Predicting Advanced Air Mobility Adoption Globally by Machine Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Common Factors
2.2. Rulemaking Hindrances
2.3. Drone Utility
3. Methodology
3.1. Data Acquisition
- Vertical Flight Society (VFS) [33]
- World Bank Global Economic Prospects (WB-GEP) [34]
- World Bank World Development Indicators (WB-WDI) [35]
- Worldwide Governance Indicators (WGI) [36]
- World Bank Sustainable Development Goals (WB-SDG) [37]
- World Bank Jobs (WB-J) [38]
- World Bank Doing Business (WB-DB) [39]
- Social Progress Index (SPI) [40]
3.2. Feature Engineering
3.3. Feature Selection
3.4. Machine Learning
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pegels, A.; Altenburg, T. Latecomer development in a “greening” world: Introduction to the Special Issue. World Dev. 2020, 135, 105084. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Huete, J.; Nalianda, D.; Zaghari, B.; Pilidis, P. A Strategy to Decarbonize Civil Aviation: A phased innovation approach to hydrogen technologies. IEEE Electrif. Mag. 2022, 10, 27–33. [Google Scholar] [CrossRef]
- Garrow, L.A.; German, B.; Schwab, N.T.; Patterson, M.D.; Mendonca, N.; Gawdiak, Y.O.; Murphy, J.R. A Proposed Taxonomy for Advanced Air Mobility. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar]
- Bridgelall, R.; Askarzadeh, T.; Tolliver, D. Introducing an Efficiency Index to Evaluate eVTOL Designs. SSRN 2022. [Google Scholar] [CrossRef]
- GAO. Transforming Aviation: Stakeholders Identified Issues to Address for ‘Advanced Air Mobility’; Government Accountability Office (GAO): Washington, DC, USA, 2022. [Google Scholar]
- Kitonsa, H.; Kruglikov, S.V. Significance of drone technology for achievement of the United Nations sustainable development goals. R-Economy 2018, 4, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Bexell, M.; Jönsson, K. Responsibility and the United Nations’ Sustainable Development Goals. Forum Dev. Stud. 2017, 44, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Garrow, L.A.; German, B.J.; Leonard, C.E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transp. Res. Part C Emerg. Technol. 2021, 132, 103377. [Google Scholar] [CrossRef]
- Guggina, D. We’re Bringing the Convenience of Drone Delivery to 4 Million U.S. Households in Partnership with DroneUp. Walmart News, 24 May 2022. [Google Scholar]
- Amazon. Amazon Prime Air Prepares for Drone Deliveries. Amazon News, 13 June 2022. [Google Scholar]
- Carter, S.; Johnston, T.; Lidel, S.; Riedel, R.; Tusch, L. Drone Delivery: More Lift than You Think. Future Air Mobility Blog, 15 March 2022. [Google Scholar]
- Jeanneret, C.; Rambaldi, G. Drone Governance: A Scan of Policies, Laws and Regulations Governing the Use of Unmanned Aerial Vehicles (UAVs) in 79 Countries; Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands, 2016. [Google Scholar]
- Ravich, T. A Comparative Global Analysis of Drone Laws: Best Practices and Policies. In The Future of Drone Use; Information Technology and Law Series; Custers, B., Ed.; T.M.C. Asser Press: The Hague, The Netherlands, 2016; Volume 27. [Google Scholar]
- Jones, T. International Commercial Drone Regulation and Drone Delivery Services; RAND Corporation: Santa Monica, CA, USA, 2017; p. 47. [Google Scholar]
- Cracknell, A.P. UAVs: Regulations and Law Enforcement. Int. J. Remote Sens. 2017, 38, 3054–3067. [Google Scholar] [CrossRef]
- Tsiamis, N.; Efthymiou, L.; Tsagarakis, K.P. A comparative analysis of the legislation evolution for drone use in oecd countries. Drones 2019, 3, 75. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Goodbody, T.R.; Cao, L. Four steps to extend drone use in research. Nature 2019, 572, 433–435. [Google Scholar] [CrossRef] [Green Version]
- Janke, C.; Haag, M.U. Implementation of European Drone Regulations-Status Quo and Assessment. J. Intell. Robot. Syst. 2022, 106, 33. [Google Scholar] [CrossRef]
- Ayamga, M.; Tekinerdogan, B.; Kassahun, A. Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land 2021, 10, 164. [Google Scholar] [CrossRef]
- Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of barriers to implement drone logistics. Int. J. Logist. Res. Appl. 2021, 24, 531–550. [Google Scholar] [CrossRef]
- Tran, T.-H.; Nguyen, D.-D. Management and Regulation of Drone Operation in Urban Environment: A Case Study. Soc. Sci. 2022, 11, 474. [Google Scholar] [CrossRef]
- Jongwanich, J.; Kohpaiboon, A.; Obashi, A. Technological advancement, import penetration and labour markets: Evidence from Thailand. World Dev. 2022, 151, 105746. [Google Scholar] [CrossRef]
- Chauhan, S.K. Scholarly output on drone research: A bibliometric study. DESIDOC J. Libr. Inf. Technol. 2019, 39, 117–124. [Google Scholar] [CrossRef]
- Oxford. Analytica Growing Drone Use Will Drive International Regulation; Emerald Expert Briefings: West Yorkshire, UK, 2015. [Google Scholar]
- Schulzke, M. Drone proliferation and the challenge of regulating dual-use technologies. Int. Stud. Rev. 2019, 21, 497–517. [Google Scholar] [CrossRef]
- Calandrillo, S.; Oh, J.; Webb, A. Deadly Drones? Why FAA Regulations Miss the Mark on Drone Safety. Stanf. Technol. Law Rev. 2020, 23, 182. [Google Scholar]
- VFS. The Vertical Flight Society. 11 November 2022. Available online: https://evtol.news/aircraft (accessed on 11 November 2022).
- WB-GEP. Databank: Global Economic Prospects. 7 June 2022. Available online: https://databank.worldbank.org/source/global-economic-prospects (accessed on 6 November 2022).
- WB-WDI. DataBank: World Development Indicators. 16 September 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 6 November 2022).
- WGI. Worldwide Governance Indicators (WGI). 23 September 2022. Available online: http://info.worldbank.org/governance/wgi/ (accessed on 6 November 2022).
- WB-SDG. DataBank: Sustainable Development Goals (WB-SDG). 22 July 2022. Available online: https://databank.worldbank.org/source/sustainable-development-goals-(sdgs) (accessed on 6 November 2022).
- WB-Jobs. DataBank: Jobs. 29 June 2022. Available online: https://databank.worldbank.org/source/jobs (accessed on 6 November 2022).
- WB-DB. DataBank: Doing Business. 18 August 2021. Available online: https://databank.worldbank.org/source/doing-business (accessed on 6 November 2022).
- SPI. Social Progress Index. 6 November 2022. Available online: https://www.socialprogress.org/ (accessed on 6 November 2022).
- ICAO. International Civil Aviation Organization (ICAO). 6 November 2022. Available online: https://www.icao.int/pages/links.aspx (accessed on 6 November 2022).
- IATA. IATA. 11 November 2022. Available online: https://www.iata.org/en/programs/ops-infra/air-traffic-management/drones/ (accessed on 11 November 2022).
- Bleys, B. Beyond GDP: Classifying alternative measures for progress. Soc. Indic. Res. 2012, 109, 355–376. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Escande, A. Measuring progress and well-being: A comparative review of indicators. Soc. Indic. Res. 2018, 135, 893–925. [Google Scholar] [CrossRef]
- Fleurbaey, M. Beyond GDP: The quest for a measure of social welfare. J. Econ. Lit. 2009, 47, 1029–1075. [Google Scholar] [CrossRef]
- Siddiqui, A.F.; Waseem, A.; Mamoon, D. Did we find alternate to GDP to measure national progress? Analysis of Harvard University’s social progress index. Turk. Econ. Rev. 2017, 4, 352–368. [Google Scholar]
- Fehder, D.; Stern, S. The Social Progress Index Methodology; Social Progress Imperative: Washington, DC, USA, 2013. [Google Scholar]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The worldwide governance indicators: Methodology and analytical issues. Hague J. Rule Law 2011, 3, 220–246. [Google Scholar] [CrossRef]
- Jaramillo, C.F.; Freund, C.; Reis, J.G.; Arvis, J.F.; Wiederer, C.K.; Ojala, L.M.; Shepherd, B.A.; Raj, A.U.L.; Dairabayeva, K.S.; Kiiski, T.M.M. Connecting to Compete 2018: Trade Logistics in the Global Economy—The Logistics Performance Index and its Indicators. In The International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- UN-WPP. United Nations World Population Prospects (UN-WPP). Available online: https://population.un.org/wpp/Download/Standard/CSV/ (accessed on 6 November 2022).
- Wei, P.; Lu, Z.; Song, J. Variable importance analysis: A comprehensive review. Reliab. Eng. Syst. Saf. 2015, 142, 399–432. [Google Scholar] [CrossRef]
- Kelleher, J.D.; Namee, B.M.; D’arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies; MIT Press: Cambridge, MA, USA, 2020; p. 856. [Google Scholar]
- Burkov, A. The Hundred-Page Machine Learning Book; Burkov, Andriy: Quebec City, QC, Canada, 2019; p. 160. [Google Scholar]
- Aggarwal, C.C. Data Mining; Springer International Publishing: New York, NY, USA, 2015; p. 734. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Durm, M.W. An A is not an A is not an A: A history of grading. Educ. Forum 1993, 57, 294–297. [Google Scholar] [CrossRef]
- Agresti, A. Statistical Methods for the Social Sciences, 5th ed.; Pearson: Boston, MA, USA, 2018; p. 608. [Google Scholar]
Attribute | Description | Dataset | Year | N | |
---|---|---|---|---|---|
Drones | Fly | Drone use regulated (target feature) | CAA Web | 2022 | 222 |
Designs_LN | Number of drone designs | VFS | 2022 | 222 | |
Economic | POP_M_LN | Population in millions (LN) | UN-WPP | 2022 | 237 |
POP_Gr | Population growth (annual %) | WB-PI | 2021 | 222 | |
GDP_B_LN | GDP in $billion (LN) (current US$) | WB-WDI | 2021 | 217 | |
GDPP_LN | GDP per capita (LN) (current US$) | WB-WDI | 2021 | 217 | |
GDP_Gr | GDP growth (% since 2015 US$) | WB-GEP | 2021 | 217 | |
Unemploy_LN | Unemployment (% of labor force) | WB-SDG | 2020 | 261 | |
Arrivals_LN | Number of tourism arrivals | WB-WDI | 2020 | 266 | |
Environment | SPI | Social progress index | SPI | 2021 | 168 |
EQI-SPI | Environmental quality index | SPI | 2021 | 168 | |
CO2_KT_LN | CO2 emissions (kilotons), LN | WB-WDI | 2019 | 266 | |
Governance | Gov_Eff | Governance effectiveness index | WGI | 2019 | 214 |
Polit_Stab | Political stability index | WGI | 2019 | 214 | |
Reg_Qual | Regulatory quality index | WGI | 2019 | 214 | |
Laws | Rule-of-law index | WGI | 2019 | 214 |
Attribute | Description | Dataset | Year | N | |
---|---|---|---|---|---|
Land Use | Land_SqKM | Land area (sq. km) | WB-WDI | 2019 | 268 |
Urban_SqKM_LN | Urban area (sq. km), LN | WB-WDI | 2010 | 268 | |
UrbanPop | Urban population (% of total) | WB-SDG | 2020 | 261 | |
UrbanGr | Urban population growth (annual %) | WB-SDG | 2020 | 261 | |
Rural_SqKM | Rural area (sq. km) | WB-WDI | 2010 | 266 | |
Ag_SqKM | Agricultural land (sq. km) | WB-WDI | 2018 | 266 | |
Rural_r | Rural/land area ratio | Derived | 2010 | 266 | |
Urban_r_LN | Urban/land area ratio | Derived | 2010 | 268 | |
Ag_r_LN | Agricultural/land area ratio | Derived | 2010 | 266 | |
Forest_PCT_LN | Forest/land area ratio | WB-WDI | 2019 | 266 | |
POP_SqKM | Population density (persons/sq-km) | WB-J | 2016 | 242 | |
Land_Type | Landlocked (L), open ocean border (W), island (I) | 2022 | 222 | ||
Tech. | Electric_Cost | Cost to get in % of income per capita | WB-DB | 2019 | 191 |
ATM100K_LN | ATMs per 100,000 adults | WB-J | 2016 | 242 | |
Phone100 | Mobile phone subscriptions per 100 person | WB-J | 2016 | 242 | |
Transportation | LPI | Logistics performance index | WB-WDI | 2018 | 266 |
Infr_Qual | Infrastructure quality index | WB-WDI | 2018 | 266 | |
Air_Cargo_LN | Air freight (million ton-km), LN | WB-WDI | 2019 | 266 | |
Air_Pax_LN | Air passengers (year) | WB-WDI | 2019 | 266 | |
Port_TEU_LN | Port traffic, 20 ft equivalent units (TEU) | WB-WDI | 2019 | 266 | |
Road_Deaths | Road traffic mortality (per 100,000) | WB-WDI | 2019 | 266 |
Model | AUC | CA | F1 | Pr | Rc | Mean | T&T |
---|---|---|---|---|---|---|---|
ANN | 0.923 | 0.886 | 0.884 | 0.882 | 0.886 | 0.892 | 113.6 |
LR | 0.912 | 0.873 | 0.864 | 0.867 | 0.873 | 0.878 | 6.5 |
SVM | 0.885 | 0.867 | 0.861 | 0.860 | 0.867 | 0.868 | 10.0 |
NB | 0.926 | 0.843 | 0.852 | 0.874 | 0.843 | 0.868 | 3.9 |
kNN | 0.870 | 0.861 | 0.859 | 0.857 | 0.861 | 0.862 | 9.3 |
RF | 0.889 | 0.855 | 0.850 | 0.848 | 0.855 | 0.859 | 47.0 |
Catboost | 0.871 | 0.849 | 0.849 | 0.848 | 0.849 | 0.853 | 53.9 |
XGB | 0.876 | 0.849 | 0.845 | 0.842 | 0.849 | 0.852 | 41.5 |
SGD | 0.782 | 0.861 | 0.861 | 0.860 | 0.861 | 0.845 | 6.4 |
GB | 0.853 | 0.837 | 0.835 | 0.832 | 0.837 | 0.839 | 36.9 |
AdaBoost | 0.733 | 0.801 | 0.808 | 0.817 | 0.801 | 0.792 | 11.0 |
DT | 0.658 | 0.795 | 0.793 | 0.791 | 0.795 | 0.766 | 6.1 |
No Skill | 0.459 | 0.795 | 0.704 | 0.632 | 0.795 | 0.677 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridgelall, R. Predicting Advanced Air Mobility Adoption Globally by Machine Learning. Standards 2023, 3, 70-83. https://doi.org/10.3390/standards3010007
Bridgelall R. Predicting Advanced Air Mobility Adoption Globally by Machine Learning. Standards. 2023; 3(1):70-83. https://doi.org/10.3390/standards3010007
Chicago/Turabian StyleBridgelall, Raj. 2023. "Predicting Advanced Air Mobility Adoption Globally by Machine Learning" Standards 3, no. 1: 70-83. https://doi.org/10.3390/standards3010007
APA StyleBridgelall, R. (2023). Predicting Advanced Air Mobility Adoption Globally by Machine Learning. Standards, 3(1), 70-83. https://doi.org/10.3390/standards3010007