Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review
Abstract
:1. Introduction
2. Ice Adhesion Testing Methods
2.1. Direct Mechanical Testing
2.1.1. Tensile Tests
2.1.2. Direct Shear Testing
Push Test
Cone Test and Similar Methods
2.2. Centrifuge Adhesion Test
2.3. Miscellaneous Test Methods
2.3.1. Beam Testing/Bending
2.3.2. Peel Test
2.3.3. Blister Test
2.3.4. New Ice Adhesion Testing Methods
3. Discussion
3.1. Issues with Current Ice Adhesion Testing Methods
3.2. Proposed Standard for Testing Ice Adhesion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The Seattle Times. Available online: https://www.seattletimes.com/life/travel/the-economic-toll-of-winterrsquos-canceled-flights-53-billion (accessed on 12 June 2021).
- The Wall Street Journal. Available online: https://www.wsj.com/articles/winter-freeze-damage-expected-to-hit-18-billion-from-burst-pipes-collapse-roofs-11613757414 (accessed on 12 June 2021).
- Jones, K.F. Ice Accretion in Freezing Rain. Ice Accretion Freez. Rain. 1996. [Google Scholar] [CrossRef]
- Green, S. A Study of U.S. Inflight Icing Accidents and Incidents, 1978 to 2002. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006; p. 82. [Google Scholar]
- Lv, J.; Song, Y.; Jiang, L.; Wang, J. Bio-Inspired Strategies for Anti-Icing. ACS Nano 2014, 8, 3152–3169. [Google Scholar] [CrossRef] [PubMed]
- Ling, E.J.Y.; Uong, V.; Renault-Crispo, J.-S.; Kietzig, A.-M.; Servio, P. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects. ACS Appl. Mater. Interfaces 2016, 8, 8789–8800. [Google Scholar] [CrossRef]
- Botta, G.; Cavaliere, M.; Holttinen, H. Ice Accretion at Acqua Spruzza and Its Effects on Wind Turbine Operation and Loss of Energy Production. BOREAS IV; FMI: Hetta, Finland, 1998; pp. 77–86. [Google Scholar]
- Beemer, D.L.; Wang, W.; Kota, A.K. Durable gels with ultra-low adhesion to ice. J. Mater. Chem. A 2016, 4, 18253–18258. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Menini, R.; Farzaneh, M. Advanced Icephobic Coatings. J. Adhes. Sci. Technol. 2011, 25, 971–992. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Xie, Q.; Duan, W.; Zhang, X.; Han, H. A Passive Anti-icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength. J. Bionic Eng. 2021, 18, 55–64. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Moita, A.S.; Zhang, C.; Wang, S.; Liu, Y. Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis. Appl. Surf. Sci. 2020, 505, 144386. [Google Scholar] [CrossRef]
- Rønneberg, S.; Zhuo, Y.; Laforte, C.; He, J.; Zhang, Z. Interlaboratory study of ice adhesion using different techniques. Coatings 2019, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Rønneberg, S.; He, J.; Zhang, Z. The need for standards in low ice adhesion surface research: A critical review. J. Adhes. Sci. Technol. 2019, 34, 319–347. [Google Scholar] [CrossRef]
- Work, A.; Lian, Y. A critical review of the measurement of ice adhesion to solid substrates. Prog. Aerosp. Sci. 2018, 98, 1–26. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. “Solidification” Part IB Materials Science and Metallurgy: Metals & Alloys; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Huang, S.C.; Glicksman, M.E. Fundamentals of Dendritic Solidification—I. Steady-State Tip Growth. In Dynamics of Curved Fronts; Academic Press: Cambridge, MA, USA, 1988; pp. 247–261. [Google Scholar]
- Irajizad, P.; Al-Bayati, A.; Eslami, B.; Shafquat, T.; Nazari, M.; Jafari, P.; Kashyap, V.; Masoudi, A.; Araya, D.; Ghasemi, H. Stress-localized durable icephobic surfaces. Mater. Horizons 2019, 6, 758–766. [Google Scholar] [CrossRef]
- McDonald, B.; Patel, P.; Zhao, B. Droplet freezing and ice adhesion strength measurement on super-cooled hydro-phobic surfaces. J. Adhes. 2017, 93, 375–388. [Google Scholar] [CrossRef]
- Kulinich, S.; Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 8153–8157. [Google Scholar] [CrossRef]
- Saleema, N.; Farzaneh, M.; Paynter, R.W.; Sarkar, D.K. Prevention of ice accretion on aluminum surfaces by en-hancing their hydrophobic properties. J. Adhes. Sci. Technol. 2011, 25, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Koivuluoto, H.; Stenroos, C.; Kylmälahti, M.; Apostol, M.; Kiilakoski, J.; Vuoristo, P. Anti-icing Behavior of Thermally Sprayed Polymer Coatings. J. Therm. Spray Technol. 2017, 26, 150–160. [Google Scholar] [CrossRef]
- Arianpour, F.; Farzaneh, M.; Jafari, R. Hydrophobic and ice-phobic properties of self-assembled monolayers (SAMs) coatings on AA6061. Prog. Org. Coat. 2016, 93, 41–45. [Google Scholar] [CrossRef]
- Kulinich, S.; Farzaneh, M. On ice-releasing properties of rough hydrophobic coatings. Cold Reg. Sci. Technol. 2011, 65, 60–64. [Google Scholar] [CrossRef]
- Jafari, R.; Momen, G.; Farzaneh, M. Durability enhancement of icephobic fluoropolymer film. J. Coatings Technol. Res. 2016, 13, 405–412. [Google Scholar] [CrossRef]
- Sojoudi, H.; McKinley, G.H.; Gleason, K.K. Linker-free grafting of fluorinated polymeric cross-linked network bi-layers for durable reduction of ice adhesion. Mater. Horiz. 2015, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Bengaluru Subramanyam, S.; Kondrashov, V.; Ruühe, J.; Varanasi, K.K. Low ice adhesion on nano-textured super-hydrophobic surfaces under supersaturated conditions. ACS Appl. Mater. Interface 2016, 8, 12583–12587. [Google Scholar] [CrossRef]
- Chen, D.; Gelenter, M.D.; Hong, M.; Cohen, R.E.; McKinley, G.H. Icephobic surfaces induced by interfacial non-frozen water. ACS Appl. Mater. Interface 2017, 9, 4202–4214. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, S.B.; Rykaczewski, K.; Varanasi, K.K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 2013, 29, 13414–13418. [Google Scholar] [CrossRef]
- Qian, H.; Liu, B.; Wu, D.; Zhang, F.; Wang, X.; Jin, L.; Wang, J.; Zhang, D.; Li, X. Magnetically responsive lubricant-infused porous surfaces with controllable lubricity and durable anti-icing performance. Surf. Coat. Technol. 2021, 406, 126742. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Cheng, T.; Zhan, X.; Chen, F. Polyols-infused slippery surfaces based on magnetic Fe3O4-functionalized polymer hybrids for enhanced multifunctional anti-icing and deicing properties. Langmuir 2018, 34, 4052–4058. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Meuler, A.J.; Bralower, H.L.; Venkatesan, R.; Subramanian, S.; Cohen, R.E.; Varanasi, K.K. Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 2012, 14, 6013–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Vågenes, E.T.; Delabahan, C.; He, J.; Zhang, Z. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces. Sci. Rep. 2017, 7, srep42181. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Ma, L.; Zhang, F.; Qian, H.; Minhas, B.; Yang, Y.; Han, X.; Zhang, D. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property. Mater. Des. 2020, 185, 108236. [Google Scholar] [CrossRef]
- Bleszynski, M.; Woll, R.; Middleton, J.; Kumosa, M. Effects of crosslinking, embedded TiO2 particles and extreme aging on PDMS icephobic barriers. Polym. Degrad. Stab. 2019, 166, 272–282. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Siva, A.; Tiea, D.; Wynne, K.J. Laboratory Test for Ice Adhesion Strength Using Commercial Instrumentation. Langmuir 2014, 30, 540–547. [Google Scholar] [CrossRef]
- Mirshahidi, K.; Zarasvand, K.A.; Luo, W.; Golovin, K. A high throughput tensile ice adhesion measurement system. HardwareX 2020, 8, e00146. [Google Scholar] [CrossRef]
- Tetteh, E.; Loth, E. Reducing Static and Impact Ice Adhesion with a Self-Lubricating Icephobic Coating (SLIC). Coatings 2020, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Xia, Q.; Zhu, L.; Xue, J.; Wang, Q.; Chen, Q.M. Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 2011, 257, 4956–4962. [Google Scholar] [CrossRef]
- Andrews, E.H.; Lockington, N.A. The cohesive and adhesive strength of ice. J. Mater. Sci. 1983, 18, 1455–1465. [Google Scholar] [CrossRef]
- Saletti, D.; Georges, D.; Gouy, V.; Montagnat, M.; Forquin, P. A study of the mechanical response of polycrystalline ice subjected to dynamic tension loading using the spalling test technique. Int. J. Impact Eng. 2019, 132, 103315. [Google Scholar] [CrossRef] [Green Version]
- Kraj, A.G.; Bibeau, E.L. Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade. Renew. Energy 2010, 35, 741–746. [Google Scholar] [CrossRef]
- Rothrick, A.M.; Selden, R. Adhesion of Ice in Its Relation to the De-Icing of Airplanes; Langley Memorial Aeronautical Laboratory: Hampton, VA, USA, 1939. [Google Scholar]
- Andrews, E.H.; Stevenson, A. Fracture energy of epoxy resin under plane strain conditions. J. Mater. Sci. 1978, 13, 1680–1688. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Gupta, M.C. Hot embossed micro-textured thin superhydrophobic Teflon FEP sheets for low ice adhesion. Surf. Coat. Technol. 2017, 313, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; He, R.; Zhang, Q.; Zhan, X.; Chen, F. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance. J. Mater. Chem. A 2015, 3, 21637–21646. [Google Scholar] [CrossRef]
- Berry, D.H.; Wohl, C.J. Aerospace and Marine Environments as Design Spaces for Contamination-Mitigation Polymeric Coatings. In Contamination Mitigating Polymeric Coatings for Extreme Environments; Wohl, C.J., Berry, D.H., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Meuler, A.J.; Smith, J.D.; Varanasi, K.K.; Mabry, J.; McKinley, G.; Cohen, R.E. Relationships between Water Wettability and Ice Adhesion. ACS Appl. Mater. Interfaces 2010, 2, 3100–3110. [Google Scholar] [CrossRef]
- Ozbay, S.; Yuceel, C.; Erbil, H.Y. Improved icephobic properties on surfaces with a hydrophilic lubricating liquid. ACS Appl. Mater. Interfaces 2015, 7, 22067–22077. [Google Scholar] [CrossRef]
- Andersson, L.-O.; Golander, C.-G.; Persson, S. Ice adhesion to rubber materials. J. Adhes. Sci. Technol. 1994, 8, 117–132. [Google Scholar] [CrossRef]
- Ge, L.; Ding, G.; Wang, H.; Yao, J.; Cheng, P.; Wang, Y. Anti-icing property of superhydrophobic octadecyltri-chlorosilane film and its ice adhesion strength. J. Nanomater. 2013, 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Haehnel, R.B.; Mulherin, N.D. The bond strength of an ice–solid interface loaded in shear. Ice in Surface Waters. In Proceedings of the 14th International Symposium on Ice, Potsdam, NY, USA, 27–31 July 1998; pp. 597–604. [Google Scholar]
- Mulherin, N.D.; Haehnel, R.B.; Jones, K.F. Toward developing a standard shear test for ice adhesion. In Proceedings of the Eight International Workshop on Atmospheric Icing of Structures (IWAIS), Reykjavik, Iceland, 8–11 June 1998. [Google Scholar]
- Susoff, M.; Siegmann, K.; Pfaffenroth, C.; Hirayama, M. Evaluation of icephobic coatings—Screening of different coatings and influence of roughness. Appl. Surf. Sci. 2013, 282, 870–879. [Google Scholar] [CrossRef] [Green Version]
- Bharathidasan, T.; Kumar, S.V.; Bobji, M.; Chakradhar, R.; Basu, B.J. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Appl. Surf. Sci. 2014, 314, 241–250. [Google Scholar] [CrossRef]
- Laforte, C.; Beisswenger, A. Icephobic material centrifuge adhesion test. In Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, IWAIS, Montreal, QC, Canada, 13–16 June 2005; pp. 12–16. [Google Scholar]
- Rønneberg, S.; Laforte, C.; Volat, C.; He, J.; Zhang, Z. The effect of ice type on ice adhesion. AIP Adv. 2019, 9, 055304. [Google Scholar] [CrossRef] [Green Version]
- Karulina, M.; Marchenko, A.; Karulin, E.; Sodhi, D.; Sakharov, A.; Chistyakov, P. Full-scale flexural strength of sea ice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea. Appl. Ocean. Res. 2019, 90, 101853. [Google Scholar] [CrossRef]
- Gow, A.J.; Ueda, H.T. Structure and temperature dependence of the flexural properties of laboratory freshwater ice sheets. Cold Reg. Sci. Technol. 1989, 16, 249–270. [Google Scholar] [CrossRef]
- Scavuzzo, R.J.; Chu, M.L. Structural Properties of Impact Ices Accreted on Aircraft Structures; National Aeronautics and Space Administration: Washington, DC, USA, 1987; pp. 41–42. [Google Scholar]
- Giuffre, C.; Dawood, B.; Yavas, D.; Bastawros, A. Numerical and Experimental Investigation of Ice Adhesion Using the Blister Test. SAE Technical Paper Series 2019, 2, 28–34. [Google Scholar] [CrossRef]
- Archer, P.; Gupta, V. Measurement and control of ice adhesion to aluminum 6061 alloy. J. Mech. Phys. Solids 1998, 46, 1745–1771. [Google Scholar] [CrossRef]
- Matsumoto, K.; Honda, M.; Minamiya, K.; Tsubaki, D.; Furudate, Y.; Murase, M. Measurements of correct ice adhesion forces to metal test plates in nano-scale by using SPM. Int. J. Refrig. 2016, 66, 84–92. [Google Scholar] [CrossRef]
- Matsumoto, K.; Akaishi, M.; Teraoka, Y.; Inaba, H.; Koshizuka, M. Investigation of method for measuring adhesion force of ice in nano/micro scale by using SPM. Int. J. Refrig. 2012, 35, 130–141. [Google Scholar] [CrossRef]
- Loho, T.; Dickinson, M. Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength. IOP Conf. Series Mater. Sci. Eng. 2018, 348, 012003. [Google Scholar] [CrossRef]
- Farhadi, S.; Farzaneh, M.; Kulinich, S. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 2011, 257, 6264–6269. [Google Scholar] [CrossRef]
- Kim, P.; Wong, T.S.; Alvarenga, J.; Kreder, M.J.; Adorno-Martinez, W.E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012, 6, 6569–6577. [Google Scholar] [CrossRef]
- Hejazi, V.; Sobolev, K.; Nosonovsky, M. From superhydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M.A. Effects of surface roughness and energy on ice ad-hesion strength. Appl. Surf. Sci. 2011, 257, 3786–3792. [Google Scholar] [CrossRef]
- Jeon, J.; Jang, H.; Chang, J.; Lee, K.-S.; Kim, D.R. Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength. Appl. Surf. Sci. 2018, 440, 643–650. [Google Scholar] [CrossRef]
- Mulroney, A.T.; Kessler, E.D.; Combs, S.; Gupta, M.C. Low ice adhesion surfaces using microtextured hydrophobic tapes and their applications in refrigeration systems. Surf. Coat. Technol. 2018, 351, 108–114. [Google Scholar] [CrossRef]
- Beeram, P.S.R.; Waldman, R.M.; Hu, H. Measurements of Ice Adhesion over Ice Mitigation Coatings Pertinent to Aircraft Icing and Anti-/De-Icing; In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017; p. 3928. [Google Scholar]
- Woll, T.R. Ice Adhesion Analysis of Severely Aged PDMS Rubbers. Ph.D. Thesis, University of Denver, Denver, CO, USA, 2018. [Google Scholar]
- Powell, R.W.; Ho, C.Y.; Liley, P.E. Thermal Conductivity of Selected Materials; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1966; Volume 8. [Google Scholar]
- Mu, Q.; Feng, S.; Diao, G. Thermal conductivity of silicone rubber filled with ZnO. Polym. Compos. 2007, 28, 125–130. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleszynski, M.; Clark, E. Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review. Standards 2021, 1, 117-133. https://doi.org/10.3390/standards1020011
Bleszynski M, Clark E. Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review. Standards. 2021; 1(2):117-133. https://doi.org/10.3390/standards1020011
Chicago/Turabian StyleBleszynski, Monika, and Edward Clark. 2021. "Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review" Standards 1, no. 2: 117-133. https://doi.org/10.3390/standards1020011
APA StyleBleszynski, M., & Clark, E. (2021). Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review. Standards, 1(2), 117-133. https://doi.org/10.3390/standards1020011