Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Plant Material and Preparation of MES
2.2.1. Selection of Extraction Protocol
- Magnetic stirring (500 rpm) for 30 min at 45 °C.
- Ultrasonication using an Elmasonic S 100 H bath (Elma GmbH & Co. K.G., Singen, Germany) for 30 min at 45 °C.
- Magnetic stirring (500 rpm) for 5 h at 45 °C.
2.2.2. Determination of Carotenoid Content of the Extracts
2.2.3. Preparation of the Final Samples Using the Selected Protocol
- Red Pepper fruit extract
- Green Pepper fruit extract
- M. oleifera L. leaf extract
- Red Pepper/M. oleifera L. leaf (50/50 w/w) extract
- Green Pepper/M. oleifera L. leaf (50/50 w/w) extract
2.2.4. Preparation of MEs
2.3. Determination of Encapsulation Efficiency
2.4. Characterization of MEs
2.4.1. Particle Size Determination
2.4.2. Turbidity Determination
2.4.3. Centrifugation and Thermal Stress Stability Tests
2.5. Antioxidant Activity
2.5.1. Determination of DPPH Radical Scavenging Activity
2.5.2. Differential Scanning Calorimetry (DSC)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Carotenoids Extraction
3.2. Encapsulation Efficiency of Carotenoids in MEs
3.3. Thermal and Centrifugation Stability Tests of MEs
3.4. Turbidity Determination
3.5. Particle Size of MEs
3.6. Antioxidant Activity
3.6.1. DPPH Radical Scavenging Activity
3.6.2. Differential Scanning Calorimetry (DSC) for Determination of Antioxidant Activity
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
- Takano, F.; Yamaguchi, M.; Takada, S.; Shoda, S.; Yahagi, N.; Takahashi, T.; Ohta, T. Capsicum ethanol extracts and capsaicin enhance interleukin-2 and interferon-gamma production in cultured murine Peyer’s patch cells ex vivo. Life Sci. 2007, 80, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Navarro, M.J.; Garrido, C.; Rubio, S.J.; Martinez, V. Influence of Ca2+, K+ and NO3− fertilisation on nutritional quality of pepper. J. Sci. Food Agric. 2004, 84, 569–574. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Hornero-Mendez, D. Comparative study of the effect of paprika processing on the carotenoids in peppers (Capsicum annuum) of the Bola and Agridulce varieties. J. Agric. Food Chem. 1994, 42, 1555–1560. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Rutkowska, J.; Stolyhwo, A. Application of carbon dioxide in subcritical state (LCO2) for extraction/fractionation of carotenoids from red paprika. Food Chem. 2009, 115, 745–752. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Henelyta, S.; Ribeiro, H.P.; Schuchmann, E.R.; Walz, E.; Briviba, K. Encapsulation of carotenoids. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam, N.J., Nedovic, V., Eds.; Springer: New York, NY, USA, 2010; pp. 211–252. ISBN 978-1-44-191008-0. [Google Scholar]
- Barbosa, D.; Paschoal, C.; Louzeiro, H.; Mendonça, K.; Maciel, A.; Silva, F.; Oliveira, H. Impedance spectroscopy investigation of the water-in-oil microemulsions formation. Colloids Surf. B Biointerfaces 2011, 84, 325–328. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol. 2010, 1, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011, 28, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis, HarvestPlus Technical Monograph 2; International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT): Washington, DC, USA, 2004; p. 36. [Google Scholar]
- Roohinejad, S.; Oey, I.; Wen, J.; Lee, S.J.; Everett, D.W.; Burritt, D.J. Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chem. 2015, 174, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, A.; Gramdorf, S.; Muller, R.H.; Kurz, T. β-Carotene-loaded nanostructured lipid carriers. J. Food Sci. 2008, 73, N1–N6. [Google Scholar] [CrossRef] [PubMed]
- Britton, G. Carotenoids. In Natural Food Colorants, 2nd ed.; Hendry, G.A.F., Houghton, J.D., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 197–243. ISBN 978-1-46-152155-6. [Google Scholar]
- McNamee, B.F.; O’Riordan, E.D.; O’Sullivan, M. Emulsification and microencapsulation properties of gum arabic. J. Agric. Food Chem. 1998, 46, 4551–4555. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; San Martin-Gonzalez, F. Characterization of ergocalciferol loaded solid lipid nanoparticles. J. Food Sci. 2012, 71, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Aguia, T.; Mezadri, H.; Dos Santos, O. Attainment of hydrogel-thickened nanoemulsions with tea tree oil (Melaleuca alternifolia) and retinyl palmitate. Afr. J. Biotechnol. 2011, 10, 13014–13018. [Google Scholar]
- Tsaknis, J.; Lalas, S. Extraction and Identification of Natural Antioxidant from Sideritis euboea (Mountain Tea). J. Agric. Food Chem. 2005, 53, 6375–6381. [Google Scholar] [CrossRef] [PubMed]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008, 226, 583–590. [Google Scholar] [CrossRef]
- Prommuaka, C.; De-Eknamkulb, W.; Shotipruka, A. Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Sep. Purif. Technol. 2008, 62, 444–448. [Google Scholar] [CrossRef]
- Raghu, P.; Failla, M.L. Micellarization and intestinal cell uptake of carotene and lutein from drumstick (Moringa oleifera) leaves. Med. Food 2007, 10, 252–257. [Google Scholar]
- Zhang, D.; Yasunori, H. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J. Food Agric. Environ. 2003, 1, 22–27. [Google Scholar]
- Ha, S.; Kim, J.; Park, J.; Lee, S.; Cho, K. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Shetty, N.P.; Prakash, M.; Giridhar, P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food Sci. Technol. 2014, 51, 2176–2182. [Google Scholar] [CrossRef] [PubMed]
- Castenmiller, J.J.M.; West, C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr. 1998, 18, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Edelen, A.; Neighbors, B.; Sabatini, D. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: Formulation and potential applications. J. Colloid Interface Sci. 2010, 348, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.J.; Rees, G.D. Microemulsions-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89–121. [Google Scholar] [CrossRef]
- Lee, K.L. Applications and Use of Microemulsions, Department of Chemical Engineering and Chemical Technology, Imperial College London, 2010. Available online: https://arxiv.org/ftp/arxiv/papers/1108/1108.2794.pdf (accessed on 7 November 2017).
- Gortzi, O.; Rovoli, M.; Lalas, S.; Kontopidis, G. Development and evaluation of a phospholipid-sterol-protein membrane resembling system. Food Biophys. 2015, 10, 300–308. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, S.; Bae, E.K.; Mo, C.K.; Park, J. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. J. Food Sci. 2008, 73, E115–E121. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, E.; Gándola, Y.; González, L.; Bregni, C.; Carlucci, A.M. Development, characterization, and in vitro evaluation of tamoxifen microemulsions. J. Drug Deliv. 2012, 236713. [Google Scholar] [CrossRef] [PubMed]
- Eastoe, J. Microemulsions. In Surfactant Chemistry; School of Chemistry, University of Bristol: Bristol, UK, 2003; pp. 59–95. Available online: http://www.chm.bris.ac.uk/eastoe/Surf_Chem/Surfactant.htm (accessed on 7 November 2017).
- Alvarez-Parrilla, E.; De la Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed jalapeno and uboea peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Reevaluation of antimicrobial and antioxidant activity of Thymus spp. Extracts before and after encapsulation in liposomes. J. Food Prot. 2006, 69, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
Sample | Magnetic Stirring (30 min/45 °C) | Ultrasound (30 min/45 °C) | Magnetic Stirring (5 h/45 °C) |
---|---|---|---|
Green Pepper | 76.1 ± 2.6 | 102.7 ± 5.2 | 120.4 ± 5.5 |
Red Pepper | 442.4 ± 13.3 | 484.9 ± 10.6 | 500.1 ± 6.4 |
Moringa oleifera | 1442.1 ± 35.2 | 1482.5 ± 39.2 | 1502.6 ± 2.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batra, G.; Gortzi, O.; Lalas, S.I.; Galidi, A.; Alibade, A.; Nanos, G.D. Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions. ChemEngineering 2017, 1, 15. https://doi.org/10.3390/chemengineering1020015
Batra G, Gortzi O, Lalas SI, Galidi A, Alibade A, Nanos GD. Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions. ChemEngineering. 2017; 1(2):15. https://doi.org/10.3390/chemengineering1020015
Chicago/Turabian StyleBatra, Georgia, Olga Gortzi, Stavros I. Lalas, Anna Galidi, Angeliki Alibade, and George D. Nanos. 2017. "Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions" ChemEngineering 1, no. 2: 15. https://doi.org/10.3390/chemengineering1020015
APA StyleBatra, G., Gortzi, O., Lalas, S. I., Galidi, A., Alibade, A., & Nanos, G. D. (2017). Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions. ChemEngineering, 1(2), 15. https://doi.org/10.3390/chemengineering1020015