
Citation: Adda, M. Formal Language

for Objects’ Transactions. Standards

2024, 4, 133–153. https://doi.org/

10.3390/standards4030008

Academic Editor: Ahmed Patel

Received: 7 June 2024

Revised: 29 July 2024

Accepted: 9 August 2024

Published: 15 August 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Formal Language for Objects’ Transactions
Mo Adda

School of Computing, University of Portsmouth, Lion Terrace, Portsmouth PO1 3HE, UK; mo.adda@port.ac.uk

Abstract: The gap between software design and implementation often results in a lack of clarity and
precision. Formal languages, based on mathematical rules, logic, and symbols, are invaluable for
specifying and verifying system designs. Various semi‑formal and formal languages, such as JSON,
XML, predicate logic, and regular expressions, alongwith formalmodels like Turingmachines, serve
specific domains. This paper introduces a new specification formal language, ObTFL (Object Trans‑
action Formal Language), developed for general‑purpose distributed systems, such as specifying
the interactions between servers and IoT devices and their security protocols. The paper details the
syntax and semantics of ObTFL and presents three real case studies—federated learning, blockchain
for crypto and bitcoin networks, and the industrial PCB board with machine synchronization—to
demonstrate its versatility and effectiveness in formally specifying the interactions and behaviors of
distributed systems.

Keywords: formal language; activities; interactions; actors; agents; transactions; compartments;
junctions; containers

1. Introduction
Today’s software is accompanied by extensive documentation, yet many systems still

fail to meet their requirements due to overlooked detailed specifications, resulting in inad‑
equate designs and implementations. The adoption of formal methods aims to address
these issues by employing symbolic techniques rooted in elementary mathematics and
logic. These techniques use rules to specify, define, and sometimes prove the correctness of
complex systems and their specifications. A formal language, such as the one introduced
in this paper, is a crucial component of formal methods. It relies on symbolic notations,
syntax, and precise rules to construct formal expressions, statements, and semantics. The
use of formal language, while very general to diverse problems, is particularly important
in autonomous systems development, notably in security protocols, networks’ protocols,
cloud systems, and industrial machineries, as it enhances efficiency, quality, and reliability
by imposing precision, unambiguity, rigor, and correctness.

Currently, there are several semi‑formal languages available in both the market and
research domains, tailored to specific system requirements and domains. JSON [1], al‑
though widely used, is not considered a completely formal language but rather a
lightweight data interchange format over the web. Its simplicity and effectiveness make it
suitable for many applications, but it may not be well suited for complex data structures
and formal validations. XML [2], on the other hand, offers flexibility and support for vali‑
dation and transformation but suffers from verbose syntax and complex structure, making
documents larger and harder to read. It also presents security concerns such as injections
and denial of service attacks.

Predicate logic [3] expresses complete relationships and is often used in formal val‑
idations, but it may lack expressive power, efficient reasoning, and consistency in some
systems. Regular expressions [4], while powerful in manipulating and validating strings
in texts, can be complex, error‑prone, and limited in expressiveness. Turing machines [5],
while not formal languages themselves, aremodels of computation used to study the prop‑
erties of formal languages. However, they can be challenging to workwith, have restricted

Standards 2024, 4, 133–153. https://doi.org/10.3390/standards4030008 https://www.mdpi.com/journal/standards

https://doi.org/10.3390/standards4030008
https://doi.org/10.3390/standards4030008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/standards
https://www.mdpi.com
https://orcid.org/0000-0002-8741-6986
https://doi.org/10.3390/standards4030008
https://www.mdpi.com/journal/standards
https://www.mdpi.com/article/10.3390/standards4030008?type=check_update&version=1

Standards 2024, 4 134

problem‑solving capabilities, and do not account for real‑life constraints in terms of re‑
sources and time.

There aremany relatedworks in formal languages, static analysis techniques, and for‑
mal tools available for modeling and analyzing concurrent and distributed systems. Pro‑
cess algebra [6], for instance, provides a formal mathematical framework for reasoning
about the correctness and properties of concurrent systems. Examples of process algebra
include CSP (Communicating Sequential Processes) [7], ACP (Algebra of Communicat‑
ing Processes) [8], CCS (Calculus of Communicating Processes) [9], and ATP (Algebra of
Timed Processes) [10]. These languages allow for the composition of larger systems from
smaller ones while abstracting away implementation details by exposing behavior at a
higher level. However, process algebra may encounter difficulties when modeling certain
non‑deterministic real‑world problems and can be computationally expensive.

Pi‑calculus is another formal mathematical model used to represent and analyze con‑
current process interactions in distributed systems and networks, including security and
privacy analysis [11]. While powerful, π‑calculus can be complex, especially when mod‑
eling larger systems with multiple interaction patterns, and it may lack expressiveness in
certain scenarios. Spi‑calculus, a variant of π‑calculus, extends the model with constructs
formodeling cryptographic and security protocols. However, the additional primitives for
security and cryptography may limit the expressiveness of the model [12]. Dpi‑calculus,
an extension of π‑calculus, introduces network primitives to model processes running on
different machines [13]. While it offers support for communication primitives and syn‑
chronizations, it may incur performance overhead compared to other formalisms due to
the need for additional network support.

Numerous software tools are available on the market to verify and support formal
languages. FDR (Failure Detection and Recovery) is one such tool used for the formal
verification of distributed systems [14]. It supports several formal languages, including
CSP [7] and specification languages like B. However, FDR has its limitations, such as false
positives, a reduced number of supported languages, and scalability issues when analyz‑
ing large systems, leading to state explosion. Other analysis tools for security protocols
include Tamarin [15], Scyther [16], ProVerif [17], and AVISPA [18], each with its own ap‑
proach and differences. These tools take a formal specification of a security protocol, verify
its properties, and check for vulnerabilities; Scyther, for example, represents the model us‑
ing a mathematical language and utilises automated reasoning mechanisms for analysis.
However, it requires familiarity with formal methods and languages and is limited to secu‑
rity protocols. Additionally, scalability issues may arise when dealing with larger systems.

This paper has undertaken a review of various formal tools and related works
grounded in process algebra, aligning with the formal language introduced in this
study [19]. ObTFL presents a straightforward syntax andwas craftedwith the aim of being
accessible to analysts withminimal knowledge of formalmethods. It boasts flexibility, and
its specifications can be visualized using a modified sequence diagram, which is known
to most users. Compared to the other mentioned formal languages, ObTFL offers greater
expressiveness or ease of use, with its activity and interaction syntaxes, and shows flexibil‑
ity in integrating with various programming languages, like Python and C++. Like others,
to address the specifications, validations, and requirements of interactive systems, this pa‑
per elucidates the principal syntax and semantics, providing three case studies: federated
learning, the blockchain for crypto and bitcoin networks, and the IPC‑HERMES‑9852 stan‑
dard for machine interactions. It concludes with the comparison of the latter case study
with π‑calculus notations.

The concept of ObTFL revolves around interacting objects directly as agents or indi‑
rectly through a communication medium as actors [20]. These objects encompass a broad
spectrum, including IoT devices, robots, vehicles, drones, sensors, and more. In essence,
this formal language serves as a conduit between requirements, specifications, and the de‑
sign and implementation of interactive distributed systems. The full syntax and semantics
of the language, specified in BNF, are outlined in [19].

Standards 2024, 4 135

2. Materials and Methods
2.1. Concept of the Language: Objects and Actions

This section outlines the formal template of the language and introduces various ele‑
ments that contribute to its structure and syntax. The language is grounded in the concept
of autonomous objects, specifically as requestors interacting with recipients as receptors
to achieve a common goal within a transaction. The purpose is achieved through nego‑
tiation, with each entity performing a set of actions and interactions with one another.
Requestors and receptors can utilize global communication mediums such as the inter‑
net, satellite, data networks, or interfaces based on vision, sound, or touch, as shown in
Figure 1. There are three layers for the protocol. Layer 1, the top one, is the application
layer where all activities of the objects take place; layer 2 is the identification layer, similar
to IP addresses, and ismost of the time implicitly defined by the object identifier or indexes;
and finally, layer 3 is the communication protocols, which vary from one medium to an‑
other, like TCP/UDP, Bluetooth, infrared, etc. Layers 2 and 3 are not required if the objects
perform no interactions within their environments; this is like executing local actions. Ob‑
jects interact or communicate with each other using containers’ passing, implemented via
local storage primitives, or containers’ sharing where an outside storage is instigated with
its store and retrieve primitives, supported by the protocols of an interconnection module,
like a network card NC. On the other hand, they may communicate by touches, visions,
and sounds directly implemented within an interconnection module, IM, acting as an in‑
terface. Explicitly, the problem specifications and syntax of ObTFL concentrate on layer 1,
activities and containers, while the implementations of layers 2 and 3 are abstracted using
labeling for the IP addresses and interaction symbols, respectively.

Standards 2024, 4, FOR PEER REVIEW 3

essence, this formal language serves as a conduit between requirements, specifications,
and the design and implementation of interactive distributed systems. The full syntax and
semantics of the language, specified in BNF, are outlined in [19].

2. Materials and Methods
2.1. Concept of the Language: Objects and Actions

This section outlines the formal template of the language and introduces various
elements that contribute to its structure and syntax. The language is grounded in the
concept of autonomous objects, specifically as requestors interacting with recipients as
receptors to achieve a common goal within a transaction. The purpose is achieved through
negotiation, with each entity performing a set of actions and interactions with one another.
Requestors and receptors can utilize global communication mediums such as the internet,
satellite, data networks, or interfaces based on vision, sound, or touch, as shown in Figure
1. There are three layers for the protocol. Layer 1, the top one, is the application layer
where all activities of the objects take place; layer 2 is the identification layer, similar to IP
addresses, and is most of the time implicitly defined by the object identifier or indexes;
and finally, layer 3 is the communication protocols, which vary from one medium to
another, like TCP/UDP, Bluetooth, infrared, etc. Layers 2 and 3 are not required if the
objects perform no interactions within their environments; this is like executing local
actions. Objects interact or communicate with each other using containers’ passing,
implemented via local storage primitives, or containers’ sharing where an outside storage
is instigated with its store and retrieve primitives, supported by the protocols of an
interconnection module, like a network card NC. On the other hand, they may
communicate by touches, visions, and sounds directly implemented within an
interconnection module, IM, acting as an interface. Explicitly, the problem specifications
and syntax of ObTFL concentrate on layer 1, activities and containers, while the
implementations of layers 2 and 3 are abstracted using labeling for the IP addresses and
interaction symbols, respectively.

Figure 1. The environment of objects, containers, activities, and interactions.

Objects, similar to the concept in object-oriented programming, are entities that
perform actions, known as methods or functions in programming languages. Broadly, we
classify objects as either agents or actors.

Actors are objects that use communication mediums, such as the internet, satellites,
infrared, and similar technologies, to interact with each other. Examples include
terminals, servers, switches, routers, IoT devices, robots, vehicles, drones, sensors, and
satellites.

Agents are objects that communicate through touch, vision, voice, or indirectly via
actors. Examples of agents include humans, intruders, hackers, users, subscribers,
vending machines, and software. For instance, a vending machine and a person interact

Figure 1. The environment of objects, containers, activities, and interactions.

Objects, similar to the concept in object‑oriented programming, are entities that per‑
form actions, known as methods or functions in programming languages. Broadly, we
classify objects as either agents or actors.

Actors are objects that use communication mediums, such as the internet, satellites,
infrared, and similar technologies, to interact with each other. Examples include terminals,
servers, switches, routers, IoT devices, robots, vehicles, drones, sensors, and satellites.

Agents are objects that communicate through touch, vision, voice, or indirectly via
actors. Examples of agents include humans, intruders, hackers, users, subscribers, vending
machines, and software. For instance, a vending machine and a person interact via touch,
involving buttons and coins or payment cards. Activities such as selecting an item from
the vending machine and receiving it after successful payment are part of the interaction
between the person and the machine.

Agents can also communicate remotelywith other agents or actors via actors (proxies),
as illustrated in Figure 1. For instance, an intruder (agent) may use a terminal (actor) to
access a server (actor) and manipulate its software to commit a felony. Agents can use
interfaces such as a keyboard or mouse to instruct a terminal to perform activities and
interact with a server. For example, a TV remote control, acting as an actor, communicates

Standards 2024, 4 136

with a smart TV using local infrared communication, while the person pressing keys on the
remote‑control acts as the agent. In this context, agents effectivelywrite scripts for actors to
execute. Software or code can also function as agents, instructing actors on how to behave
or perform within a scene. This interaction occurs through method calls to objects in a
typical software environment. The code (agent) may reside within the actor as a lodger or
be permanently embedded. For example, a virus (agent) injected into a mobile phone or
server becomes a lodger, directing the actor—mobile or server—on how to behave, similar
to the script of a movie.

Special types of objects can behave as agents and/or actors in their environment.
Robots, for instance, as intelligent autonomous objects, communicate with other robots (ac‑
tors) via communication media and interact with other robots (agents) through interfaces
such as vision, sound, or private networks. Therefore, they can be both actors and agents
simultaneously, depending on their roles within their environment. Sensors, as agents,
provide information about their environments to the actors, while events (agents) disrupt
the environment or systems, including software or hardware failures, malware attacks, or
natural phenomena like earthquakes or volcanoes.

Identifying agents interacting with actors can be challenging, especially from a foren‑
sic investigation perspective. This is particularly truewhen actors like amobile phonemay
have multiple users as agents, such as genuine users and potential villains. In the domain
of digital forensics, investigations involving IoT devices as actors require identifying not
only the device used but also all associated agents, or the users of the IoT device. Over‑
all, the diverse range of objects and interactions underscores the complexity of interactive
systems and the importance of understanding their components for effective analysis and
management. Therefore, the classification of objects into actors and agents is crucial in the
domain of crime investigations and the identification of objects.

2.2. Transactions
The generic format of ObTFL consists of containers and transactions, as depicted in

Figure 2. Although transactionsmust be used all the time, not all problems require contain‑
ers. The syntax and the grammar rules for the formal language, ObTFL, are fully defined
with BNF in the technical report [19]. For clarity, Appendix A compiles some of the sym‑
bols used in this paper.

Standards 2024, 4, FOR PEER REVIEW 5

Container: {}, < >, (), []
Transaction: ------------------
 Compartment 1
 …
 O
 Compartment n
===================

Figure 2. The structure of a transition with several compartments of common objectives.

2.3. Compartments
A compartment, as depicted in Figure 3, serves as an abstraction representing a

portion of the objectives within a transaction. It comprises one activity and a single object
as an agent, or two objects: a requestor and a receptor as agents and/or actors each with
its own autonomous activities, with interactions. Each activity can adopt the form of
fractional, linear, junction, or a combination. Fractional activities, shown in Figure 3,
consist of numerators and denominators, which delineate blocks of actions. An activity
may manifest as a single action, with or without interaction, or a group of actions
interconnected by action operators, if they are internal to objects. The internal action
operators, o, are “*”, “∥”, “∥°”, “×”, “+”, “*+”, “∥ା”, and “∥°ା” and encompass sequential,
parallel, rendezvous, selective exclusion, selective inclusion, consecutive, and a
combination with selective inclusion “+” with sequential, parallel, and rendezvous
operators.

Each interaction within a compartment signifies a communication between a
requestor object and a receptor object, facilitated by action operators. There are three
distinct types of interactions:
1. Lose Interaction (Asynchronous) (→): In this scenario, the sender does not anticipate

a response from the recipient.
2. Strict Interaction (Synchronous) (↔): Here, a reply is expected from the recipient. If

no response is received, a deadlock situation might occur. Fortunately, this can be
mitigated by a special primitive mechanism based on timeout settings, to be seen
later.

3. Delayed Interaction (⇀, ↽ or ⇁): This interaction involves a delay in receiving a
reply, which extends beyond the recipient’s immediate scope. A response might
eventually be received, but there is a delay.

Container : { }, (), < >, []
Transaction : ---

===

Activity:
Fractional , Linear

Objects 3 Compartments

Interaction: Async and Sync
Figure 3. The content of a compartment.

2.3.1. Independent Compartments
Independent compartments, shown in Figure 3, contain activities and one agent or

two objects: requestor and receptor. The statement, Send(virus): hacker → server: run

Figure 2. The structure of a transition with several compartments of common objectives.

Transactions are represented by one or more compartments which are abstractions
of coherent activities with a common goal to achieve a specified objective with zero or
more interactions between objects. This grammar indicates a transaction is composed of
one or more compartments joined by the compartment operators, O = ⦷, ⊛, ⊗, ⊕. Com‑
partments can run simultaneously,⦷, consecutively,⊛, or alternatively, ⊗, or in grouped
alternatives,⊕, with each other. By default, compartments with no operators are executed
consecutively.

2.3. Compartments
A compartment, as depicted in Figure 3, serves as an abstraction representing a por‑

tion of the objectiveswithin a transaction. It comprises one activity and a single object as an

Standards 2024, 4 137

agent, or two objects: a requestor and a receptor as agents and/or actors each with its own
autonomous activities, with interactions. Each activity can adopt the form of fractional,
linear, junction, or a combination. Fractional activities, shown in Figure 3, consist of nu‑
merators anddenominators, which delineate blocks of actions. An activitymaymanifest as
a single action, with or without interaction, or a group of actions interconnected by action
operators, if they are internal to objects. The internal action operators, o, are “*”, “∥”, “∥◦”,
“×”, “+”, “*+”, “∥+”, and “∥◦+” and encompass sequential, parallel, rendezvous, selective
exclusion, selective inclusion, consecutive, and a combination with selective inclusion “+”
with sequential, parallel, and rendezvous operators.

Standards 2024, 4, FOR PEER REVIEW 5

Container: {}, < >, (), []
Transaction: ------------------
 Compartment 1
 …
 O
 Compartment n
===================

Figure 2. The structure of a transition with several compartments of common objectives.

2.3. Compartments
A compartment, as depicted in Figure 3, serves as an abstraction representing a

portion of the objectives within a transaction. It comprises one activity and a single object
as an agent, or two objects: a requestor and a receptor as agents and/or actors each with
its own autonomous activities, with interactions. Each activity can adopt the form of
fractional, linear, junction, or a combination. Fractional activities, shown in Figure 3,
consist of numerators and denominators, which delineate blocks of actions. An activity
may manifest as a single action, with or without interaction, or a group of actions
interconnected by action operators, if they are internal to objects. The internal action
operators, o, are “*”, “∥”, “∥°”, “×”, “+”, “*+”, “∥ା”, and “∥°ା” and encompass sequential,
parallel, rendezvous, selective exclusion, selective inclusion, consecutive, and a
combination with selective inclusion “+” with sequential, parallel, and rendezvous
operators.

Each interaction within a compartment signifies a communication between a
requestor object and a receptor object, facilitated by action operators. There are three
distinct types of interactions:
1. Lose Interaction (Asynchronous) (→): In this scenario, the sender does not anticipate

a response from the recipient.
2. Strict Interaction (Synchronous) (↔): Here, a reply is expected from the recipient. If

no response is received, a deadlock situation might occur. Fortunately, this can be
mitigated by a special primitive mechanism based on timeout settings, to be seen
later.

3. Delayed Interaction (⇀, ↽ or ⇁): This interaction involves a delay in receiving a
reply, which extends beyond the recipient’s immediate scope. A response might
eventually be received, but there is a delay.

Container : { }, (), < >, []
Transaction : ---

===

Activity:
Fractional , Linear

Objects 3 Compartments

Interaction: Async and Sync
Figure 3. The content of a compartment.

2.3.1. Independent Compartments
Independent compartments, shown in Figure 3, contain activities and one agent or

two objects: requestor and receptor. The statement, Send(virus): hacker → server: run

Figure 3. The content of a compartment.

Each interactionwithin a compartment signifies a communication between a requestor
object and a receptor object, facilitated by action operators. There are three distinct types
of interactions:
1. Lose Interaction (Asynchronous) (→): In this scenario, the sender does not anticipate

a response from the recipient.
2. Strict Interaction (Synchronous) (↔): Here, a reply is expected from the recipient. If

no response is received, a deadlock situationmight occur. Fortunately, this can bemit‑
igated by a special primitive mechanism based on timeout settings, to be
seen later.

3. Delayed Interaction (⇀,↽ or ⇁): This interaction involves a delay in receiving a re‑
ply, which extends beyond the recipient’s immediate scope. A response might even‑
tually be received, but there is a delay.

2.3.1. Independent Compartments
Independent compartments, shown in Figure 3, contain activities and one agent or

two objects: requestor and receptor. The statement, Send(virus): hacker → server: run
(receive(…), is an example of a single or independent statement. Here, the actor hacker
sends a virus, and the receptor actor executes what it received, which is in this case the
virus. This is a linear activity that consists of a single action Send in the requestor and two
actions Receive/Run in the receptor.

2.3.2. Nested Compartments
In the example below, a nested compartment is illustrated. A1 and A2 represent two

actions forming a single fractional activity associated with the object a1. Meanwhile, the
action B1 and the nested compartment, referenced by the label, B^, are executed in parallel
(∥), where the actor b1 synchronously interacts with another actor c1, anticipating a reply
from the action C1 captured by action B3.

A1

A2
: a1 ↔ b1 : (B1 ∥ B̂)

Standards 2024, 4 138

B ≡ B2

B3
: b1 ↔ c1 : C1

Generally, when a compartment includes one or more requestors and/or receptors,
such as actor b1 in this example, transitioning to become a requestor to the receptor c1, a
nested compartment is formed, which could be written explicitly inside the host compart‑
ment or referenced externally. In this instance, the reference label, B^, is used to capture
the nested compartment, written externally. The internal specification would be written as

A1

A2
: a1 ↔ b1 : (B1 ∥ B2

B3
: b1 ↔ c1 : C1)

For complex systems, the implicit notation for nested compartments is preferred.

2.3.3. Grouped Compartments
Compartments can be grouped to eliminate redundancies and create concise struc‑

tures. There are two possible grouped structures, iterative and miscellaneous.

Iterative Compartments
Certain sequences of compartments demonstrate repetitive patterns in terms of ac‑

tions, activities, and interactions. To mitigate the repetition of identical compartments
multiple times, an iterative and indexed object form can be deployed. In this analysis, we
assume that indexed activities, such as Ajk, Bk, Cj, and D correspond to variations within
each compartment of the requestor object, j, and the corresponding receptor, k. The in‑
teraction between requestors and receptors can exhibit various communication patterns,
such as one‑to‑one, one‑to‑any, many‑to‑one, and many‑to‑many interactions, which may
incorporate consecutive, simultaneous, and/or selective behaviors. Equation (1) illustrates
only synchronous interactions, but asynchronous and delayed interactions can also be em‑
ployed. The general specification model for interactive compartments can be expressed as
shown in Equation (1). There are n*m compartments, each comprising a requestor, Sj, and
a receptor, Rk, behaving according to the operators, O, defined in Section 2.2. Generally,
the activity, D, without indexes is common to all objects across all compartments, the ac‑
tivity Cj differs for each requestor, the activity Bk changes with each receptor, and finally
the activity Ajk varies for each requestor, j, and receptor, k.

Ajk

Cjk
: OSj[1≤j≤n] ↔ ORk[1≤k≤m] :

Bk
D

(1)

Miscellaneous Compartments
Ultimately, a combination of operators’ activities, objects, and compartment opera‑

tors, o, O, and the variations of the interactions facilitate the creation of diverse and or‑
ganized compartments. It is not always possible to group different compartments if the
semantics of the results are ambiguous. In this case, one keeps them as independent com‑
partments. The following example shows how to group two exclusive, ⊗, compartments,
A/C: a1 ↔ a2: B ⊗ A/C: a1 ↔ a3: E, into A

C : a1 ↔ (a2 : B ⊗ a3 : E).

2.3.4. Delayed Compartments
Delayed compartments are based on delayed interactions which consist of a series

of compartments connected by the operator, O, where the initial compartment entails the
requestor soliciting a service, and the final compartment provides the service following in‑
termediate executions of one or more series of compartments, in between. Figure 4 depicts
a delayed interaction, where the requestor, a1, receives its response after actor a2 completes
its activity, F2. This delay is associated with actor a2 requesting services from actor a3, first,
before delivering the response to actor a1. By default, a series of compartments are exe‑

Standards 2024, 4 139

cuted consecutively unless an operator that specifies otherwise is utilized. The first and
last compartments employ a delayed interaction (⇀, ⇁).

Standards 2024, 4, FOR PEER REVIEW 7

semantics of the results are ambiguous. In this case, one keeps them as independent
compartments. The following example shows how to group two exclusive, ⊗ ,
compartments, A/C: a1 ↔ a2: B ⊗ A/C :a1 ↔ a3: E, into : 𝑎ଵ ↔ (𝑎ଶ: 𝐵 ⊗ 𝑎ଷ: 𝐸).
2.3.4. Delayed Compartments

Delayed compartments are based on delayed interactions which consist of a series of
compartments connected by the operator, O, where the initial compartment entails the
requestor soliciting a service, and the final compartment provides the service following
intermediate executions of one or more series of compartments, in between. Figure 4
depicts a delayed interaction, where the requestor, a1, receives its response after actor a2
completes its activity, F2. This delay is associated with actor a2 requesting services from
actor a3, first, before delivering the response to actor a1. By default, a series of
compartments are executed consecutively unless an operator that specifies otherwise is
utilized. The first and last compartments employ a delayed interaction (⇀, ⇁).

a1 a2 a3

A

B1

B2

E

C

F1

F2

D

Figure 4. A sequence diagram for a delayed compartment.

The formal specification in ObTFL can be written as 𝐴: 𝑎ଵ ⇀ 𝑎ଶ: 𝐵1 𝐵2𝐹1 : 𝑎ଶ ↔ 𝑎ଷ: 𝐸 𝐹2𝐷 : 𝑎ଶ ⇁ 𝑎ଵ: 𝐶

2.4. Containers
Containers encompass a variety of items or elements: values, objects, data,

information, parameters, agents, actors, robots, sensors, events, other containers, data
structures, databases, and actions. Common container types include arrays, lists, tuples,
vectors, sequences, dictionaries, sets, tables, and specialized containers such as queues,
stacks, and bags. ObTFL adopts four main container types: sets, dictionaries, tables, and
sequences.

A set, denoted by { }, represents an unordered collection of unique items also called
elements. These items can comprise both immutable and mutable values, variables, and
aliases. If aliases are unique within the virtual space which encompasses all containers
and objects in a system specification, they can be directly accessed using their identifiers
or, alternatively, via the dot-operator “.” to link them to the container they belong to.

A sequence, depicted by (), comprises an ordered collection of elements. Depending
on the problem context, these elements can be either immutable or mutable, and they may
also allow duplicates. Implementations of sequences encompass tuples, strings, vectors,
arrays, and lists. Sometimes, sequences are employed as parameters to and from actions
in ObTFL, where other containers are grouped into a sequence.

Figure 4. A sequence diagram for a delayed compartment.

The formal specification in ObTFL can be written as

A : a1 ⇀ a2 : B1

B2
F1

: a2 ↔ a3 : E

F2
D

: a2 ⇁ a1 : C

2.4. Containers
Containers encompass a variety of items or elements: values, objects, data, informa‑

tion, parameters, agents, actors, robots, sensors, events, other containers, data structures,
databases, and actions. Common container types include arrays, lists, tuples, vectors, se‑
quences, dictionaries, sets, tables, and specialized containers such as queues, stacks, and
bags. ObTFL adopts four main container types: sets, dictionaries, tables, and sequences.

A set, denoted by { }, represents an unordered collection of unique items also called
elements. These items can comprise both immutable and mutable values, variables, and
aliases. If aliases are unique within the virtual space which encompasses all containers
and objects in a system specification, they can be directly accessed using their identifiers
or, alternatively, via the dot‑operator “.” to link them to the container they belong to.

A sequence, depicted by (), comprises an ordered collection of elements. Depending
on the problem context, these elements can be either immutable or mutable, and they may
also allow duplicates. Implementations of sequences encompass tuples, strings, vectors,
arrays, and lists. Sometimes, sequences are employed as parameters to and from actions
in ObTFL, where other containers are grouped into a sequence.

A dictionary, symbolized by < >, alternatively referred to as an associative array, map,
or hash‑table, comprises key–value pairs. The keys are unique and unordered, mapping
to any element or item. Dictionaries are commonly utilized for database‑related purposes
within the context of ObTFL.

A table contains a set of entries. Each entry has one or many fields represented by
columns. A referenced container functions as a pointer or link to the content of another
container, much like a file name referencing the content of a file alongside its metadata,
or a hyperlink in a browser directing to a server or website. This referenced container is
indicated by a hat symbol, “^”. Additionally, an orphan container lacks a name or label.
For example, (2, 5, 8) denotes an orphan sequence of three elements.

In conversions, such as transforming a set into a sequence, the assignment operator
“=” is utilized alongside appropriate symbols. Conversion is not always possible between
different types of containers, which leads to some semantics ambiguities. For example, the
statement {S} = (2, 3, 4, 4) converts a sequence to a set, resulting in S being equal to {2, 3, 4},
whereas <D> = (2, 3, 4, 4) produces the dictionary, D, as D = <2:3, 4:4> which semantically

Standards 2024, 4 140

has no interesting outcome. Conversely, the assignment operator “:=” inserts an element
into a container. The statement {S} := (2, 3, 4, 4) will set the set, S, equal to {(2, 3, 4, 4)}.
Elements within a container can be grouped randomly or conditionally. For instance, the
notation n:m specifies thatm elements froma container of n elements are selected randomly,
and the set remains unchanged, whereas n:m[c] indicates that the selection is based on a
condition, c, to be discussed further in the next sections.

2.5. Actions and Activities
Actions encompass algorithms implemented through various means such as code,

pseudocode, lambda calculus, or any other technique outside the realm of ObTFL. Each
action is designed to accept a series of parameters or references stored in containers, exe‑
cute specific operations to accomplish defined objectives, and potentially may yield results
stored in containers. The containers returned by actions are adaptable to various types
including sets, sequences, dictionaries, and/or tables, with the option to apply rules of pro‑
motion and demotion conversions to align with the intended recipient’s structure. In a
way, the communications between objects and actions are entirely accomplished through
containers as parameters. Collections of actions interconnected by operators, o, such as
sequential (*), parallel (∥), rendezvous (∥◦), exclusive selection (×), and/or inclusive selec‑
tion (+), enclosed within brackets, or distributed in fractional form are termed activities.
Organizing activities into numerators and denominators based on their order and pur‑
pose enhances formal expression, rendering specifications clearer and more succinct. As
a general principle, actions allocated in the denominator are executed by default after the
completion of those in the numerator, unless overridden by specified activity operators.

2.5.1. Alternative Actions and Activities
Action can be alternated by the operator (x) when a decision is to be made and a path

is to be selected. This can be done through junctions and conditions.

Junctions
A junction consists of an initial action followed by brackets containing a sequence of

actions separated by the exclusive operator, “×”, optionally accompanied by conditions.
For instance, an input action marked with (?) requires an examination of its container,
and subsequently, based on the outcome, a specific path from the junction is chosen. As
an example, consider the statement, Check (?@(t){…}) (A× B × C), which evaluates the
contents, {…}, received at a specific time, ?@(t), from the set container { }, and exclusively
selects between the actions A, B, and C.

In the formal language syntax of ObTFL, this example can be represented as the junc‑
tion ?@(t){…} (⟳ × ϕ × �), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (⟳), terminating without further
progress (ϕ), or advancing to the next compartment (�).
Conditions

The condition involves arithmetic operations performed on indexes, numbers, vari‑
ables, and/or actions. Moreover, container and fuzzy operators can be utilized to address
conditions arising from containers. These arithmetic and container operations are eval‑
uated using relational operators, and subsequently, relational expressions are examined
by Boolean operators to determine whether the condition is true, false, or fuzzy. As per
the grammar rules of ObTFL, indexes can take various forms. For instance, consider the
following examples:

A[Sj=

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

] represents action A performed on an object Sj in a faulty state, denoted by

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∈Q] addresses an object such that it belongs to a container Q.

Standards 2024, 4 141

For example, a condition like A[‘T’] implies that the action path A is always followed
in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually beginwith actions. Typ‑

ically, actions are invoked or selected from libraries using their labels or names. However,
in ObTFL, there are predefined actions that perform basic tasks. For simplicity, these ac‑
tions are identified by symbols in addition to or instead of their names. Some of these
symbolic actions are summarized in Appendix A, while others are explained next. Since
they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (ε), Repeat (⟳), and Progress (▷) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity A ∗ ∅ ∗ B specifies that action A is performed, but B will
never be reached. However, A ∗ ε ∗ B denotes that A is executed, followed by B; this is
equivalent to A ∗ B. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has been
hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply from
a2will never be received by a1 to be addressed by action B. These actions are used to specify
the behaviors of a system under possible faults and errors.

The action, represented by ⟳, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) *⟳) or !Send(msg)/⟳.
This effectively repeats the action of sending a message indefinitely. If a condition is asso‑
ciated with the repeat action, ⟳, as in ⟳j[1≤j≤n], it indicates repeating the action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and
then she decides to ignore it, indicated by ∅, or reply with a yes or no (!Reply(T)× (F)).
If she ignores him or her phone is closed, he repeats sending the SMS every 5 min,

∫ @(t)
d(5)

for three times. If she refuses, by replying with a false, ‘F’, he performs a stop action that
terminates the activity and his wish to have a date, ∅.

!Send {sms}
(
∫ @(t)

d(5) (⟳[1≤j≤3]
×∅))×?(. . .)

(
▷[T] ×∅

) : man ↔ woman :?{. . .}(ε × (!Reply(T)× (F))×∅)

2.6.2. Timer or Delay Action (
∫
)

The syntax of the timer or delay action is
∫ @(t1)

d(t2)
. The delay process starts at time t1

and lasts for a duration of t2. The delay action is a versatile action that can be used alone to
introduce a silent period for a specified duration or in conjunction with another action to
defer its execution. In some simulation models, delays, such as service and arrival times,
play a significant role in the modeling process.

For example, the statement of an action,
∫ @(t)

d(10) Delay ∗ A, or
∫ @(t)

d(10) A, delays the oper‑
ation of an actor for a duration of 10‑time units, starting from the current time t, before the
actor executes the action A.

Standards 2024, 4 142

There are several variants to the notations of the timer. The notations
∫ @

d(t2)
,
∫ @(t)

d(t2)
,

and
∫ @(o)

d(t2)
indicate a duration of t2 starting from the current time. The difference between

them lies in the recording of the current time: in the first notation, the current time is not
recorded; in the second, it is recorded, in the variable t; and in the last, the current time (o)
is an absolute value that remains constant across subsequent calls to the timer.

On the other hand, the notations
∫ @

d(∞),
∫ @

d ,
∫ @

d(t) ,
∫ @

d(0), and
∫ @(o)

d(−t2)
signify actions

occurring at the current time for various durations: indefinitely, an unspecified but finite
duration, specified by time t, starting immediately, and lasting until the present moment,
respectively. The last notation is useful for recording events that occurred in the past.

The following statement of the timed action, schedules activities, by only giving the
chance to one of the three sequential activities A, B, or C, to complete after a duration of
time, t2, if action D cannot start immediately.(∫ @

d(t2)
(A × B × C)×

∫ @(t2)

d(0)
D
)

With the next statement, if one of the actionsA, B, andC performing concurrently, has
not finished within a period, t2, one of the actions, ⟳ ×∅× ▷, associated with the timer
executes. This mechanism can be used for transmission with a timeout, like the TCP/IP
protocol. In general, this statement has the same effect as

∫ @
d(t2)

×
∣∣∣∣∣∣Ai[1≤i≤n] . Some actions

of the n‑parallel actions are interrupted after time t2 if they have not been completed.∫ @

d(t2)
(⟳ ×∅× ▷) × (A ||B ||C)

2.6.3. Input (?) and Output (!) Actions
All interactions between actors are initiated by two special primitives: (!) and (?). The

first action operator (!) injects a collection of items gathered in a container into the com‑
munication medium. This is usually associated with action names such as Send, Register,
Transmit, Reply, Open, Login, Close, etc. The second action operator (?) extracts any con‑
tainer injected by the corresponding operator (!). The associated action names with the
last operator are Receive, Get, Obtain, etc. While these names are not mandatory, they are
occasionally used for readability purposes.

These operators solely exchange the payload of a message, while the communication
protocol itself is abstracted in the layer of interaction; refer to layer 3 in Figure 1. The under‑
lying communication protocol is concealed, and interchangeably, we replace IP addresses
with the names and identifiers of the requestors and receptors.

Both input and output action primitives can be synchronized with buffered or un‑
buffered communication, depending on the nature of the interaction between two objects.
The primitive, Receive (?), regardless of the type of interaction, always implements a block‑
ing receive scheme. In this example, the receptor blocks until a message is sent by the
requestor. By default, the requestor and receptors are autonomous and perform concur‑
rently unless they are synchronized to wait for replies from each other. In the example
provided, !Send(msg): Requestor → Receptor: Action ?(…), the requestor waits for the
message collected in the sequence container to arrive and then performs the action on it.
The notation, ?(…), signifies receiving something in a container of type sequence (). The
blocking send notation for the primitive, !, is denoted as, !

◦
.

2.6.4. Store (∇) and Retrieve (∆) Actions
Similarly to the primitives send (!) and receive (?), which are used for passing con‑

tainers, the primitives store (∇) and retrieve (∆), along with the blocking store
(
∇◦) and

retrieve (∆◦), are employed for container sharing. The blocking retrieve behaves similarly
to the receive (?). These seven primitives can be combined within the same model, provid‑

Standards 2024, 4 143

ing various perspectives in terms of specification. To illustrate this concept, let us consider
a queuing system.

A generator produces customers denoted as C at random intervals, typically every
average time interval represented by t1. The customers then join a queue denoted as Q,
which is implemented as a sequence and managed by a security agent denoted as S. Once
the security agent deems a customer ready to be served, he passes him/her on to the teller
denoted as T, as shown in Figure 5. This model finds applications in various real‑world
scenarios such as transportation, communication networks, and banking systems. In this
specification, the generator continuously generates an infinite stream of clients, repeating
the action Send as shown in themodifiedUMLsequence diagramof Figure 6. The junctions
are depicted by the symbol x. In the formal specification, shown below, once a customer is
generated, the actor S places him/her at the back of the queue ⊣Q and either terminates or
sends a notification to the teller if the teller is not active, identified by the condition of the
queue being empty [Q = ()]. The teller retrieves customers from the front of the queue ⊢Q
and spends a random time t3 servicing them. It repeats the same process or terminates if
the queue is empty.

∫ @
d(Rand(t1))

∗!Send(C)
⟳ : G → S : ▽Put

(
?(. . .)@, ⊣ Q

)(
Â [Q=()] ×∅

)
||⃝

A ≡ Notify : S → T :
∆Get(C, ⊢Q)

(∫ @(t2)
d(Rand(t3))

Service(C)×∅[Q=()]

)
⟳ .

Standards 2024, 4, FOR PEER REVIEW 11

underlying communication protocol is concealed, and interchangeably, we replace IP
addresses with the names and identifiers of the requestors and receptors.

Both input and output action primitives can be synchronized with buffered or
unbuffered communication, depending on the nature of the interaction between two
objects. The primitive, Receive (?), regardless of the type of interaction, always implements
a blocking receive scheme. In this example, the receptor blocks until a message is sent by
the requestor. By default, the requestor and receptors are autonomous and perform
concurrently unless they are synchronized to wait for replies from each other. In the
example provided, !Send(msg): Requestor → Receptor: Action ?(…), the requestor waits
for the message collected in the sequence container to arrive and then performs the action
on it. The notation, ?(…), signifies receiving something in a container of type sequence ().
The blocking send notation for the primitive, !, is denoted as, !°.
2.6.4. Store (∇) and Retrieve (∆) Actions

Similarly to the primitives send (!) and receive (?), which are used for passing
containers, the primitives store (∇) and retrieve (∆), along with the blocking store (∇°) and
retrieve (Δ∘), are employed for container sharing. The blocking retrieve behaves similarly
to the receive (?). These seven primitives can be combined within the same model,
providing various perspectives in terms of specification. To illustrate this concept, let us
consider a queuing system.

A generator produces customers denoted as C at random intervals, typically every
average time interval represented by t1. The customers then join a queue denoted as Q,
which is implemented as a sequence and managed by a security agent denoted as S. Once
the security agent deems a customer ready to be served, he passes him/her on to the teller
denoted as T, as shown in Figure 5. This model finds applications in various real-world
scenarios such as transportation, communication networks, and banking systems. In this
specification, the generator continuously generates an infinite stream of clients, repeating
the action Send as shown in the modified UML sequence diagram of Figure 6. The
junctions are depicted by the symbol x. In the formal specification, shown below, once a
customer is generated, the actor S places him/her at the back of the queue ⊣Q and either
terminates or sends a notification to the teller if the teller is not active, identified by the
condition of the queue being empty [Q = ()]. The teller retrieves customers from the front
of the queue ⊢Q and spends a random time t3 servicing them. It repeats the same process
or terminates if the queue is empty.

Figure 5. A single queuing system.
Figure 5. A single queuing system.

Standards 2024, 4, FOR PEER REVIEW 12

G S T⟳ Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system. ∫ௗ൫ோௗ(௧భ)൯@ ∗ ! 𝑆𝑒𝑛𝑑(𝐶)↻ : 𝐺 → 𝑆:▽ 𝑃𝑢𝑡(? (…)@, ⊣ 𝑄)൫𝐴^[ொୀ()] × ∅൯ ⦷

 𝐴 ≡ Notify ∶ S → 𝑇: Δ𝐺𝑒𝑡(𝐶, ⊢ 𝑄) ቀ∫ௗ൫ோௗ(௧య)൯@(௧మ) 𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝐶) × ∅[ொୀ()]ቁ↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B
A1

ф
⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt t
o re

pai
r

Figure 7. UML modified sequence diagram with failures and repairs.

Figure 6. Modified sequence diagram for a single‑server single‑generator queuing system.

2.6.5. Fail (

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

) and Recover (

Standards 2024, 4, FOR PEER REVIEW 12

G S T

⟳
Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system.

∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡1)�
@ ∗ ! 𝑆𝑆𝑅𝑅𝑚𝑚𝑆𝑆(𝐶𝐶)

↻
: 𝐺𝐺 → 𝑆𝑆:▽ 𝑃𝑃𝑃𝑃𝑃𝑃(? (…)@, ⊣ 𝑄𝑄)�𝐴𝐴^

[𝑄𝑄=()] × ∅�
⦷

𝐴𝐴 ≡ Notify ∶ S → 𝑇𝑇:
Δ𝐺𝐺𝑅𝑅𝑃𝑃(𝐶𝐶, ⊢ 𝑄𝑄) �∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡3)�

@(𝑡𝑡2)
𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅(𝐶𝐶) × ∅[𝑄𝑄=()]�

↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B

A1

ф

⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt
to

rep
air

Figure 7. UML modified sequence diagram with failures and repairs.

) Actions
The advancement of compartments can be disrupted by various events. Certain com‑

partments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self‑repair protocols. These events may arise internally, due to software or hard‑

Standards 2024, 4 144

ware failures, malware attacks, or internal interruptions, or externally, like attacks from
malicious actors sending viruses or compromising communication infrastructure, or even
natural disasters such as earthquakes, floods, and fires. The impact of events on interac‑
tions is symbolized by (;). Figure 7 depicts the various steps to invoke external or internal
repairs, where an external event or internal incident with an action, causing an internal
fault like hardware or software, occurs and disrupts the actor that Fails (

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

) while perform‑
ing the actions,A1. The actor (machine) resumes the execution of action,A1, if it is repaired
by an external actor (Repairer) or it performs its own self‑repair through the execution of
the repair action, B. U1 : Event

Standards 2024, 4, FOR PEER REVIEW 13

�
𝑈𝑈1: 𝐸𝐸𝑆𝑆𝑅𝑅𝑚𝑚𝑃𝑃 ↝ 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ ⇟

⨂
𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ 𝐹𝐹𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃 ∗⇟

�

⊛

⎝

⎜
⎛�

𝐵𝐵: 𝑆𝑆𝑅𝑅𝑅𝑅𝑎𝑎𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ↝ Machine: (⇞∗ 𝐴𝐴1 × ∅)
⨂

𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐵𝐵(⇞∗ 𝐴𝐴1 × ∅)
�

⨂

𝜙𝜙 ⎠

⎟
⎞

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal

language, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC-HERMES-9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, along with containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by
minimizing data exposure during the training process.

Consider a scenario with n hospitals, each with confidential patient records. Each
hospital’s server, denoted as Ri, initiates training by initializing its local model with
weights (wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital
server computes the gradients of its local model with respect to a common loss function.
This step, referred to as UpLocalModel, sends the evaluated weights and biases to the
central server, C, as shown in Figure 8.

Upon receiving updates from all hospitals simultaneously, shown by the parallel
rendezvous operator, ∥∘, of the weights and the biases, (𝑤𝑤′𝑖𝑖, 𝑏𝑏′𝑖𝑖), the central server gathers
them into a set, S, of tuples, (𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) ≔? (…), and then performs the action,
UpGlobalModel, to adjust the global model. This update incorporates the average weights
and biases from the hospitals, as well as the previous parameters of the central server,
using a speciied learning rate. The central server computes new weights and biases using
the formula for the UpGlobalModel: newWeight = oldWeight − learningRate ∗ averageWeight
and newBias = oldBias − learningRate ∗ averageBias. The average action takes a set of weights
and biases as tuples and produces a tuple with Weight and Bias to be used by the
UpGlobalModel action to evaluate the new weight and the new bias. The expression of the
action UpGlobaModel is outside the specification. Once the central server calculates the
new parameters for the global model, they are then broadcasted, ∥, to the local servers.
The process repeats multiple epochs, ↻𝑖𝑖𝑗𝑗[1≤𝑗𝑗≤𝑚𝑚], until the global model reaches an
acceptable level of performance.

machine : A1 ∗

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

⊗
machine : A1 ∗ Fault ∗

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

⊛

B : repairer

Standards 2024, 4, FOR PEER REVIEW 13

�
𝑈𝑈1: 𝐸𝐸𝑆𝑆𝑅𝑅𝑚𝑚𝑃𝑃 ↝ 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ ⇟

⨂
𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ 𝐹𝐹𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃 ∗⇟

�

⊛

⎝

⎜
⎛�

𝐵𝐵: 𝑆𝑆𝑅𝑅𝑅𝑅𝑎𝑎𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ↝ Machine: (⇞∗ 𝐴𝐴1 × ∅)
⨂

𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐵𝐵(⇞∗ 𝐴𝐴1 × ∅)
�

⨂

𝜙𝜙 ⎠

⎟
⎞

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal

language, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC-HERMES-9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, along with containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by
minimizing data exposure during the training process.

Consider a scenario with n hospitals, each with confidential patient records. Each
hospital’s server, denoted as Ri, initiates training by initializing its local model with
weights (wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital
server computes the gradients of its local model with respect to a common loss function.
This step, referred to as UpLocalModel, sends the evaluated weights and biases to the
central server, C, as shown in Figure 8.

Upon receiving updates from all hospitals simultaneously, shown by the parallel
rendezvous operator, ∥∘, of the weights and the biases, (𝑤𝑤′𝑖𝑖, 𝑏𝑏′𝑖𝑖), the central server gathers
them into a set, S, of tuples, (𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) ≔? (…), and then performs the action,
UpGlobalModel, to adjust the global model. This update incorporates the average weights
and biases from the hospitals, as well as the previous parameters of the central server,
using a speciied learning rate. The central server computes new weights and biases using
the formula for the UpGlobalModel: newWeight = oldWeight − learningRate ∗ averageWeight
and newBias = oldBias − learningRate ∗ averageBias. The average action takes a set of weights
and biases as tuples and produces a tuple with Weight and Bias to be used by the
UpGlobalModel action to evaluate the new weight and the new bias. The expression of the
action UpGlobaModel is outside the specification. Once the central server calculates the
new parameters for the global model, they are then broadcasted, ∥, to the local servers.
The process repeats multiple epochs, ↻𝑖𝑖𝑗𝑗[1≤𝑗𝑗≤𝑚𝑚], until the global model reaches an
acceptable level of performance.

Machine :
(

Standards 2024, 4, FOR PEER REVIEW 12

G S T

⟳
Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system.

∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡1)�
@ ∗ ! 𝑆𝑆𝑅𝑅𝑚𝑚𝑆𝑆(𝐶𝐶)

↻
: 𝐺𝐺 → 𝑆𝑆:▽ 𝑃𝑃𝑃𝑃𝑃𝑃(? (…)@, ⊣ 𝑄𝑄)�𝐴𝐴^

[𝑄𝑄=()] × ∅�
⦷

𝐴𝐴 ≡ Notify ∶ S → 𝑇𝑇:
Δ𝐺𝐺𝑅𝑅𝑃𝑃(𝐶𝐶, ⊢ 𝑄𝑄) �∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡3)�

@(𝑡𝑡2)
𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅(𝐶𝐶) × ∅[𝑄𝑄=()]�

↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B

A1

ф

⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt
to

rep
air

Figure 7. UML modified sequence diagram with failures and repairs.

∗ A1 ×∅
)⊗

machine : B
(

Standards 2024, 4, FOR PEER REVIEW 12

G S T

⟳
Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system.

∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡1)�
@ ∗ ! 𝑆𝑆𝑅𝑅𝑚𝑚𝑆𝑆(𝐶𝐶)

↻
: 𝐺𝐺 → 𝑆𝑆:▽ 𝑃𝑃𝑃𝑃𝑃𝑃(? (…)@, ⊣ 𝑄𝑄)�𝐴𝐴^

[𝑄𝑄=()] × ∅�
⦷

𝐴𝐴 ≡ Notify ∶ S → 𝑇𝑇:
Δ𝐺𝐺𝑅𝑅𝑃𝑃(𝐶𝐶, ⊢ 𝑄𝑄) �∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡3)�

@(𝑡𝑡2)
𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅(𝐶𝐶) × ∅[𝑄𝑄=()]�

↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B

A1

ф

⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt
to

rep
air

Figure 7. UML modified sequence diagram with failures and repairs.

∗ A1 ×∅
)

⊗
ϕ

Standards 2024, 4, FOR PEER REVIEW 12

G S T⟳ Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system. ∫ௗ൫ோௗ(௧భ)൯@ ∗ ! 𝑆𝑒𝑛𝑑(𝐶)↻ : 𝐺 → 𝑆:▽ 𝑃𝑢𝑡(? (…)@, ⊣ 𝑄)൫𝐴^[ொୀ()] × ∅൯ ⦷

 𝐴 ≡ Notify ∶ S → 𝑇: Δ𝐺𝑒𝑡(𝐶, ⊢ 𝑄) ቀ∫ௗ൫ோௗ(௧య)൯@(௧మ) 𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝐶) × ∅[ொୀ()]ቁ↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B
A1

ф
⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt t
o re

pai
r

Figure 7. UML modified sequence diagram with failures and repairs. Figure 7. UML modified sequence diagram with failures and repairs.

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal lan‑

guage, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC‑HERMES‑9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, alongwith containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by mini‑
mizing data exposure during the training process.

Consider a scenario with n hospitals, eachwith confidential patient records. Each hos‑
pital’s server, denoted as Ri, initiates training by initializing its local model with weights
(wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital server

Standards 2024, 4 145

computes the gradients of its local model with respect to a common loss function. This
step, referred to as UpLocalModel, sends the evaluated weights and biases to the central
server, C, as shown in Figure 8.

Standards 2024, 4, FOR PEER REVIEW 13

൭𝑈1: 𝐸𝑣𝑒𝑛𝑡 ↝ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒: 𝐴1 ∗ ⇟⨂𝑚𝑎𝑐ℎ𝑖𝑛𝑒: 𝐴1 ∗ 𝐹𝑎𝑢𝑙𝑡 ∗⇟ ൱ ⊛

⎝⎜
⎛൭𝐵: 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑟 ↝ Machine: (⇞∗ 𝐴1 × ∅)⨂𝑚𝑎𝑐ℎ𝑖𝑛𝑒: 𝐵(⇞∗ 𝐴1 × ∅) ൱⨂

𝜙 ⎠⎟
⎞

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal

language, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC-HERMES-9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, along with containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by
minimizing data exposure during the training process.

Consider a scenario with n hospitals, each with confidential patient records. Each
hospital’s server, denoted as Ri, initiates training by initializing its local model with
weights (wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital
server computes the gradients of its local model with respect to a common loss function.
This step, referred to as UpLocalModel, sends the evaluated weights and biases to the
central server, C, as shown in Figure 8.

Upon receiving updates from all hospitals simultaneously, shown by the parallel
rendezvous operator, ∥∘, of the weights and the biases, (𝑤′, 𝑏′), the central server gathers
them into a set, S, of tuples, (𝑤, 𝑏) ≔? (…), and then performs the action,
UpGlobalModel, to adjust the global model. This update incorporates the average weights
and biases from the hospitals, as well as the previous parameters of the central server,
using a speciied learning rate. The central server computes new weights and biases using
the formula for the UpGlobalModel: newWeight = oldWeight − learningRate ∗ averageWeight
and newBias = oldBias − learningRate ∗ averageBias. The average action takes a set of weights
and biases as tuples and produces a tuple with Weight and Bias to be used by the
UpGlobalModel action to evaluate the new weight and the new bias. The expression of the
action UpGlobaModel is outside the specification. Once the central server calculates the
new parameters for the global model, they are then broadcasted, ∥, to the local servers.
The process repeats multiple epochs, ↻[ଵஸஸ], until the global model reaches an
acceptable level of performance.

Figure 8. UML modified sequence diagram for hospital federated learning.

Upon receiving updates from all hospitals simultaneously, shown by the parallel ren‑
dezvous operator, ∥◦, of the weights and the biases, (w′

i, b′ i), the central server gathers
them into a set, S, of tuples, (wi, bi) :=?(. . .), and then performs the action,UpGlobalModel,
to adjust the global model. This update incorporates the average weights and biases from
the hospitals, as well as the previous parameters of the central server, using a speciied
learning rate. The central server computes new weights and biases using the formula for
theUpGlobalModel: newWeight = oldWeight− learningRate ∗ averageWeight and newBias = old‑
Bias − learningRate ∗ averageBias. The average action takes a set of weights and biases as
tuples and produces a tuple with Weight and Bias to be used by the UpGlobalModel action
to evaluate the new weight and the new bias. The expression of the action UpGlobaModel
is outside the specification. Once the central server calculates the new parameters for the
global model, they are then broadcasted, ∥, to the local servers. The process repeats multi‑
ple epochs, ⟳ij[1≤j≤m], until the global model reaches an acceptable level of performance.

UpLocalModel {Si}(wi , bi)∗!Send(w′
i , b′ i)

(wi , bi):=?(...)∗⟳ij[1≤j≤m]

: ||⃝Ri[1≤i≤n] ↔ C :
S = {∥◦ (wi, bi) :=?(. . .) } ∗ ∥!iReply(UpGlobalModel(Average {S})

3.2. Case 2: Blockchain for Cryptocurrency
Blockchain is a distributed digital ledger technology. Nodes, which are computers

within the network, exchange transactions that are chained together and stored as perma‑
nent, immutable, secure, and transparent records in blocks on each node [23–25]. In the
context of cryptocurrency, additional nodes, known as miners, compete to solve a crypto‑
graphic puzzle (proof of work) to validate and add transactions to the blockchain. This
concept extends beyond cryptocurrencies and has several applications. Blockchain tech‑
nology has been applied to supply chain management, smart contracts, voting systems,
and healthcare.

This case study explores the blockchain in cryptocurrency, and the language ObTFL
deploys the containers to model a set of n nodes, Ni[1≤i≤n], participating in the blockchain
network, and a group of q of them taking the extra task of acting as miners, Mi[1≤i≤n:q] .

Nodes =
{

Ni[1≤i≤n], Mi[1≤i≤n:q]

}
A transaction comprises various fields, including a transaction ID, input (representing

unspent transaction outputs, or UTXOs, which must cover the specified amount), output
(containing sender, recipient, and amount details), signature, and other pertinent infor‑
mation. The sender node signs the transaction data, encompassing sender, recipient, and

Standards 2024, 4 146

amount, among other elements, using their private key (e.g., K−
A
)
, thus generating a dig‑

ital signature. Each node, i, might generate, mi, transactions represented as a dictionary
container.

Tranij[1≤j≤mi]
= < sender : . . . , recipient : . . . , amount : . . . , sig : Enc

(
Hash

(
sig .− Tranij), K−

i

)
others : . . . >

A block, depending on its size, has the capacity to accommodate numerous transac‑
tions, typically ranging from 2000 to 4000 transactions per block. The block header, as
shown in Figure 9, contains essential information, including the hash value of the previ‑
ous block header, a hash representation of the block’s transactions (such as theMerkle tree
root hash or hashing of all block transactions), the block’s size, and the nonce value, of‑
ten utilized for mining purposes. It is worth noting that nonce values may or may not be
included in all blockchain networks.

Standards 2024, 4, FOR PEER REVIEW 14

Figure 8. UML modified sequence diagram for hospital federated learning. 𝑈𝑝𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙 ሼ𝑆ሽ(𝑤, 𝑏) ∗ ! 𝑆𝑒𝑛𝑑(𝑤ᇱ, 𝑏ᇱ)(𝑤, 𝑏) ≔? (…) ∗↻[ଵஸஸ]

: ⦷ 𝑅[ଵஸஸ] ↔ 𝐶: 𝑆 = ሼ∥∘ (𝑤, 𝑏) ≔? (…) ሽ ∗ ∥ ! 𝑅𝑒𝑝𝑙𝑦(𝑈𝑝𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ሼ𝑆ሽ)

3.2. Case 2: Blockchain for Cryptocurrency
Blockchain is a distributed digital ledger technology. Nodes, which are computers

within the network, exchange transactions that are chained together and stored as
permanent, immutable, secure, and transparent records in blocks on each node [23–25]. In
the context of cryptocurrency, additional nodes, known as miners, compete to solve a
cryptographic puzzle (proof of work) to validate and add transactions to the blockchain.
This concept extends beyond cryptocurrencies and has several applications. Blockchain
technology has been applied to supply chain management, smart contracts, voting
systems, and healthcare.

This case study explores the blockchain in cryptocurrency, and the language ObTFL
deploys the containers to model a set of n nodes, 𝑁[ଵஸஸ], participating in the blockchain
network, and a group of q of them taking the extra task of acting as miners, 𝑀[ଵஸஸ:] . 𝑁𝑜𝑑𝑒𝑠 = ሼ 𝑁[ଵஸஸ], 𝑀[ଵஸஸ:] ሽ

A transaction comprises various fields, including a transaction ID, input
(representing unspent transaction outputs, or UTXOs, which must cover the specified
amount), output (containing sender, recipient, and amount details), signature, and other
pertinent information. The sender node signs the transaction data, encompassing sender,
recipient, and amount, among other elements, using their private key (e.g., 𝐾ି) , thus
generating a digital signature. Each node, i, might generate, mi, transactions represented
as a dictionary container. 𝑇𝑟𝑎𝑛[ଵஸஸ] = < sender: …, recipient: …, amount: …, sig: Enc (Hash (sig ∸ 𝑇𝑟𝑎𝑛), 𝐾ି), others: …>

A block, depending on its size, has the capacity to accommodate numerous
transactions, typically ranging from 2000 to 4000 transactions per block. The block header,
as shown in Figure 9, contains essential information, including the hash value of the
previous block header, a hash representation of the block’s transactions (such as the
Merkle tree root hash or hashing of all block transactions), the block’s size, and the nonce
value, often utilized for mining purposes. It is worth noting that nonce values may or may
not be included in all blockchain networks.

Figure 9. Two blocks chained. Figure 9. Two blocks chained.

Therefore, a block can bemodelled as the union of two dictionaries: the overhead and
a list of pk transactions. The total number of blocks is denoted as b.

Overheadk =< bHeader : . . . , pbhHash : . . . , timeStamp : . . . , size : . . . , once : 0, tHash : . . . >

Blockk[1≤k≤b]= Overheadk∪Trankt[1≤t≤pk]

The ledger in each node, i, in the network holds a sequence of valid blocks, Ledgeri =
(Blockk). We also define two additional parameters the priority as two exclusive sequences,
Pr = (fee) × (size), and the memory pool as a container sequence used to temporarily hold
transactions, mPool = ().

The blockchain process in the cryptocurrency network, shown in Figure 10, begins
with parallel autonomous, , sender nodes, Ni[1≤i≤n], performing three parallel referenced

activities continuously, (Â1∥Â2∥Â3)
⟳ and a group of q autonomous miners, Mi[1≤i≤n:q] , re‑

sponding simultaneously with three activities, (B̂1∥ (Bˆ
2∗ B̂3))
⟳ , where the activities B̂2 and

B̂3 depend on each other and are performed sequentially. The iterative compartments,
shown in Figure 10, can be written as(

Â1 ∥ Â2 ∥ Â3
)

⟳ : ||⃝Ni[1≤i≤n] ↔ ||⃝Mi[1≤i≤n:q] :
(B̂1 ∥ (Bˆ

2 ∗ B̂3))

⟳

Standards 2024, 4 147

Standards 2024, 4, FOR PEER REVIEW 15

Therefore, a block can be modelled as the union of two dictionaries: the overhead and
a list of 𝑝𝑘 transactions. The total number of blocks is denoted as b. 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =< 𝑏𝐻𝑒𝑎𝑑𝑒𝑟: … , 𝑝𝑏ℎ𝐻𝑎𝑠ℎ ∶ … , 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝: … , 𝑠𝑖𝑧𝑒: … , 𝑜𝑛𝑐𝑒: 0, 𝑡𝐻𝑎𝑠ℎ: … > 𝐵𝑙𝑜𝑐𝑘[ଵஸஸ] = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ∪ 𝑇𝑟𝑎𝑛௧[ଵஸ௧ஸೖ]

The ledger in each node, i, in the network holds a sequence of valid blocks, 𝐿𝑒𝑑𝑔𝑒𝑟 =
(𝐵𝑙𝑜𝑐𝑘). We also define two additional parameters the priority as two exclusive
sequences, Pr = (fee) × (size), and the memory pool as a container sequence used to
temporarily hold transactions, 𝑚𝑃𝑜𝑜𝑙 = ().

The blockchain process in the cryptocurrency network, shown in Figure 10, begins
with parallel autonomous, ⦷, sender nodes, 𝑁[ଵஸஸ], performing three parallel

referenced activities continuously, (భ̂∥మ̂∥య̂)↻ and a group of q autonomous miners, 𝑀[ଵஸஸ:] , responding simultaneously with three activities, (భ̂∥ (మ̂∗ య̂))↻ , where the
activities 𝐵ଶ̂ and 𝐵ଷ̂ depend on each other and are performed sequentially. The iterative
compartments, shown in Figure 10, can be written as (𝐴ଵ̂ ∥ 𝐴ଶ̂ ∥ 𝐴ଷ̂)↻ :⦷ 𝑁[ଵஸஸ] ↔ ⦷ 𝑀[ଵஸஸ:] : (𝐵ଵ̂ ∥ (𝐵ଶ̂ ∗ 𝐵ଷ̂))↻

…

…

… …

‖
‖

Ledger

pList
…

pList

Ledger

mPool
mPool

Block
Block

Figure 10. UML modified sequence diagram for blockchain.

Randomly, every time 𝜏, a node, i, prepares and sends a transaction, j, during the
activity 𝐴ଵ. 𝐴ଵ ≡ ∫ௗ൫ௗ(ఛೕ)൯@(௧) ∗ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒 < 𝑇𝑟𝑎𝑛 > ∗ ! 𝑆𝑒𝑛𝑑 < 𝑇𝑟𝑎𝑛[ୀାଵ] >

Simultaneously, the same node and any other nodes may receive blocks from the
miners’ nodes and then insert them into the pending list while monitoring the length of
the blocks. These actions are grouped in activity 𝐴ଶ. 𝐴ଶ ≡ ∇∘𝑖𝑛𝑠𝑒𝑟𝑡(? (𝐵𝑙𝑜𝑐𝑘), 𝑝𝐿𝑖𝑠𝑡) * MonitorBlockchainLength

Furthermore, if the pending list has some blocks that are ready, meaning they have
reached their highest accumulated proof of work, in the activity 𝐴ଷ , the blocks are
permanently inserted into the ledger. 𝐴ଷ ≡ Δ°Extract(𝐵𝑙𝑜𝑐𝑘[^]𝑝𝐿𝑖𝑠𝑡) ∗ ∇𝑖𝑛𝑠𝑒𝑟𝑡(𝐵𝑙𝑜𝑐𝑘, 𝐿𝑒𝑑𝑔𝑒𝑟[ୀ:ଵ]) 𝐶 ≡ 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑜𝑓 𝑜𝑓 𝑤𝑜𝑟𝑘

The signed transactions are broadcast to nodes registered within the blockchain
network, such as miners, full nodes, and other network participants. Within this context,
miners play a vital role in validating and subsequently incorporating the transaction into
a block. The three activities performed concurrently by the miners are specified as follows.

Figure 10. UML modified sequence diagram for blockchain.

Randomly, every time τij, a node, i, prepares and sends a transaction, j, during the
activity A1.

A1 ≡
∫ @(ti)

d(rand(τij))
∗ Prepare < Tranij > ∗!Send < Tranij[j=j+1] >

Simultaneously, the same node and any other nodesmay receive blocks from themin‑
ers’ nodes and then insert them into the pending list while monitoring the length of the
blocks. These actions are grouped in activity A2.

A2 ≡ ∇◦insert(?(Block k), pList) ∗MonitorBlockchainLength

Furthermore, if the pending list has some blocks that are ready, meaning they have
reached their highest accumulated proof of work, in the activity A3, the blocks are perma‑
nently inserted into the ledger.

A3 ≡ ∆
◦
Extract(Block k[Ĉ]pList

)
∗ ∇insert(Block k, Ledgeri[i=n:1]

)
C ≡ the highest accumulated proo f o f work

The signed transactions are broadcast to nodes registered within the blockchain net‑
work, such as miners, full nodes, and other network participants. Within this context,
miners play a vital role in validating and subsequently incorporating the transaction into a
block. The three activities performed concurrently by the miners are specified as follows.

The first activity, B1, involves receiving transactions, ? < Tranij >, verifying their
integrities, after decoding and checking their hashes, and temporarily storing them in the
memory pool,memPool, in the order of their arrivals, unless a priority order is imposed, as
indicated in the formal activity B1 with the priority, pr. Due to the finite memory size of
the memPool, a memory management scheme is usually implemented where unconfirmed
transactions are ignored, ϕ, or removed from thememPool tomake room for incoming trans‑
actions.

B1 ≡ ? < Tranij > ∗ ▷◁ Compare
(

Dec
(
Tranij.sig, K+

i
)
, Hash

(
sig .− Tranij

))
(
ϕ×∇insert

(
Tranij, pr, mPool

))
In the activity, B2, transactions are removed from the front, ⊢, of the memory pool,

and inserted in the consecutive blocks after using the Merk algorithm to obtain the hashes
of a list of transactions stored in the block.

B2 ≡
(
∇◦(∆ ◦(tran, ⊢ mPool), Blockk[k=k+1]

)
∗ Blockk.tHash := Merk < Trankt >

Standards 2024, 4 148

Finally, the activity B3 is devoted to the proof of work consensus. It increments the
nonce of the block and performs the laborious hashing process on the block header until
the condition of a required number of leading zeros in the proof of work is met, and then
the block is sent to be stored in the ledger or ignored, ϵ.

B3 ≡ Inc(Blockk.nonce) ∗ (h) := HashPoW(Overheadk)
(
ε×![h=V]̂Send(Blockk)

)
V ≡ Measure the number of leading 0 in PoW consensus

The Merk activity hashes the transactions in pairs until the root which contains the
final hash is reached. Alternatively, a different algorithm can be used where the entire
list of transactions is hashed together. Miners send blocks upon solving the puzzle in B3;
although these blocks are valid, they are placed in a pending list, until nodes independently
verify and extend the longest valid chain by adding new blocks to it. The length of the
blockchain serves as a proxy for cumulative proof of work.

This example illustrates how the complex blockchain system and its interactions can
be specified using the syntax of ObTFL language.

3.3. Case 3: IPC‑HERMES‑9852 Protocol
The importance of using formal specifications in the manufacturing process is becom‑

ing increasingly essential [27]. Several formal languages are now employed to describe pro‑
duction processes in Industry 4.0 manufacturing, including some that feature automatic
code generation with domain‑specific languages [28]. This approach is based on models
similar to UML activity diagrams and Petri nets. Other modelling frameworks specify for‑
mal properties at the model level, automatically extracting formal specifications [29]. In
this case study, we will use the formal language introduced in this paper to address the
specification of the manufacturing process for printed circuit boards (PCBs).

The IPC‑HERMES‑9852 standard has emerged as a prominent protocol in electronic
manufacturing in Industry 4.0. The focus of this case study in particular is on the trans‑
portation of the PCBs from one machine to another (M‑2‑M), as shown in Figure 11. The
downmachine (DM) and the upmachine (UM) are synchronized by flagging their status—
ready or not—to each other. This example demonstrates the use of ObTFL alternative
activities and alternative compartments.

Standards 2024, 4, FOR PEER REVIEW 17

Figure 11. The normal operation of Hermes [30] protocol.

The down and up machines are independently dealing with the PCB actions named
as a process here as Process: DM ⦷ Process: UM

Figure 11 illustrates the scenario where one machine becomes ready and emits a
signal to inform the other machine of its readiness to accept more PCBs. The behaviour of
these signals is defined using the send (!) and receive (?) primitives of the language. If the
machine DM becomes ready first, it sends its readiness signal as !machineReady. If the
machine UM is not yet ready, meaning it is still completing the compartment Process: UM
as specified earlier, its input action, ?@ (. . .), has not been reached yet. Therefore, machine
DM will wait until the board available action, !boardAvailable, is performed. The outcome
of this action is captured by the first input action, ?@ (. . .), of machine DM since the
interaction between the two machines is synchronous. Formally, these behaviours can be
specified as follows: ! 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑎𝑑𝑦?@ (…) ∗ 𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑛 ∗ ! 𝑆𝑡𝑎𝑟𝑡𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 : 𝐷𝑀 ↔ 𝑈𝑀: ?@ (…) ∗ ! 𝑏𝑜𝑎𝑟𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒?@ (…) ∗ 𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑛 ⊗ ! 𝑏𝑜𝑎𝑟𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒?@ (…) ∗ ?@ (…) : 𝑈𝑀 ↔ 𝐷𝑀: ?@ (…) ∗ ! 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑎𝑑𝑦𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑛 ∗ ! 𝑆𝑡𝑎𝑟𝑡𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑓𝑓 ∗ ! 𝑠𝑡𝑜𝑝𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡? (…) : 𝐷𝑀 ↔ 𝑈𝑀: ? (…) ∗ 𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑓𝑓 ∗ ! 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ⊗ 𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑓𝑓 ∗ ! 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑?@ (…) : 𝑈𝑀 ↔ 𝐷𝑀: ? (…) ∗ 𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑂𝑓𝑓 ∗ ! 𝑠𝑡𝑜𝑝𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

4. Discussion
This section explores the potential and versatility of the formal specification language

ObTFL introduced in this paper. As part of the discussion, case study 3—Hermes protocol
v1.2—is specified using the π-calculus and compared to the version of case study 3 in
ObTFL notation. The complete model of Hermes protocol v1.2 is fully specified in [30]
using the π-calculus. 𝑈𝑀 ≝ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑎𝑑𝑦. 𝑏𝑜𝑎𝑟𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. 𝑈𝑀௧ + 𝑏𝑜𝑎𝑟𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑅𝑒𝑎𝑑𝑦. 𝑈𝑀௧
where

Figure 11. The normal operation of Hermes [30] protocol.

The down and up machines are independently dealing with the PCB actions named
as a process here as

Standards 2024, 4 149

Process: DM
⦷
Process: UM

Figure 11 illustrates the scenario where one machine becomes ready and emits a sig‑
nal to inform the other machine of its readiness to accept more PCBs. The behaviour of
these signals is defined using the send (!) and receive (?) primitives of the language. If
the machine DM becomes ready first, it sends its readiness signal as !machineReady. If
the machine UM is not yet ready, meaning it is still completing the compartment Process:
UM as specified earlier, its input action, ?@(. . .), has not been reached yet. Therefore, ma‑
chine DM will wait until the board available action, !boardAvailable, is performed. The
outcome of this action is captured by the first input action, ?@(. . .), of machine DM since
the interaction between the two machines is synchronous. Formally, these behaviours can
be specified as follows:

!machineReady
?@(...)∗conveyorOn∗!StartTransport : DM ↔ UM : ?@(...)∗ !boardAvailable

?@(...)∗conveyorOn
⊗

!boardAvailable
?@(...)∗ ?@(...) : UM ↔ DM : ?@(...)∗ !machineReady

conveyorOn∗ !StartTransport

conveyorO f f ∗ !stopTransport
?(...) : DM ↔ UM :?(. . .) ∗ ConveyorO f f ∗ !transportFinished

⊗
conveyorO f f ∗ !transportFinished

?@(...) : UM ↔ DM : ?(. . .) ∗ ConveyorO f f ∗ !stopTransport

4. Discussion
This section explores the potential and versatility of the formal specification language

ObTFL introduced in this paper. As part of the discussion, case study 3—Hermes proto‑
col v1.2—is specified using the π‑calculus and compared to the version of case study 3 in
ObTFL notation. The complete model of Hermes protocol v1.2 is fully specified in [30]
using the π‑calculus.

UM
de f
= machineReady.boardAvailable.UMcont+

boardAvailable.machineReady.UMcont

where

UMcont
de f
= startTransport.τ.(τ.transportFinished(complete).stopTransport(x).0

+τ.stopTransport(x′).transportFinished(x′).0)

DM
de f
= machineReady.boardAvailable.DMcont+

boardAvailable.machineReady.DMcont

where

DMcont
de f
= startTransport.τ.(τ.transportFinished(y′).τ.stopTransport(y′).0
+τ.stopTransport(complete).transportFinished(y).0)

Upon comparing the formal specification of case study 3 in ObTF and the π‑calculus,
it is evident that the former offers a more intuitive approach. Reference [30] predicates
assume the availability of a PCB for transportation, and the pervasive inclusion of timing
sequences (τ) alongside activities can be somewhat perplexing. This representation only
indicates silent intervals in the example, which vary, leading to reduced accuracy. More‑
over, errors in [30] are specified independently and in more complex formats.

Standards 2024, 4 150

In contrast, the grammar rules of ObTFL make it inherently more expressive, with
interactions clearly delineating which actors are involved in specific actions. This also con‑
forms to the sequence diagram exhibiting similar patterns. Its syntax aligns closely with
implementation in any programming language. Notably, interactions between UM and
DMmachines are synchronous, with no assumptions regarding the existence of a PCB. In‑
stead, it simply mandates that two conditions be met: reception of the ready signal, ?@(...),
and the subsequent wait for the PCB event to become available, irrespective of timing. This
waiting process continues indefinitely until a PCB is either available or the triggering event
concludes at a specified time (@). Consequently, the timing is more precise, relying on syn‑
chronizations between the primitive send (!) and receive (?) operations. Nonetheless, both
ObTFL and π‑calculus can specify a wide range of behaviors in distributed systems, albeit
with different syntaxes and underlying philosophies.

To demonstrate the versatility of the language, three completely different case stud‑
ies have been formally specified. The main connection between them is the environment
where autonomous objects such as machines, nodes, servers, actors, and/or agents interact
with each other after performing actions and activities. The entire world operates as a vast
distributed system, where individual objects manage their own affairs while interacting
with one another.

The related standards of formal specification languages discussed in the introduction
expose the different domains and applications. Like others, ObTFL focuses on distributed
systems in general, where parallel and autonomous objects are involved. It also extend to
the specifications of security protocols. Its main feature is its closeness to implementation
in any programming language such as Python, C++, or Java.

5. Conclusions
This paper introduces a formal specification language designed for use in distributed

systems, where interactions and parallel activities are central to functionality. The lan‑
guage’s grammar rules extend to interactions requiring authentication, confidentiality, and
integrity, as demonstrated in case study 2. Its applicability spans various environments,
involving interactions and activities within distributed systems and networks.

The language’s semantics are based on mathematical models and symbols, ensuring
robustness and precision. Its distinguishing feature is a simplified syntax compared to
other formal languages, making it accessible to a broader audience interested in specifying
and documenting problems within distributed system domains. This accessibility enables
stakeholders to articulate and conceptualize complex scenarios before transitioning to im‑
plementation using familiar languages such as Python, C++, or Java. Additionally, the
modified sequence UML diagram serves as a visualization tool to enhance understanding
of the structure, organization, and readability of ObTFL semantics.

The development of this formal language is poised to advance significantly, with up‑
coming extensions to encompass distributed database systems and their complex interac‑
tions through the utilization of table containers. This enhancement will broaden the lan‑
guage’s applicability, enabling it to model and specify the behavior of far more complex
modern computing environments.

To illustrate the full capabilities and versatility of the language, we have several ambi‑
tious case studies in the pipeline. Some of them have already been formally specified with
the language. The case studies cover a diverse array of scenarios and challenges, including
the following:

WiFi Attacks: Detailed analysis and formal specifications for mitigating WiFi attacks
such as wormholes, black holes, and gray holes. These attacks exploit vulnerabilities in
wireless networks, and our language aims to provide precise mechanisms for detecting
and counteracting them.

IoT Forensics: Comprehensive studies on the forensics of Internet of Things (IoT) de‑
vices, including vehicles and drones. As these devices become increasingly integrated into
our daily lives, ensuring their security and understanding forensic methodologies will be

Standards 2024, 4 151

paramount. Our language will help specify the interactions and behaviors of these devices
in forensic investigations.

Cloud Infrastructure Protection: Addressing the protection of cloud infrastructure
that stores critical evidence. This involves developing formal specifications for securing
cloud environments against breaches and ensuring the integrity and confidentiality of
storeddata. The languagewill includemodels for safeguarding evidencewithin cloudplat‑
forms.

Security and Privacy in the Dark Web: Exploring the complex issues of security and
privacy associated with the dark web. This includes developing formal specifications for
monitoring and investigating dark web activities while ensuring user privacy and data
protection. The language will provide tools for understanding and mitigating the risks
posed by the dark web.

By tackling these varied and intricate case studies, we aim to demonstrate, with pos‑
sibly additional syntax, the comprehensive spectrum of the language and its practical ap‑
plications in addressing real‑world security and forensic challenges. This future work will
not only enhance the language itself but also contribute to the broader field of cybersecu‑
rity and digital forensics, offering robust solutions and methodologies for safeguarding
digital environments from cybercrimes.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the author on request.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. The syntax of ObFTL.

Symbols The Meanings of Primitive Actions, Operators, and Containers

@, d, ^, ≡ The starting time, @, of any actions, and the duration, d, of the delay action only,
reference (^) to something, (≡) stands for define as.

Status actions applied to objects and conditions

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

,

Standards 2024, 4, FOR PEER REVIEW 12

G S T

⟳
Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system.

∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡1)�
@ ∗ ! 𝑆𝑆𝑅𝑅𝑚𝑚𝑆𝑆(𝐶𝐶)

↻
: 𝐺𝐺 → 𝑆𝑆:▽ 𝑃𝑃𝑃𝑃𝑃𝑃(? (…)@, ⊣ 𝑄𝑄)�𝐴𝐴^

[𝑄𝑄=()] × ∅�
⦷

𝐴𝐴 ≡ Notify ∶ S → 𝑇𝑇:
Δ𝐺𝐺𝑅𝑅𝑃𝑃(𝐶𝐶, ⊢ 𝑄𝑄) �∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡3)�

@(𝑡𝑡2)
𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅(𝐶𝐶) × ∅[𝑄𝑄=()]�

↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B

A1

ф

⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt
to

rep
air

Figure 7. UML modified sequence diagram with failures and repairs.

Set/test the status of an object—idle, down, broken, unavailable (

Standards 2024, 4, FOR PEER REVIEW 9

In the formal language syntax of ObTFL, this example can be represented as the
junction ?@(t){…} (↻ × ϕ × ⊳), where each action associated with the junction is evaluated
based on predetermined conditions. The semantics of this syntax depend on the outcome
of the chosen path: either repeating the current activity (↻), terminating without further
progress (ϕ), or advancing to the next compartment (⊳).

Conditions
The condition involves arithmetic operations performed on indexes, numbers,

variables, and/or actions. Moreover, container and fuzzy operators can be utilized to
address conditions arising from containers. These arithmetic and container operations are
evaluated using relational operators, and subsequently, relational expressions are
examined by Boolean operators to determine whether the condition is true, false, or fuzzy.
As per the grammar rules of ObTFL, indexes can take various forms. For instance, consider
the following examples:

A[Sj=⇟] represents action A performed on an object Sj in a faulty state, denoted by ⇟.
Sj[j=j+1] refers to the next object in sequence.
Sj[1≤j≤n:3] indicates three objects selected randomly from a pool of n objects.
S[s∊Q] addresses an object such that it belongs to a container Q.
For example, a condition like A[‘T’] implies that the action path A is always followed

in a junction. Lastly, the condition {A}[{A}⊂{B}] introduces the set {A} with the requirement
that it must be a subset of another set, {B}.

2.6. Primitive Symbolic Actions
Interactions among objects, such as actors and agents, usually begin with actions.

Typically, actions are invoked or selected from libraries using their labels or names.
However, in ObTFL, there are predefined actions that perform basic tasks. For simplicity,
these actions are identified by symbols in addition to or instead of their names. Some of
these symbolic actions are summarized in Appendix A, while others are explained next.
Since they are actions, they can be indexed and associated with conditions.

2.6.1. Stop (∅), Null (𝜀𝜀), Repeat (↻), and Progress (⊳) Actions
To detect abnormal states, incomplete forms, and errors within a compartment, the

stop action, symbolized by ∅, is utilized in various combinations. This action halts the
progress of an activity or a compartment before it is completed. An activity may consist
of a series of actions enclosed in brackets or a fractional statement. Conversely, the null
action, represented by ε, indicates doing nothing. It is commonly employed in junctions
when no path is selected.

For instance, the activity 𝐴𝐴 ∗ ∅ ∗ 𝐵𝐵 specifies that action A is performed, but B will
never be reached. However, 𝐴𝐴 ∗ 𝜀𝜀 ∗ 𝐵𝐵 denotes that A is executed, followed by B; this is
equivalent to 𝐴𝐴 ∗ 𝐵𝐵. Additionally, in a compartment with A/B:a1 → a2:∅, actor a2 receives
communication from actor a1 but ignores it. Conversely, A/B:a1 → a:ε indicates that actor
a2 did not receive the communication, as if the signal is lost or the communication has
been hijacked. In both cases, a deadlock occurs if the interaction is synchronous, as a reply
from a2 will never be received by a1 to be addressed by action B. These actions are used to
specify the behaviors of a system under possible faults and errors.

The action, represented by ↻, repeats the activity it belongs to, defined by enclosed
brackets, a fractional statement, or the entire block, such as (!Send (msg) * ↻) or
!Send(msg)/↻. This effectively repeats the action of sending a message indefinitely. If a
condition is associated with the repeat action, ↻, as in ↻j[1≤j≤n], it indicates repeating the
action n times.

To illustrate the usage of the repeat action, let us consider the scenario of a persistent
man trying to arrange a date with a lady. He sends her an SMS invitation, !Send {sms}.
The lady’s phone might be closed or not receiving, ε, or she receives the SMS, ?{…}, and

,), or active (

Standards 2024, 4, FOR PEER REVIEW 12

G S T

⟳
Send

Put Q

ᵡ
Notify

ф

Get

ᵡ
⟳

ф

Service

Figure 6. Modified sequence diagram for a single-server single-generator queuing system.

∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡1)�
@ ∗ ! 𝑆𝑆𝑅𝑅𝑚𝑚𝑆𝑆(𝐶𝐶)

↻
: 𝐺𝐺 → 𝑆𝑆:▽ 𝑃𝑃𝑃𝑃𝑃𝑃(? (…)@, ⊣ 𝑄𝑄)�𝐴𝐴^

[𝑄𝑄=()] × ∅�
⦷

𝐴𝐴 ≡ Notify ∶ S → 𝑇𝑇:
Δ𝐺𝐺𝑅𝑅𝑃𝑃(𝐶𝐶, ⊢ 𝑄𝑄) �∫𝑑𝑑�𝑅𝑅𝑅𝑅𝑛𝑛𝑑𝑑(𝑡𝑡3)�

@(𝑡𝑡2)
𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅(𝐶𝐶) × ∅[𝑄𝑄=()]�

↻

2.6.5. Fail (⇟) and Recover (⇞) Actions
The advancement of compartments can be disrupted by various events. Certain

compartments may fail to achieve success and are forced to pause, necessitating corrective
measures from external entities or, in cases involving intelligent agents, autonomously
executing self-repair protocols. These events may arise internally, due to software or
hardware failures, malware attacks, or internal interruptions, or externally, like attacks
from malicious actors sending viruses or compromising communication infrastructure, or
even natural disasters such as earthquakes, floods, and fires. The impact of events on
interactions is symbolized by (↝). Figure 7 depicts the various steps to invoke external or
internal repairs, where an external event or internal incident with an action, causing an
internal fault like hardware or software, occurs and disrupts the actor that Fails (⇟) while
performing the actions, A1. The actor (machine) resumes the execution of action, A1, if it
is repaired by an external actor (Repairer) or it performs its own self-repair through the
execution of the repair action, B.

External Event Machine Repairer

Fail

Internal Fault

⦻

A1

B

A1

ф

⦻ Self-repair

A1

ф

⦻ External-repair

B
⦻

Fail

⦻

Unrepairable

Att
em

pt
to

rep
air

Figure 7. UML modified sequence diagram with failures and repairs.

).

Delay actions∫ @,
∫ @

d ,
∫ @

d()[],
∫ @
[]

Delay action with its variants, determined by starting, @, time, duration, d,
and/or conditions, [].

Decision actions

�, �
⟳, ⥁
∅, ϵ

Move to the next compartment (�), or move to the next transaction (�).
Repeat the current activity/compartment (⟳) or transaction (⥁).
Stop and no progress (∅); it needs to be reactivated. Do nothing (ϵ); does not need
to be reactivated.

Container passing actions

!@, ?@ Send (!) and receive (?) actions. The receive action (?) is synchronous by default.

Containers sharing actions

∇@, ∆@,
∇◦, ∆◦

:=, .−

Put/Store and Get/Retrieve
Blocking Put/Store if container full and Blocking Get/Retrieve if container empty.
Insert into (:=) or extract from (.−) a container at/from the back ⊣ or the front ⊢.

Standards 2024, 4 152

Table A1. Cont.

Symbols The Meanings of Primitive Actions, Operators, and Containers

Container handling actions

⇒,⇏, ▷◁, ∅ Search (⇒), remove (⇏), compare items
(▷◁) from a container, clear the whole (∅C) container, C.

Action operators

∗, ∗+, ∥, ∥+, ∥◦+,×, +, ∥◦
Sequential, sequential from a group of “ored”‑activities, parallel, rendezvous,
parallel group of “ored”‑activities, parallel “or” with rendezvous, select only
one, select a group (or). The × operator is prioritized. When more than one
action is ready to be performed, the priority starts from the left‑hand side.

Compartment operators

⊛, ⊗, ⊕, , +, ◦◦+

:

Consecutive, selective, group selective, simultaneous, parallel groups,
rendezvous, group rendezvous.
Separator between actions and objects action:object and object:action

Container declarations

[] < > { } ()
= [], < >, { }, ()
S := {}, [], (), < >
= [•], {•}, (•), <•>
[…]{… } (…) <…>

Table, Dictionary, Set, Sequence containers.
Used with conditions [], to check if a container is empty
Clearing a container with (:=), similar to the action⏀.
Used with conditions to check if a container is full.
Container has something. It can be used with the receive primitive action (?) to
receive something.

Interaction symbols

↔, → , (⇀,↽ or ⇁),

Standards 2024, 4, FOR PEER REVIEW 13

�
𝑈𝑈1: 𝐸𝐸𝑆𝑆𝑅𝑅𝑚𝑚𝑃𝑃 ↝ 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ ⇟

⨂
𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ 𝐹𝐹𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃 ∗⇟

�

⊛

⎝

⎜
⎛�

𝐵𝐵: 𝑆𝑆𝑅𝑅𝑅𝑅𝑎𝑎𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ↝ Machine: (⇞∗ 𝐴𝐴1 × ∅)
⨂

𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐵𝐵(⇞∗ 𝐴𝐴1 × ∅)
�

⨂

𝜙𝜙 ⎠

⎟
⎞

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal

language, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC-HERMES-9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, along with containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by
minimizing data exposure during the training process.

Consider a scenario with n hospitals, each with confidential patient records. Each
hospital’s server, denoted as Ri, initiates training by initializing its local model with
weights (wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital
server computes the gradients of its local model with respect to a common loss function.
This step, referred to as UpLocalModel, sends the evaluated weights and biases to the
central server, C, as shown in Figure 8.

Upon receiving updates from all hospitals simultaneously, shown by the parallel
rendezvous operator, ∥∘, of the weights and the biases, (𝑤𝑤′𝑖𝑖, 𝑏𝑏′𝑖𝑖), the central server gathers
them into a set, S, of tuples, (𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) ≔? (…), and then performs the action,
UpGlobalModel, to adjust the global model. This update incorporates the average weights
and biases from the hospitals, as well as the previous parameters of the central server,
using a speciied learning rate. The central server computes new weights and biases using
the formula for the UpGlobalModel: newWeight = oldWeight − learningRate ∗ averageWeight
and newBias = oldBias − learningRate ∗ averageBias. The average action takes a set of weights
and biases as tuples and produces a tuple with Weight and Bias to be used by the
UpGlobalModel action to evaluate the new weight and the new bias. The expression of the
action UpGlobaModel is outside the specification. Once the central server calculates the
new parameters for the global model, they are then broadcasted, ∥, to the local servers.
The process repeats multiple epochs, ↻𝑖𝑖𝑗𝑗[1≤𝑗𝑗≤𝑚𝑚], until the global model reaches an
acceptable level of performance.

Synchronous (↔), Asynchronous (→), Delayed (⇀,↽,⇁), Alter (

Standards 2024, 4, FOR PEER REVIEW 13

�
𝑈𝑈1: 𝐸𝐸𝑆𝑆𝑅𝑅𝑚𝑚𝑃𝑃 ↝ 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ ⇟

⨂
𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐴𝐴1 ∗ 𝐹𝐹𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃 ∗⇟

�

⊛

⎝

⎜
⎛�

𝐵𝐵: 𝑆𝑆𝑅𝑅𝑅𝑅𝑎𝑎𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ↝ Machine: (⇞∗ 𝐴𝐴1 × ∅)
⨂

𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑆𝑆𝑚𝑚𝑅𝑅: 𝐵𝐵(⇞∗ 𝐴𝐴1 × ∅)
�

⨂

𝜙𝜙 ⎠

⎟
⎞

3. Case Studies
This section presents three case studies to illustrate the capabilities of the formal

language, ObTFL. The case studies cover federated learning [21,22] with data protection,
blockchain in cryptocurrency [23–25], and the IPC-HERMES-9852 standard [26]. Case
study 1 demonstrates the use of iterative compartments, where multiple autonomous
servers interact with a central server. Case study 2 introduces referenced activities and
compartments including iterative compartments, along with containers. Lastly, case study
3 showcases the application of exclusive selection between compartments.

3.1. Case 1: Federated Learning
Federated learning is a supervised machine learning approach wherein local servers

are trained on decentralized data sources, and the resulting model updates are aggregated
on a central server to improve a global model. This method prioritizes privacy by
minimizing data exposure during the training process.

Consider a scenario with n hospitals, each with confidential patient records. Each
hospital’s server, denoted as Ri, initiates training by initializing its local model with
weights (wi) and biases (bi) set to zero on its dataset, Si. Following training, each hospital
server computes the gradients of its local model with respect to a common loss function.
This step, referred to as UpLocalModel, sends the evaluated weights and biases to the
central server, C, as shown in Figure 8.

Upon receiving updates from all hospitals simultaneously, shown by the parallel
rendezvous operator, ∥∘, of the weights and the biases, (𝑤𝑤′𝑖𝑖, 𝑏𝑏′𝑖𝑖), the central server gathers
them into a set, S, of tuples, (𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) ≔? (…), and then performs the action,
UpGlobalModel, to adjust the global model. This update incorporates the average weights
and biases from the hospitals, as well as the previous parameters of the central server,
using a speciied learning rate. The central server computes new weights and biases using
the formula for the UpGlobalModel: newWeight = oldWeight − learningRate ∗ averageWeight
and newBias = oldBias − learningRate ∗ averageBias. The average action takes a set of weights
and biases as tuples and produces a tuple with Weight and Bias to be used by the
UpGlobalModel action to evaluate the new weight and the new bias. The expression of the
action UpGlobaModel is outside the specification. Once the central server calculates the
new parameters for the global model, they are then broadcasted, ∥, to the local servers.
The process repeats multiple epochs, ↻𝑖𝑖𝑗𝑗[1≤𝑗𝑗≤𝑚𝑚], until the global model reaches an
acceptable level of performance.

) the state
of an object.

Symbols, operators, values, aliases used inside the [Condition]

⊂, ⊆, /∈, ∈, ∃, ∀, ∴ , η(C) Container operators, inclusion, there exist, for all, such that, cardinality of a
container

‘T’, ‘F’ Boolean values—true and false

&, |, ~, × Boolean operators, “and”, “or”, negation, exclusion

“string” A word, a sentence, a set of characters

numbers, indexes, variables Integer, decimals, or container values

+, ∗,−, %, /, ÷ Arithmetic operators

<>≤ ≥= ̸=≃ Relational operators

n:m:p:..
n:m:p:..[condition]

Group random extractions: p items, selected from m items from n items of a
container, etc.
Group selective extractions with conditions

References
1. Serrano, D.; Iglesias, C.A. JSONbis: A Proposal to Extend JSONwith Type Information. In Proceedings of the 22nd International

Conference on Enterprise Information Systems (ICEIS 2020), Virtual Event, 8–10 June 2020; pp. 290–297.
2. Jacobs, S. Beginning XML with DOM and Ajax: From Novice to Professional; Apress: New York, NY, USA, 2020.
3. Kaye, R. The Mathematical Theory of Predicate Logic; Cambridge University Press: Cambridge, UK, 2020.
4. Stubblebine, T. Regular Expressions Pocket Reference; O’Reilly Media: Sebastopol, CA, USA, 2021.
5. Cooper, S.B.; Soskova, M. Turing Machines and Computational Theory; Springer: Berlin/Heidelberg, Germany, 2020.
6. Bernardo, M.; Nicola, R.D.; Loreti, M. Process Algebra and Probabilistic Models: Performance and Dependability Analysis; Springer:

Berlin/Heidelberg, Germany, 2020.
7. Whitney, J.; Gifford, C.; Pantoja, M. Distributed execution of communicating sequential process‑style concurrency: Golang case

study. J. Supercomput. 2018, 75, 1396–1409. [CrossRef]
8. Vrancken, L.M. The algebra of communicating processes with empty process. Theor. Comput. Sci. 1997, 177, 287–328. [CrossRef]
9. Friedman, A. Communicating with Process Calculus; AMajor Qualifying Project Submitted to the Faculty ofWorcester Polytechnic

Institute: Worcester, MA, USA, 2023.

https://doi.org/10.1007/s11227-018-2649-2
https://doi.org/10.1016/S0304-3975(96)00250-2

Standards 2024, 4 153

10. Nicollin, X.; Sifakis, J. An overview and synthesis on timed process algebras. In Computer Aided Verification; Springer:
Berlin/Heidelberg, Germany, 1992; pp. 376–398.

11. Umer, M.; Ali, A. Automated Analysis of the Security of the IoT Using Pi‑Calculus; Springer: Berlin/Heidelberg, Germany, 2021.
12. Abadi, M.; Gordon, A.D. A Calculus for Cryptographic Protocols: The Spi Calculus; Elsevier: Amsterdam, The Netherlands, 1999;

Volume 148, pp. 1–70.
13. Hennessy, M. A Distributed Pi‑Calculus; Cambridge Press: Cambridge, UK, 2007; ISBN 9780521873307.
14. Liao, Y.; Yeaser, A.; Yang, B.; Tung, J.; Hashemi, E. Unsupervised fault detection and recovery for intelligent robotic rollators.

Robot. Auton. Syst. 2021, 146, 103876. [CrossRef]
15. Al Fikri, M.; Ramli, K.; Sudiana, D. Formal Verification of the Authentication and Voice Communication Protocol Security on

Device X Using Scyther Tool. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 5th International Confer‑
ence on Information Technology and Digital Applications (ICITDA 2020), Yogyakarta, Indonesia, 13–14 November 2020; IOP Publishing
Ltd.: Bristol, UK, 2021; Volume 1077.

16. Cortier, V.; Delaune, S.; Dreier, J.; Klein, E. Automatic generation of sources lemmas in Tamarin: Towards automatic proofs of
security protocols. In Computer Security–ESORICS 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–22.

17. Blanchet, B.; Cheval, V.; Cortier, V. ProVerif with Lemmas, Induction, Fast Subsumption, andMuchMore. In Proceedings of the
2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022.

18. Yogesh, P.R.; Devane Satish, D. Formal Verification of Secure Evidence Collection Protocol using BAN Logic and AVISPA. Pro‑
cedia Comput. Sci. 2020, 167, 1334–1344. [CrossRef]

19. Adda, M.ObTFL Formal Language for Spider Network; Internal Technical Report; University of Portsmouth: Portsmouth, UK, 2023.
20. Adda, M. A Formal Language for Actors’ Interactions. In Proceedings of the ITT 2023 Information Technology Trends, Dubai,

United Arab Emirates, 24–25 May 2023.
21. Crowson, M.G.; Moukheiber, D.; Arévalo, A.R.; Lam, B.D.; Mantena, S.; Rana, A.; Goss, D.; Bates, D.W.; Celi, L.A. A systematic

review of federated learning applications for biomedical data. PLoS Digit. Health 2022, 1, e0000033. [CrossRef] [PubMed]
22. Ogundokun, R.O.; Misra, S.; Maskeliunas, R.; Damasevicius, R. A Review on Federated Learning and Machine Learning Ap‑

proaches: Categorization, Application Areas, and Blockchain Technology. Information 2022, 13, 263. [CrossRef]
23. Gad, A.G.; Mosa, D.T.; Abualigah, L.; Abohany, A.A. Emerging Trends in Blockchain Technology and Applications: A Review

and Outlook. J. King Saud Univ.‑Comput. Inf. Sci. 2022, 34, 6719–6742. [CrossRef]
24. Unata, D.; Hammoudehb, M.; Kiraz, M.S. Policy specification and verification for blockchain and smart contracts in 5G networks.

ICT Express 2020, 6, 43–47.
25. Macrinici, D.; Cartofeanu, C.; Gao, S. Smart contract applications within blockchain technology: A systematic mapping study.

Telemat. Inform. 2018, 35, 2337–2354. [CrossRef]
26. IPC‑HERMES‑9852; The Global Standard for Machine‑to‑Machine Communication in SMT Assembly (v1.2). Technical Report.

IPC: Bannockburn, IL, USA, 2019.
27. Tolmach, P.; Li, Y.; Lin, S.‑W.; Liu, Y.; Li, Z. A Survey of Smart Contract Formal Specification and Verification. ACM Comput.

Surv. 2021, 54, 1–38. [CrossRef]
28. Vještica, M.; Dimitrieski, V.; Pisarić, M.; Kordić, S.; Ristić, S.; Luković, I. Towards a Formal Specification of Production Processes

Suitable for Automatic Execution. Open Comput. Sci. 2021, 11, 161–179. [CrossRef]
29. Jnanamurthy, H.K.; Henskens, F.; Paul, D.; Wallis, M. Formal specification at model‑level of model‑driven engineering using

modelling techniques. Int. J. Comput. Appl. Technol. 2021, 67, 340–350. [CrossRef]
30. Aziz, B. Formal Analysis by Abstract Interpretation, Case Studies in Modern Protocols; Springer: Berlin/Heidelberg, Germany, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.robot.2021.103876
https://doi.org/10.1016/j.procs.2020.03.449
https://doi.org/10.1371/journal.pdig.0000033
https://www.ncbi.nlm.nih.gov/pubmed/36812504
https://doi.org/10.3390/info13050263
https://doi.org/10.1016/j.jksuci.2022.03.007
https://doi.org/10.1016/j.tele.2018.10.004
https://doi.org/10.1145/3464421
https://doi.org/10.1515/comp-2020-0200
https://doi.org/10.1504/IJCAT.2021.122345

	Introduction
	Materials and Methods
	Concept of the Language: Objects and Actions
	Transactions
	Compartments
	Independent Compartments
	Nested Compartments
	Grouped Compartments
	Delayed Compartments

	Containers
	Actions and Activities
	Alternative Actions and Activities

	Primitive Symbolic Actions
	Stop (), Null (), Repeat (), and Progress () Actions
	Timer or Delay Action ()
	Input (?) and Output (!) Actions
	Store () and Retrieve () Actions
	Fail ([scale=1]Definitions/standards-3025688-i001.pdf) and Recover ([scale=1]Definitions/standards-3025688-i002.pdf) Actions

	Case Studies
	Case 1: Federated Learning
	Case 2: Blockchain for Cryptocurrency
	Case 3: IPC-HERMES-9852 Protocol

	Discussion
	Conclusions
	Appendix A
	References

