Molecules 2019, 24, 4442. [Google Scholar] [CrossRef] [Green Version]
- Koepke, J.I.; Wood, C.S.; Terlecky, L.J.; Walton, P.A.; Terlecky, S.R. Progeric effects of catalase inactivation in human cells. Toxicol. Appl. Pharmacol. 2008, 1, 99–108. [Google Scholar] [CrossRef]
- Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev. 2012, 7, 313–324. [Google Scholar] [CrossRef]
- Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 5 February 2020).
- Tarling, C.A.; Woods, K.; Zhang, R.; Brastianos, H.C.; Brayer, G.D.; Andersen, R.J.; Withers, S.G. The search for novel human pancreatic α-amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. ChemBioChem. 2008, 9, 433–438. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Koyama, H.; Tawata, S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chem. 2007, 104, 1648–1653. [Google Scholar] [CrossRef]
- Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.V.; Anh, T.T.T.; Anh, L.H.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants 2017, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzaawely, A.A.; Tawata, S. Antioxidant activity of phenolic rich fraction obtained from Convolvulus arvensis L. leaves grown in Egypt. Asian J. Crop Sci. 2012, 4, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Yusuf, A.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Feng, Z.L.; Wang, Y.T.; Lin, L.G. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chin. J. Nat. Med. 2017, 15, 881–888. [Google Scholar] [CrossRef]
- Ismail, A.A.; Ahmad, B.A.; Mohamed, A.; Rasedee, A.; Siddig, I.A.; Mohamed, Y.I.; Landa, Z.A. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). J. Med. Plants Res. 2012, 6, 5107–5118. [Google Scholar] [CrossRef]
- Arbab, I.A.; Abdul, A.B.; Sukari, M.A.; Abdullah, R.; Syam, S.; Kamalidehghan, B.; Ibrahim, M.Y.; Taha, M.M.; Abdelwahab, S.I.; Ali, H.M.; et al. Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: A bioassay-guided approach. J. Ethnopharmacol. 2013, 145, 343–354. [Google Scholar] [CrossRef]
- Cui, C.B.; Yan, S.Y.; Cai, B.; Yao, X.S. Carbazole alkaloids as new cell cycle inhibitor and apoptosis inducers from Clausena dunniana Levl. J. Asian Nat. Prod. Res. 2002, 4, 233–241. [Google Scholar] [CrossRef]
- Albaayit, S.F.A.; Abba, Y.; Abdullah, R.; Abdullah, N. Evaluation of antioxidant activity and acute toxicity of Clausena excavata leaves extract. Evid. Based Complement. Altern. Med. 2014. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.N.; Hao, J.; Yi, C.; Dandan, Z.; Shengxiang, Q.; Yueming, J.; Mingwei, Z.; Feng, C. Antioxidant and anticancer activities of wampee (Clausena lansium (Lour.) Skeels) peel. J. Biomed. Biotechnol. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.N.; Xie, H.; Hao, J.; Chun, Y.; Dandan, Z.; Shengxiang, Q.; Yueming, J.; Mingwei, Z.; Feng, C. Antioxidant and anticancer activities of 8-hydroxypsoralen isolated from wampee [Clausena lansium (Lour.) Skeels] peel. Food Chem. 2010, 118, 62–66. [Google Scholar] [CrossRef]
- Kongkathip, B.; Kongkathip, N.; Sunthitikawinsakul, A.; Napaswat, C.; Yoosook, C. Anti-HIV-1 constituents from Clausena excavata: Part II. Carbazoles and a pyranocoumarin. Phyther. Res. 2005, 19, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Cheng, A.Y.; Fantus, G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can. Med. Assoc. J. 2005, 172, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649. [Google Scholar] [CrossRef]
- Arbab, I.A.; Looi, C.Y.; Abdul, A.B.; Foo, K.C.; Won, F.W.; Mohd, A.S.; Rasedee, A.; Syam, M.; Suvitha, S.; Aditya, A.; et al. Dentatin induces apoptosis in prostate cancer cells via Bcl-2, Bcl-xL, Survivin downregulation, caspase-9, -3/7 activation, and NF-κB inhibition. Evid. Based Complement. Altern. Med. 2012. [Google Scholar] [CrossRef] [Green Version]
- Govindachari, T.R.; Pai, B.R.; Subramaniam, P.S.; Muthukumaraswamy, P.S. Coumarins of Clausena dentata (Willd.) R. and S. Tetrahedron 1967, 24, 753–757. [Google Scholar] [CrossRef]
- Wangboonskul, J.; Tunsirikongkon, A.; Sasithornwetchakun, W. Simultaneous determination of nine analytes in Clausena harmandiana Pierre. by new developed high-performance liquid chromatography method and the influence of locations in Thailand on level of nordentatin and dentatin. Pharmacogn. Mag. 2015, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Karimi, E.; Jaafar, H.Z.; Ghasemzadeh, A.; Ebrahimi, M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res. 2015, 48, 9. [Google Scholar] [CrossRef] [Green Version]
- Yu, L. Free radical scavenging properties of conjugated linoleic acids. J. Agric. Food Chem. 2001, 49, 3452–3456. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.C.; Yen, P.L.; Chang, S.T.; Cheng, P.L.; Lo, Y.C.; Liao, V.H. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE 2016, 11, e0157195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, T.; Seligman, S.; Copeland, L. Inhibition of enzymic digestion of amylose by free fatty acids In Vitro contributes to resistant starch formation. J. Nutr. 2000, 130, 2006–2008. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Hsu, C.; Ng, L. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. BioFactors 2013, 39, 415–421. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Shi, J.C.; Mao, X.M. Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Ther. Clin. Risk Manag. 2014, 10, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Extracts | TPC (mg GAE/g DW) | TFC (mg RE/g DW) |
---|---|---|
MM | 8.19 ± 0.09 d | 0.17 ± 0.00 b |
MH | 0.20 ± 0.01 a | 0.07 ± 0.00 a |
ME | 0.66 ± 0.00 b | 0.65 ± 0.02 c |
MW | 3.25 ± 0.02 c | 0.07 ± 0.00 a |
Samples | DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) | α-Amylase IC50 (mg/mL) |
---|---|---|---|
MM | 0.12 ± 0.00 b | 0.26 ± 0.00 b | ne |
MH | 1.45 ± 0.00 e | 1.49 ± 0.00 e | 1.37 ± 0.01 b |
ME | 0.16 ± 0.00 c | 0.35 ± 0.00 c | 8.56 ± 0.24 a |
MW | 0.17 ± 0.00 d | 0.43 ± 0.00 d | na |
BHT | 0.02 ± 0.00 a | 0.06 ± 0.00 a | - |
Acarbose | - | - | 0.07 ± 0.00 c |
PA | - | - | 1.52 ± 0.03 b |
No. | Fractions | Solvent | Code | Amount (g) | Yield (%) |
---|---|---|---|---|---|
MH extract | |||||
1 | 1–4 | H 100% | D1 | 2.28 | 14.84 |
2 | 5–13 | H 100% | D2 | 1.13 | 7.36 |
3 | 14–20 | HE 10% | D3 | 3.57 | 23.24 |
4 | 21–47 | HE 20% | D4 | 2.63 | 17.12 |
5 | 48–58 | HE 30% | D5 | 0.52 | 3.39 |
6 | 59–69 | HE 40% | D6 | 0.30 | 1.95 |
7 | 70–81 | HE 50% | D7 | 0.59 | 3.84 |
8 | 82–100 | HE 60% | D8 | 0.81 | 5.27 |
9 | 101–130 | HE 70% & HE 80% | D9 | 0.66 | 4.30 |
10 | 131–152 | HE 90% & E 100% | D10 | 1.34 | 8.72 |
11 | 153–163 | EM 50% & M 100% | D11 | 0.43 | 2.8 |
ME extract | |||||
12 | 1–11 | H 100% & HE 5% | T1 | 0.51 | 5.67 |
13 | 12–17 | HE 5% | T2 | 0.14 | 1.56 |
14 | 18–21 | HE 5% | T3 | 0.08 | 0.89 |
15 | 22–26 | HE 10% | T4 | 0.14 | 1.56 |
16 | 27–46 | HE 10% & HE 20% | T5 | 0.74 | 8.22 |
17 | 47–50 | HE 20% | T6 | 0.38 | 4.22 |
18 | 51–63 | HE 20% | T7 | 1.05 | 11.67 |
19 | 64–77 | HE 30% | T8 | 0.99 | 11.00 |
20 | 78–90 | HE 30% & HE 40% | T9 | 0.70 | 7.78 |
21 | 91–101 | HE 40% | T10 | 0.47 | 5.22 |
22 | 102–118 | HE 50% | T11 | 0.60 | 6.67 |
23 | 119–137 | HE 60% & HE 70% | T12 | 0.56 | 6.22 |
24 | 138–156 | HE 70% | T13 | 0.37 | 4.11 |
25 | 157–167 | HE 80% | T14 | 0.20 | 2.22 |
26 | 168–175 | HE 90% | T15 | 0.14 | 1.56 |
27 | 176–181 | E 100% | T16 | 0.15 | 1.67 |
28 | 182–185 | MeOH 100% | T17 | 1.13 | 12.56 |
Samples | DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) | α-Amylase IC50 (mg/mL) |
---|---|---|---|
D1 | 6.60 ± 0.04 k | 12.44 ± 0.56 h | 5.72 ± 0.24 h |
D2 | 1.64 ± 0.11 h,i | 4.54 ± 0.05 f | 1.04 ± 0.03 i,j |
D3 | ne | ne | 0.86 ± 0.01 j |
D4 | ne | ne | 1.47 ± 0.01 g,h |
D5 | ne | ne | na |
D6 | ne | ne | na |
D7 | ne | ne | na |
D8 | ne | ne | na |
D9 | 1.41 ± 0.06 h,g | 3.54 ± 0.01 e | na |
D10 | 1.09 ± 0.03 f,g | 1.33 ± 0.01 c,d | na |
D11 | 1.62 ± 0.02 h,i | 1.41 ± 0.03 d | na |
T1 | 4.36 ± 0.20 j | 5.75 ± 0.19 g | 2.68 ± 0.05 f |
T2 | 1.86 ± 0.23 i | 0.31 ± 0.01 a,b | 1.29 ± 0.04 h,i |
T3 | 0.69 ± 0.01 c,d,e | 0.68 ± 0.02 ab | 1.03 ± 0.02 i,j |
T4 | 0.13 ± 0.01 a,b | 0.92 ± 0.02 b,c,d | 0.34 ± 0.00 k |
T5 | 0.66 ± 0.01 c,d,e | 0.54 ± 0.03 a,b | 1.78 ± 0.01 g |
T6 | 0.45 ± 0.01 c,b,d | 0.46 ± 0.02 a,b | 10.03 ± 0.05 a |
T7 | 0.43 ± 0.00 c,b,d | 0.76 ± 0.02 b,c,d | 7.86 ± 0.04 b |
T8 | 1.82 ± 0.05 i | 0.60 ± 0.03 a,b | 6.38 ± 0.01 c |
T9 | 0.78 ± 0.00 c,d,e,f | 0.88 ± 0.01 b,c,d | 4.43 ± 0.01 e |
T10 | 0.65 ± 0.00 c,d,e | 0.89 ± 0.02 b,c,d | na |
T11 | 0.40 ± 0.00 b,c | 0.74 ± 0.01 b,c | na |
T12 | 0.45 ± 0.00 c,b,d | 0.69 ± 0.01 a,b,c | na |
T13 | 0.47 ± 0.01 c,b,d | 0.57 ± 0.05 a,b | na |
T14 | 0.88 ± 0.01 e,f | 0.53 ± 0.01 a,b | na |
T15 | 0.80 ± 0.01 d,e,f | 0.59 ± 0.03 a,b | na |
T16 | 0.72 ± 0.00 c,d,e,f | 0.54 ± 0.02 a,b | na |
T17 | 0.87 ± 0.00 e,f | 0.53 ± 0.01 a,b | na |
BHT | 0.02 ± 0.00 a | 0.05 ± 0.00 a | - |
Acarbose | - | - | 0.07 ± 0.00 k |
PA | - | - | 1.52 ± 0.03 g,h |
No. | Identified Compounds | RT (min) | MW (g/mol) | Chemical Classification | Peak Area in Fractions (%) | |
---|---|---|---|---|---|---|
T4 | D3 | |||||
1 | Methoxyeugenol | 12.03 | 194 | Phenols | - | 7.57 |
2 | Myristicin | 12.33 | 192 | Benzodioxoles | - | 12.82 |
3 | Palmitic acid | 17.14 | 256 | Fatty acids | 15.11 | 32.64 |
4 | Seselin | 18.19 | 228 | Coumarin | 6.71 | - |
5 | 13-Tetradece-11-yn-1-ol | 18.75 | 208 | Alcohols | - | 6.87 |
6 | Linoleic acid | 18.77 | 280 | Fatty acids | 7.14 | - |
7 | Oleic acid | 18.82 | 282 | Fatty acids | 4.8 | - |
8 | Braylin | 19.57 | 258 | Coumarin | 8.48 | - |
9 | Dentatin | 21.57 | 47.32 | Coumarin | 47.32 | - |
10 | S1 | 29.54 | 282 | Sesquiterpenes | - | 16.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang Anh, L.; Xuan, T.D.; Dieu Thuy, N.T.; Quan, N.V.; Trang, L.T. Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits. Medicines 2020, 7, 10. https://doi.org/10.3390/medicines7030010
Hoang Anh L, Xuan TD, Dieu Thuy NT, Quan NV, Trang LT. Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits. Medicines. 2020; 7(3):10. https://doi.org/10.3390/medicines7030010
Chicago/Turabian StyleHoang Anh, La, Tran Dang Xuan, Nguyen Thi Dieu Thuy, Nguyen Van Quan, and Le Thu Trang. 2020. "Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits" Medicines 7, no. 3: 10. https://doi.org/10.3390/medicines7030010
APA StyleHoang Anh, L., Xuan, T. D., Dieu Thuy, N. T., Quan, N. V., & Trang, L. T. (2020). Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits. Medicines, 7(3), 10. https://doi.org/10.3390/medicines7030010