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Abstract: The recycling of exhausted lithium-ion batteries from mobile phones originate five
solutions with different Co and Mn proportions that were used as electrolytic solutions to obtain
Mn-Co spinel coatings on the surface of AISI430 stainless steel. The coatings are intended to
contain chromium volatility in the working conditions of Solid Oxide Fuel Cells (SOFC) metallic
interconnectors. Potentiostatic electrodeposition was the technique used to obtain Mn-Co coatings
from low concentration electrolytes at pH = 3.0 and potential applied −1.3 V. Charge efficiency data
were used for sample optimization. Three optimized samples were subjected to oxidation heat
treatment at 800 ◦C for 300 h and then characterized by XRD, SEM and EDS. The results showed
that the addition of manganese ions instead of cobalt ions in the electrolytic bath produces more
stable and well-distributed deposits as the ratio of the two ions becomes equal in the electrolytic bath.
Thin, homogeneous and stable spinel coatings (Mn, Co)3O4 2.8 µm and 3.9 µm thick were able to
block chromium volatility when exposed to SOFC operating temperature.
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1. Introduction

Solid Oxide Fuel Cells (SOFC’s) are promising devices for power generation [1–5]. Operating in
medium-high temperature environments (750–1000 ◦C), SOFCs have relatively high energy conversion
efficiency, low emission of pollutants and fuel flexibility compared to other types of fuel cells [1–6].
The electrical contact between two adjacent SOFC unit cells is promoted by the interconnectors, which
also have the function of separating and distributing fuel and oxidant gases in the electrode [7–9].
The selection of interconnect materials depends on the good compatibility of their properties with
the cell components and still be economically feasible [1,2,5,10]. However, high working temperature
cells (750–1000 ◦C) implies higher costs with compatible materials, increasing manufacturing costs
and shortened cell life [1,2,10]. Traditionally, ceramic materials such as lanthanum chromite (LaCrO3)
were used in high-temperature SOFC interconnectors [10–12]. However, technological advances
in the manufacture and design of SOFCs allowed the reduction of the working temperature for
intermediate ranges between 700 and 850 ◦C, thus being able to use lower costs and good properties
materials as interconnectors [11]. Ferritic stainless steels, such as AISI430, are a good alternative for
interconnector construction. The class of austenitic stainless steels are not acceptable as interconnectors
as they contain addition of nickel. This element, despite increasing the corrosion resistance of the
material, also increases its cost (Table 1) and modifies its coefficient of thermal expansion, which makes
it unviable.
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Table 1. Average value of some metals at year-end 2018. Source: https://www.metalary.com/, accessed
20 April 2019.

Element Average Price (2018) U$/t

Cobalt 80.490
Manganese 2.060
Aluminum 1.885

Nickel 8.931
Iron 57,86

Commercial ferritic alloys were specially developed for SOFC applications and showed good
results [7,10–15]. Crofer 22APU with nominal composition 20–24Cr; 0.03C; 0.3–0.8Mn; 0.5Si; 0.5Al; 0.2Ti;
0.2La (% wt) was specially developed for applications in SOFC environments [10–13]. Their superficial
layer is predominantly composed by spinel oxides Cr2O3 and a columnar outer layer (Mn, Cr)2O3.
This outer layer presents excellent corrosion resistance in atmospheres relevant to SOFC applications up
to 900 ◦C, reducing the evaporation of chromium very effectively [13,16]. However, the manufacturing
process and the noble metals present in their composition increase the final cost and, therefore, do not
meet the economic viability requirement of SOFC [8,10]. As a good alternative, ferritic stainless steel
(17–20% Cr) has been extensively studied for interconnectors manufacturing processes due to their
properties as low cost, good mechanical properties and good workability if compared to the previously
used materials [7–9,11,12,17]. However, at high temperatures, chromium may form gaseous oxides
that migrating to the cathode and gradually reducing the cell performance, a phenomenon known
as chromium poisoning [4–12]. Also, the reduction of Cr concentration in the base alloy promotes
a thickness reduction in the protective chromium oxide layer and thus allows an iron oxide layer
appearance. The oxidation/spallation phenomena result in a decrease in electrical conductivity and an
increase in contact resistance between stacks [9,10].

As an alternative to chromium poisoning, several technologies have been studied including
modification of steel composition [14,15], surface treatments [18] and application of protective
coatings [7–9,19–21]. Application of protective coatings is a simple, efficient and cheaper method that
inhibits the phenomenon of chromium poisoning and maintains a good specific electrical resistance.
Co-Mn based spinels have been developed as a protective layer that improves the performance of ferritic
steels and can be obtained by different methods [22] such as slurry coating [23], plasma spray [24],
electrodeposition [25–29], and others techniques [30,31].

Electrodeposition technique involves the deposition of a metal or alloy film over a conducting surface
by electrolysis from a well-formulated electrolyte known as a bath, which can be an aqueous simple salt
solution or a complex salt type [32]. Karpuz, Kockar and Alper (2015) [28] investigated the effect of
deposition parameters, such as electrolyte concentration and pH, deposition potential and film thickness.
They demonstrated that microstructure and grain size are very dependent on these parameters, especially
pH. For the experiment, the authors used a solution (0.1 M) MnSO4 + (0.25 M) H3BO3 + (0.25 M) CoSO4

and cyclic voltammetry data indicated the electrodeposition potential of the Mn-Co alloy. The results
showed that smaller and more homogeneous grains are formed at lower pH’s and that the variation of
this parameter does not influence the concentration of Mn in the deposited layer.

The possibility of obtaining the deposition electrolytes, rich in Mn and Co, from lithium-ion
batteries recycling, is an attractive option to obtain coated metallic interconnectors at an even lower
cost. Lithium-ion batteries (LIB’s) are efficient devices with high power density widely used in cell
phones in the world [33]. These batteries, which have a durability average of 2 years, can become an
object of environmental concern since, after their cycling life, these devices, which present toxic metals
in their composition, are usually disposed of in an inadequate in the environment. It also adds to the
economic importance of recycling [34]. According to METALARY (https://www.metalary.com), cobalt,
for example, came in at about $ 80,000/t in 2018 (Table 1).

https://www.metalary.com/
https://www.metalary.com
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LIB’s are composed of cathode, anode, electrolyte, separator and current collector. The anode is
graphite carbon, and the cathode is a lithium oxide and another metal in the form LiMO2, where M most
often represents Co, Mn, Fe or Ni [35–37]. Operating at low temperatures and without burning organic
solvents, a hydrometallurgical route can be used to recycle the LIB’s metals [38]. This method includes,
after discharging and dismantling of exhausted LIB’s, the removal of aluminum foil using sodium
hydroxide followed by acid leaching and finally the metal fluids recycling by precipitation or solvent
extraction [39,40]. Thus, after the disposal of mobile phone batteries, the hydrometallurgical process
allows its cathode recycling and reuse of the metals present in its composition [38]. In our previous
work [41], the same recycling process was used to obtain a new anode for hydrogen production that
was developed based on 430 stainless steel. In this present work, the mobile phones cathodes were
dissolved under a hydrometallurgical process and produced a solution rich in Co and another in
Mn. These solutions were used for the electrodeposition of Mn-Co in AISI 430 ferritic stainless steel
by electrolytes with different Co and Mn proportions to improve its morphological and efficiency
characteristics as a SOFC metallic interconnector. Potentiostatic electrodeposition was used as a viable
alternative to obtain, from low concentrations solutions, relatively thin and dense layers with high
efficiency and low costs [30–33]. The samples were submitted to thermal cycling of 800 ◦C to obtain
the (Mn, Co)3O4 spinel layers. The microstructure and composition were analyzed by X-ray diffraction
(XRD) to observe the surface phases in the samples after heat treatment. SEM and EDS were used to
verify the homogeneity, grain distribution and surface chemical composition.

2. Materials and Methods

2.1. Substrate Preparation

Ferritic stainless steel AISI430 was used as a substrate in the form of rolled sheets in dimensions
of 20 × 20 × 1 mm. The nominal steel composition is presented in Table 2.

Table 2. Chemical composition of AISI 430 steel used as substrate. Source: APERAM, 2016.

Fe
(%m)

C
(%m)

Mn
(%m)

Si
(%m)

Cr
(%m)

Ni
(%m)

Mo
(%m)

Nb
(%m)

Ti
(%m)

N
(ppm)

AISI430 Bal. 0.047 0.23 0.32 16.22 0.27 0.02 0.012 0.003 518

The steel substrates were sanded using a DPU-10 Strues polishing machine with 400 and 600
water sandpaper. After this step, the samples were washed with deionized water and isopropyl alcohol
and then dried with the aid of a HL 500 Steinel thermal blower.

2.2. Recycled Electrolyte Solutions: Hydrometallurgical Route

An illustrative scheme of the process for obtaining recycled electrolyte solutions is shown in
Figure 1. Two exhausted Li-ion batteries used in cell phones were manually disassembled and their
components separated. The cathodes were brought to the oven at 100 ◦C for 24 h to volatilize any
residual organic solvents present in the electrolyte [42]. For the preparation of the solution, the cathode
was detached from the current collecting aluminum strip after immersion in 2 mol/L NaOH [40,43–45].
The dissolution reactions of the current collecting aluminum foil are represented in Equations (1) and
(2) below [45].

Al2O3(s) + 2 NaOH(l) + 3H2O(l) → 2Na[Al(OH)4](l) (1)

2Al(s) + 2NaOH(l) + 6H2O(l) → 2Na[Al(OH)4](l) + 3H2(g) (2)

After filtration and washed in deionized water, the cathode material was dried under ambient
conditions for 24 h. The final product was dissolved in 10 mL of 6 mol/L H2SO4, 8 mL of 36% v/v
H2O2 and 200 mL of distilled water. The solution was kept under stirring and heating at 80 ◦C for
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2 h [41,45–49]. After cooling to room temperature, the solutions were filtered and the pH adjusted to
3.0 [27,29,50–52] with the addition of sodium acetate.
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Figure 1. Illustrative scheme about the route for obtaining recycled electrolyte solutions.

The concentrations of the electrolyte solutions from the recycling process were analyzed by Atomic
Absorption Spectrometry (Intralab model AA-1275ª) and the results, S1 and S2, are showed at Table 3.
From these results, the concentrations were adjusted with the addition of deionized water to obtain
five solutions with different ratios between cobalt and manganese ions (A1–A5) (Table 3). The recovery
of these metals was performed by Potentiostatic Electrodeposition.

Table 3. Approximate composition of the precursor solutions and the “A” solutions to which they originated.

Solution Co (mol/L) Mn (mol/L)

S1 0.17 0
S2 0 0.19
A1 0.04 ~0
A2 0.03 0.01
A3 0.02 0.02
A4 0.01 0.03
A5 ~0 0.04

2.3. Electrochemical Measurements

Cyclic Voltammetry and Potentiostatic Electrodeposition were performed on an Autolab PGSTAT
30 Potentiostat. An electrochemical cell with three electrodes was used in which: the working electrode
are samples of AISI430 rolled steel sheets (3.0 cm2 dipped in the electrolyte); the reference electrode
was Ag/AgCl; the platinum auxiliary electrode and electrolytes were the solutions obtained by the
Li-ion battery recycling process (Table 2). Cyclic voltammetry was performed at 40 mVs−1 in 40 mL of
each of the five “A” solutions, shown in Table 2. The charge efficiency (ε) was obtained by Equation (3),
where ia and ic are the anodic and cathodic current density, respectively.

ε(%) =

∫ t2
t1 iadt∫ t2
t1 icdt

× 100 (3)

Potentiostatic electrodeposition was performed at potential −1.3 V for the five solutions.
The process was performed for the time necessary to reach 20.0 C/cm2 of charge density.

The charge efficiency was also determined by the relationship between the actual mass gain of
each sample after electrodeposition (ma) and the theoretical mass calculated (mt) (Equation (4)) [53].

The theoretical mass to be deposited during the process can be calculated based on Faraday’s Law
(Equation (5)), provided the charge values (Q) that goes through the process, the molar mass of the
deposited coating (M), the number of moles of electrons exchanged in the reaction (z) and the Faraday
constant (F = 96.485 C·mol−1) [46]. In this study, M was the average molar mass between Mn and Co
(56,936 g/mol). The samples were dried at room temperature and then weighed.

ε(%) =
ma

mt
× 100 (4)
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mt = QM/zF (5)

After this step, both coated and uncoated samples were subjected to oxidation heat treatment at
800 ◦C for 300 h, in 50 or 100 h cycles to obtain the protective spinel (Mn, Co)3O4 phases. At each cycle,
the samples were cooled to room temperature and the gain mass determined for each one.

After heat treatment, the samples were characterized by X-ray diffractometry (XRD). XRD analysis
was performed using Shimadzu—7000 with CuKα radiation (40 kV and 30 mA). The 2θ measurement
was carried out at room temperature, in the range 30◦–65◦ with a scan speed of 4 degrees by minute.
Crystallographic standard patterns PDF 23-1237 and 80-1640 provided by the Crystallographica Search
Match software indicate the peaks for the protective spinel MnCo2O3 and Co3O4 respectively [7,8,26].
These standard patterns were used as a source of comparison for the peaks related to these spinels
in the “A” samples obtained. The uncoated steel sample underwent the same oxidation process
and the diffractogram obtained was used to indicate the peaks concerning substrate oxidation in the
diffractograms of the coated samples.

SEM and EDS were the techniques used to study the morphology and composition of the samples.
The observations have been performed using a JEOL JSM–6360LV equipped with an energy dispersive
X-ray based on Bruker SDD detectors. For quantification, QuantaX70 software was used. Image J
software was used to calculate average grain sizes, sample porosity and coating thickness.

3. Results

3.1. Electrolyte Solutions

Table 4 shows the metals present in lithium-ion batteries by Atomic Absorption Spectroscopy.
Battery 1 yielded a solution rich in Mn ions, and Battery 2 yielded a solution rich in Co ions. Mixing these
solutions yielded five new solutions with well-defined proportions between Co and Mn, as shown in
Table 3.

Table 4. Chemical composition of electrolyte solutions from the recycled Li-ion battery cathode.

mol/L Mn Co Fe Ni

Battery 1 0.1699 * * 0.0001
Battery 2 0.0005 0.1868 * 0.0001

* Below detection limit of the equipment.

3.2. The Efficiency of Electrochemical Processes

For “A” solutions, the cyclic voltammetry graphs are shown in Figure 1. It can be seen that for all
solutions, the cathodic reduction current starts at around −0.8 V and grows as the potential becomes
more negative, indicating the reduction of metal ions present in the solution [28,29,41,52]. According to
Karpuz et al. 2015 [29], the electrodeposition potential of Co-Mn alloy can be chosen based on values
that produce reduction currents for both metals separately. In this work, solutions A1 and A5 are
concentrated only in Co and Mn ions, respectively. Thus, it can be seen from Figure 2, the potential of
−1.3 V as propitious in both cases to generate a reduction of electric current in the samples.

When the current becomes anodic, a larger width of the dissolution peak may indicate deposits
that are more resistant to the oxidation process caused by the application of more positive potentials
than −0.4 V. The stability of these deposits may be influenced by the parallel reduction of H+ ions
during the cathodic reduction process. Hydrogen is adsorbed during the formation of intermediate
phases and modifies the crystalline structure of the formed coating, influencing porosity and grain size
during the deposition process [29,54]. Thus, it can be observed that for solutions A at pH = 3.0 there is
a more stable deposit formation for solution A2, while A1 and A3 form intermediate stability deposits
and, A4 and A5 indicate the formation of an inefficient deposit.
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From the voltammograms, the total process efficiency for each solution can be determined
(Equation (3)). The results are shown in Figure 3.
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The analysis of the efficiency data provided by Figures 2 and 3 allows us to infer that among the
five solutions analyzed, only A1, A2 and A3, solutions more concentrated in cobalt ions, presented
satisfactory efficiencies. For solutions A4 and A5, efficiency is approximately zero when calculated from
voltammetric curves (Figure 3) and between 3% and 12% using deposited mass gain data (Figure 4).

The charge efficiency obtained by cyclic voltammetry predicts a relationship between the
microstructural and chemical stability characteristics of the formed films. The efficiency calculated by
the theoretical and actual mass variation obtained in the process allows a relationship between the
amount of total charge applied in the process and the actual charge used in the metal reduction process.
Thus, it can be observed that the most chemically stable samples, A1, A2 and A3 were also those
that obtained the highest mass gain during electrodeposition. For these samples, the microstructural
characterizations and surface chemical composition are shown in the following sections.

3.3. X-Ray Diffraction

As indicated by the charge efficiency data (Figures 3 and 4), the peaks for the Co3O4, MnCo2O4

and CoMn2O4 spinels were observed at a higher intensity for samples A1, A2 and A3. It can be
observed that in Figure 5 these peaks are indicated without differentiation between the three phases.
As explained in the literature, for these structures the diffractograms indicate only a slight variation
in the 2θ position of the peaks for each phase. This small difference is explained by variations in the
crystallite structure when Mn ions are inserted [25,26]. Low-intensity peaks concerning substrate
oxidation can also be observed at low intensity at angles around 33.4◦, 41.15◦, 49.9◦ and 54.6◦ (2θ),
which indicates a thin coating and/or not homogeneously distributed [27]. The thin film thickness
obtained in this work is an expected feature since the ionic concentrations in the electrolyte solutions are
low. The distribution characteristics of the film on the substrate surface are shown in the next section.
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Figure 6 shows for the optimized samples the diffractograms in the highest intensity spinel peak
range, between 35.5◦ and 37.0◦ (2θ). One can observe a different phase formed for the A3 solution.
For solution A1, which does not have manganese ions in its composition, the oxide formed can be
attributed to phase Co3O4, and similarly to sample A2, since there was no significant change in the
phase angle formed for these two samples. At room temperature, spinel (Mn, Co)3O4 consists of a
mixture between the tetragonal structure Mn2CoO4 and cubic structure MnCo2O4 phases. During heat
treatment, the temperature increase around 400 ◦C makes the cubic structure stable [8,25,26,55,56].



ChemEngineering 2020, 4, 10 8 of 13

Thus, under working conditions of SOFC’s, around 800 ◦C, the only structure present is the cubic.
The transition between the two structures during heating has no harmful effects to the coating, as the
thermal expansion coefficients of the two phases are very close [56].
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3.4. SEM and EDS

Figure 7 shows SEM images of the uncoated stainless steel sample surface and samples A1, A2 and
A3, heat-treated at 800 ◦C for 300 h. In Figures 8 and 9 chemical map cross-sectional characterizations
and semi-quantitative chemical composition data obtained by EDS, respectively. The composition and
surface microstructure of the uncoated sample (Figure 7A) was taken as a basis for comparison for the
same analyzes performed for samples A1, A2 and A3, shown in Figure 7B–D, respectively.
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The coatings obtained in A1 and A3 were formed in layers, with heterogeneous distribution and
relief to the upper layer. At higher magnification, a porous and coarse microstructure can be observed
for A1, with elongated grains of average size 2.18 µm, while for A3 the grains are smaller, on average
1.85 µm. Sample A2 presented a homogeneous distribution with even finer grains, averaging 1.35 µm.
The pores occupy 13% of the area analyzed in the microstructure of sample A1 and are probably due to
the parallel reduction process of H+ ions during electrodeposition and the consequent adsorption of
hydrogen gas on the crystal structure of the coating. The average pore size in this sample was 1.67 µm.

For the coated samples, the cross-sectional images are shown in Figure 8. For A1, despite the
thicker (~7.4 µm), the coating was not as efficient as a barrier to chrome volatility. Regarding the
horizontal line, it can be observed that the chromium was able to overcome the barrier formed by the
coating, a fact that can be attributed to the high concentration of pores in its microstructure. The same
behavior is not observed for the other two samples. The A3 coating has the smallest thickness, around
2.8 µm and, despite its thickness, was efficient against the volatility of the chrome, since the presence
of this element is not observed in the coating. For A2, the intermediate thickness (~3.9 µm) reveals a
stable, well distributed, and efficient coating against chromium poisoning. The presence of Mn, in light
blue tone, can be noticed in the three samples at the same points where the highest concentration of Cr
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is also noted. Thus, it can be said that on the substrate surface, below the spinel coating, (Mn, Cr)2O3

formed, since Cr and Mn are elements present in the substrate composition (Table 1). For A3, besides
the presence of Mn next to Cr, the presence of this element can also be observed in the regions where
cobalt appears, proving that there was formation of spinel MnCo2O4. Some of the main requirements
for a material to be used as an interconnector are known to be chemical stability, compatible TEC
and good electrical conductivity in SOFC’s working conditions. AISI430 steel has compatible TEC
and the coatings deposited on samples A2 and A3 were able to block the volatility of chrome on the
steel surface. However, according to Ohm’s Law, electric current follows the paths of least resistance,
which are those where the bridging oxide scale bridges are thinner. Therefore, thinner coatings that are
still able to block chrome volatility can lead to a significant increase in electrical conductivity, whereas
the electrical conductivity of Mn-Co coatings are orders of magnitude greater than Cr2O3 [17].

Semiquantitative EDS data for the surface of the samples are shown in Figure 9. Higher chromium
and iron proportions in sample A1 are an expected result since as observed in Figures 7B and 8A,
the coating formed was porous and unstable. For samples A2 and A3, even to a lesser extent,
the presence of chromium and iron may be noted due to the thin thickness of the coating formed. In this
case, these elements can be detected by the depth that reaches the beam energy during the technique
used. As expected from the XRD analysis and chemical maps, the surface amount of manganese
becomes more abundant at the expense of cobalt for sample A3.

4. Conclusions

For the studied conditions, it was observed that higher proportions of cobalt ions in the electrolyte
solution increase the efficiency of the electrodeposition process. However, the addition of Mn ions to
the detriment of Co ions in the bath results in deposits that, although less thick, are also more stable and
well distributed. Replacing Co ions with Mn ions in the solution is beneficial until to the extent that
the proportions of the two metal ions are equal. For the studied conditions, the coating formed at the
samples A2 and A3, after heat treatment, are the spinel oxides Co3O4 and MnCo2O4 respectively. Both
coatings were able to block the chrome volatility on the AISI430 steel surface. However, the coating
deposited in sample A3, besides blocking the loss of chromium, also presented the smallest thickness
and is therefore the best condition obtained in this work.
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